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Abstract

Directed graphs are widely used to model data flow and execution dependencies in
streaming applications. This enables the utilization of graph partitioning algorithms
for the problem of parallelizing execution on multiprocessor architectures under hard-
ware resource constraints. However due to program memory restrictions in embedded
multiprocessor systems, applications need to be divided into parts without cyclic
dependencies. We found that this can be done by a subsequent second graph parti-
tioning step with an additional acyclicity constraint. We have four main contributions.
First, we show that this more constrained version of the graph partitioning problem is
NP-complete and present linear time heuristics. We then integrate them into an existing
multi-level graph partitioning framework to better handle large graphs. This achieves
a 9% reduction of the edge cut compared to the previous single-level algorithm. Based
on this, we engineer an evolutionary algorithm to further reduce the cut, achieving a
30% reduction on average compared to the state of the art. Finally, we integrate the
partitioning heuristics into a graph compiler for an embedded multiprocessor archi-
tecture and show that this can reduce the amount of communication for a real-world
imaging application and thereby accelerate it by an average of 11%. It is shown that
the compiler can emit optimized code for vastly different hardware platforms using
the heuristics. In addition, we demonstrate how a custom fitness function for the evo-
lutionary algorithm can be used to optimize other objectives like load balancing if the
communication volume is not predominantly important on a given hardware platform.
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1 Introduction

Imaging and computer vision are important elements and enabling technologies for
a variety of applications ranging from consumer electronics over industrial automa-
tion to self-driving cars and have high demands for computational power. However,
these applications often need to run on embedded devices with strong constraints on
power and with a tight thermal budget (Wolf 2014). To cope with the high performance
and low latency requirements of the application domain under these limitations, spe-
cialized hardware is needed (Wolf 2017). The downside of these specializations is
that the resulting hardware platform is cumbersome to program. Therefore the task
of implementing an application will not only require domain knowledge and precise
understanding of the algorithm in question, but also demand profound knowledge of
the hardware. Furthermore, it is a task that has to be repeated for every hardware
platform the application has to run on. This is particularly not desirable for the devel-
opment of imaging and vision applications for the mobile market due to the large
number of different and constantly evolving platforms. One way to address this prob-
lem is by raising the level of abstraction and providing a domain-specific language
for the developer that abstracts from hardware details. The opportunity here is that the
developer can implement the application without targeting a specific hardware plat-
form while the hardware vendor can implement a compiler for this language without
targeting a specific use case. The challenge is that the algorithm must be expressed
in a way that provides enough information to allow for an efficient execution on the
target hardware platform without already prescribing a specific solution.

The context of this research is the development of specialized processors at Intel
Corporation for advanced imaging and computer vision. In particular, our target plat-
form is a heterogeneous multiprocessor architecture that is currently used in Intel
processors. Several processors with vector units are available to exploit the abundance
of data parallelism that typically exists in imaging algorithms. The architecture is
designed for low power and has small local program and data memories. Since the
hardware exists in different configurations with vastly different memory sizes and
number of processors, we have developed a programming model in the form of a
domain-specific meta-language. Developers can use the meta-language to implement
imaging and vision applications by simply connecting kernels to form a directed graph.
No in-depth knowledge of the hardware is required. We then provide a graph compiler
that parses the graph and emits optimized code for the target hardware platform.

To cope with memory constraints, the compiler has to break the application into
smaller blocks that are executed one after another. The quality of this partitioning has
a strong impact on performance since it determines the amount of data that needs to
be transferred to external memory. This will be the focus of this article. There are
many existing heuristics for partitioning graphs into blocks of nodes of roughly equal
size. However, our platform has the requirement that there must not be a cycle in the
dependencies between the blocks because they have to be executed one after another.
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Evolutionary multi-level acyclic graph partitioning 773

The contributions of this work are (a) the identification of a new variation of the
graph partitioning problem and proof of its NP-completeness, (b) design and imple-
mentation of local search heuristics for the acyclic graph partitioning problem, (c) a
multi-level approach to better handle large graphs, (d) based on this, a coarse-grained
distributed evolutionary algorithm to better escape local minima, (e) an objective
function that improves load balancing on the multiprocessor architecture and (f) an
evaluation on a large set of graphs and a real application.

Our focus is on solution quality, not algorithm running time, since these partitions
are typically computed once before the application is compiled. We present all nec-
essary background information on the application graph and hardware in Sect. 2 and
then briefly introduce the notation in Sect. 3. We discuss related work in Sect. 4. The
proof that the problem is NP-complete and hard to approximate is found in Sect. 5.
The local search heuristics will be explained in Sect. 6. Our multi-level solution is
described in Sect. 7. We extend it with an evolutionary algorithm that provides multi-
level recombination and mutation operations, as well as a novel fitness function in
Sect. 8. The evaluation is found in Sect. 9. We conclude in Sect. 10.

2 Background

In our programming model, applications are expressed as a directed stream graphs
where nodes represent tasks that process the stream data and edges denote the direction
of the dataflow. In this article, we address the problem of partitioning a directed acyclic
stream graph to meet constraints of an embedded multiprocessor platform. The nodes
of the graph are kernels (small, self-contained functions) annotated with code size
while edges are annotated with the amount of data transferred during one execution of
the application. These annotations are automatically made by our graph compiler. The
programmer only writes the kernel code which he embeds into a wrapper written in
our meta-language that defines how the kernel accesses data. The compiler uses this
information and the size of the input images to calculate buffer sizes (program and
data) as well as transfer costs.

The processors of the hardware platform have a private local data memory and
a separate program memory. A direct memory access controller (DMA) is used to
transfer data between the local memories and the external DDR memory of the system.
Since the data memories only have a size in the order of hundreds of kilobytes they
can only store a small portion of the image. Therefore the input image is divided into
tiles.

The graph compiler will combine several kernels each into a program for one of
the processors. The programs then process the tiles one after the other. However, this
is only possible if the program memory size is sufficient to store all kernels. For the
hardware platform under consideration it was found that this is not the case for more
complex applications such as a Local Laplacian filter (Paris et al. 2011). Therefore
a gang scheduling Feitelson and Rudolph (1992) approach is used where the kernels
are divided into groups of kernels (referred to as gangs) that form smaller programs
which do not violate memory constraints. Gangs are executed one after another on the
hardware. After each execution, the kernels of the next gang are loaded and replace the
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(a) invalid partitioning (b) valid partitioning

Fig.1 Subfigure a shows an invalid partition with minimal edge cut, but a bidirectional connection between
blocks and thus a cycle in the quotient graph. A valid partitioning with minimal edge cut is shown in b

current kernels in the program memory. This means that two kernels of different gangs
are never resident in memory at the same time. Thus all intermediate data produced
by the current gang but needed by a kernel in a later gang need to be transferred to
external memory.

Data can only be consumed in the same gang where they were produced and in
gangs that are scheduled at a later point in time. Therefore, a strict ordering of gangs
is required where producers precede consumers. Such a partitioning is called acyclic
because the quotient graph, which is created by contracting all nodes that are assigned
to the same gang into a single node, does not contain a cycle. This does not hold for
the partitioning in the left half of Fig. 1. The quotient graph is cyclic and there is no
valid temporal order in which the two gangs can be executed on the platform. The
right half of Fig. 1 shows a valid partitioning.

Memory transfers, especially to external memories, are expensive in terms of power
and time. Thus it is crucially important how the assignment of kernels to gangs is done
since it will affect the amount of data that needs to be transferred.

3 Preliminaries
We now introduce the mathematical notation used in this article, give the formal defi-

nition of the acyclic graph partitioning problem and show its relation to multiprocessor
scheduling.
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3.1 Basic concepts

Let G = (V ={0,...,n — 1}, E, ¢, w) be a directed graph with edge weights  :
E — R.o,node weightsc : V. — R>g,n = |V|],and m = |E|. We extend c and w to
sets, i.e., c(V') := ) ey c(v) and w(E") := ), w(e). We are looking for blocks
ofnodes Vi, ..., Vi that partition V,i.e., ViU---UVy = Vand V;NV; = @ fori # j.
We call a block V; underloaded [overloaded] if ¢(V;) < Lmax [if ¢(V;) > Lmax]. A
clustering is also a partition of nodes, but & is usually not given in advance.

N (v) gives the neighbors of v. If a node has a neighbor in a block different of its own
block then both nodes are called boundary nodes. An abstract view of the partitioned
graph is the so-called quotient graph, in which nodes represent blocks and edges are
induced by connectivity between blocks. The weighted version of the quotient graph
has node weights which are set to the weight of the corresponding block and edge
weights equal to the weight of the edges that run between the respective blocks.

A matching M C E is a set of edges that do not share any common nodes, i.e.,
the graph (V, M) has maximum degree one. Contracting an edge (u, v) means to
replace the nodes u and v by a new node x connected to the former neighbors of
u and v, as well as connecting nodes that have u and v as neighbors to x. We set
c(x) = c(u) + c(v) so the weight of a node in the new graph is the summed weight
of the nodes it is representing in the original graph. If replacing edges of the form
(u, w),(v, w) would generate two parallel edges (x, w), we insert a single edge with
w((x,w)) = w((u, w))+w((v, w)). Uncontracting an edge e undoes its contraction.

3.2 Problem definition

In our context, partitions have to satisfy two constraints: a balancing constraint and
an acyclicity constraint. The balancing constraint demands that Vi € {1,...,k} :
c(Vi) < Lpax := (1 +¢€) (%] for some imbalance parameter € > 0. The acyclicity
constraint mandates that the quotient graph is acyclic. The objective is to minimize
the total edge cut y; ; w(E;j) where Ejj := {(u,v) € E : u € V;,v € V;}. The
directed graph partitioning problem with acyclic quotient graph (DGPAQ) is then
defined as finding a partition IT := {VL R Vk} that satisfies both constraints while
minimizing the objective function. In the undirected version of the problem the graph
is undirected and no acyclicity constraint is given.

3.3 Multi-level approach

The multi-level approach to undirected graph partitioning consists of three main
phases. In the contraction (coarsening) phase, the algorithm iteratively identifies
matchings M C E and contracts the edges in M. The result of the contraction is
called a level.

Contraction should quickly reduce the size of the input graph and each computed
level should reflect the global structure of the input network. Contraction is stopped
when the graph is small enough to be directly partitioned. In the refinement phase, the
matchings are iteratively uncontracted. After uncontracting a matching, a refinement
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algorithm moves nodes between blocks in order to improve the cut size or balance. The
intuition behind this approach is that a good partition at one level will also be a good
partition on the next finer level, so local search converges quickly. Moving a node on
a coarse level hierarchy usually corresponds to the movement of a whole set of node
movements of the finest level of the hierarchy. Intuitively, the multi-level scheme has
a global view on the optimization problem on the coarse levels of the hierarchy and a
very local view on the finest levels with respect to the original graph.

Local search algorithms find good solutions quickly but are more likely to get stuck
in local optima. In contrast to local search algorithms, evolutionary algorithms tend to
be better at searching the problem space globally. However, evolutionary algorithms
lack the ability of fine tuning a solution, thus in memetic algorithms local search helps
to improve the performance of an evolutionary algorithm (Kim et al. 2011).

3.4 Application in graph compilation

Graph partitioning is a sub-step in our graph compiler. It is used to adapt the program
to different versions of our hardware platform such that is uses the hardware resources
as much as possible but does not overcommit. To enable this, we map the hardware
constraints of the platform to the constrains of the partitioning by setting node weights
and Lp,x to appropriate values. Since the partitioning heuristics optimizes the edge
cut, we can define edge weights in a way such that the heuristic optimizes a property
of the partitioning that we deem beneficial for the scheduling and final performance
of the application. If we set edge weights to the total amount of data transferred
during one execution of the application, then reducing the edge cut will improve
the memory bandwidth requirements of the application. The memory bandwidth is
often the bottleneck, especially in embedded systems. A schedule that requires a large
amount of transfers will neither yield a good throughput nor good energy efficiency.

Our compiler runs a first pass of the graph partitioning heuristic with the node
weights set to the code size of the corresponding kernels. Lpax iS set to the size of
the program memory. This first pass thus finds a good composition of kernels into
programs with little interprocessor communication. The resulting quotient graph is
then used in a second pass where node weights are set to 1 and L,y is set to the total
number of processors. This finds scheduling gangs that minimize external memory
transfers. The acyclicity constraint is of crucial importance in this second step. Note
that in the first pass, the constraint can in principle be dropped. However, this yields
programs with interdependencies that need to be scheduled in the same gang during
the second pass. We found that this often leads to infeasible inputs for the second pass.

However, we also found that our graph partitioning heuristic, when only optimizing
edge cut, occasionally makes a bad decision concerning the composition of gangs.
Ideally, the programs in a gang all have equal execution times. If one program runs
considerably longer than the other programs, the corresponding processors will be idle
since the context switch is synchronized. Therefore, we try to alleviate this problem
by using a fitness function in the evolutionary algorithm that considers the estimated
execution times of the programs in a gang.
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After partitioning, the compiler generates a schedule for each gang. Since partition-
ing is the focus of this article, we only give a brief outline. The scheduling heuristic
is a list scheduler for a single appearance schedule (SAS). In a SAS, the code of a
function is never duplicated, in particular, a kernel will never execute on more than one
processor. The reason for using a SAS is the scarce program memory. List schedulers
iterate over a fixed priority list of programs and start the execution if the required
input data and hardware resources are available. We use a priority list sorted by the
maximum length of the critical path which was calculated with estimated execution
times. Since kernels perform mostly data-independent calculations, the execution time
can be accurately predicted from the input size which is known from the stream graph
and schedule.

4 Related work

There has been a vast amount of research on the undirected graph partitioning problem
so that we refer the reader to Schloegel et al. (2003), Bichot and Siarry (2011), Bulug
et al. (2014) for most of the material.

All general-purpose methods for this problem that are able to obtain good partitions
for large real-world graphs are based on the multi-level principle. The basic idea can
be traced back to multigrid solvers for systems of linear equations (Southwell 1935)
but more recent practical methods are based on mostly graph theoretical aspects, in
particular edge contraction and local search. For the undirected graph partitioning
problem, there are many ways to create graph hierarchies such as matching-based
schemes (Walshaw and Cross 2007; Karypis and Kumar 1998; Pellegrini 2012) or
variations thereof Abou-Rjeili and Karypis (2006) and techniques similar to algebraic
multigrid, e.g. Meyerhenke et al. (2006). However, as node contraction in a DAG can
introduce cycles, these methods can not be directly applied to the DAG partitioning
problem. Well-known software packages for the undirected graph partitioning prob-
lem that are based on this approach include Jostle Walshaw and Cross (2007), KaHIP
Sanders and Schulz (2011), Metis Karypis and Kumar (1998) and Chevalier and Pel-
legrini (2008). However, none of these tools can partition directed graphs under the
constraint that the quotient graph is a DAG. Very recently, Herrmann et al. (2017)
presented the first multi-level partitioner for DAGs. The algorithm finds matchings
such that the contracted graph remains acyclic and uses an algorithm comparable
to Fiduccia—Mattheyses algorithm (Fiduccia and Mattheyses 1982) for refinement.
Neither the code nor detailed results per instance are available at the moment.

Gang scheduling was originally introduced to efficiently schedule parallel programs
with fine-grained interactions (Feitelson and Rudolph 1992). In recent work, this
concept has been applied to schedule parallel applications on virtual machines in cloud
computing (Stavrinides and Karatza2016) and extended to include hard real-time tasks
(Goossens and Richard 2016). In gang scheduling all tasks that exchange data with
each other are assigned to the same gang, thus there is no communication between
gangs. An important difference to our work is that the limited program memory of
embedded platforms does not allow to assign all the kernels of an application to
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the same gang. Therefore, communication between gangs cannot be avoided, but is
minimized by using graph partitioning methods.

Another application for graph partitioning algorithms that does have a constraint
on cyclicity is the temporal partitioning in the context of reconfigurable hardware
like FPGAs. These are processors with programmable logic blocks that can be repro-
grammed and rewired by the user. In the case where the user wants to realize a circuit
design that exceeds the physical capacities of the FPGA, the circuit netlist needs to
be partitioned into partial configurations that will be realized and executed one after
another. This is called temporal partitioning because any part of the circuit must be in
a configuration no later than any of its outputs. It is thus comparable to the problem
addressed in this article. The first algorithms for temporal partitioning worked on cir-
cuit netlists expressed as hypergraphs. Now, algorithms usually work on a behavioral
level expressed as a regular directed graph. Proposed implementations include list
scheduling heuristics (Cardoso and Neto 2000) or are based on graph-theoretic theo-
rems like max-flow min-cut (Jiang and Wang 2007), with objective functions ranging
from minimizing the communication cost incurred by the partitioning Cardoso and
Neto (2000), Jiang and Wang (2007) to reducing the length of the critical path in a par-
tition (Cardoso and Neto 2000; Kao 2015). Due to the different nature of the problem
and different objectives, a direct comparison with these approaches is not possible.

The algorithm proposed in Chen and Zhou (2012) partitions a directed, acyclic
dataflow graph under acyclicity constraints while minimizing buffer sizes. The authors
propose an optimal algorithm with exponential complexity that becomes infeasible for
larger graphs and a heuristic which iterates over perturbations of a topological order.
The latter is comparable to our initial partitioning and our first refinement algorithm.
We see in the evaluation that moving to a multi-level and evolutionary algorithm
clearly outperforms this approach. Note that minimizing buffer sizes is not part of our
objective.

5 Proof of NP-completeness

In this section, we show that the problem under consideration is NP-complete when
restricted to the case k = 2 and € = 0, and also hard to approximate with a finite
approximation factor for k > 3. A given solution for an instance of DGPAQ can be
verified in linear time by constructing the quotient graph Q, checking the balance
constraint and checking Q for acyclicity. The last task can be done in linear time in the
size of Q using Kahn’s algorithm (Kahn 1962). We now reduce the subset sum problem
to our problem. The proof is inspired by the reduction used in Picard and Queyranne
(1980) which shows that the most balanced minimum cut problem is NP-complete.

Theorem 1 The DGPAQ problem is NP-complete for the bi-partitioning case with
€ =0.

Proof We reduce the NP-complete Gary and Johnson (1979) subset sum problem to
DGPAQ. The decision version of the subset problem is stated as follows: Given a
set of integers {ay, ..., ay}, is there a non-empty subset I C {1, ..., n} such that
D ier @i = D_;¢; @i holds? The construction of an equivalent instance of DGPAQ
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Fig.2 Reduction: Subset sum
problem is reduced to DGPAQ v
by creating a node for each a; 1
(the nodes in the center) and
adding a source and sink node
with edges as shown

Vi=S | V,=V\S

is as follows: We construct a DAG G = (V, E, ¢) with nodes s, € V as well as
anode v; € V foreach i € {1,...,n}. Then we set A := ) ; 2a; and define the
node weights as c(s), c(¢) := A, c(v;) := 2a;. Afterwards, we insert edges (s, v;) Vi
and (v;, t) Vi. The graph is a DAG -- an example topological ordering puts s first, ¢
last and the remaining nodes at arbitrary positions in between. Figure 2 illustrates the
construction. By definition, Lyax = 3A/2 for this instance of DGPAQ. Note that by
construction A is divisible by 2. The construction can be done in polynomial time. Note
that all balanced partitions (S, V\S) cut n edges, and due to the balance constraint s
and ¢ can never be in the same block. This ensures that there cannot be any edge (u, v)
with u € V\S and v € S and hence the quotient graph is acyclic. If the subset sum
instance is a yes instance, then there is perfectly balanced bipartition and vice versa.

(]

The following theorem shows that it is not possible to find a finite factor approx-
imation algorithm for our general problem where k is not a constant. The proof is
a modification of the proof by Andreev and Ricke (2006) which shows this for the
classical graph partitioning problem, i.e. no acyclicity constraint and for undirected
inputs. Hence, we follow the proof of Andreev and Ricke (2006) closely with the
difference being that the inputs that we construct are DAGs.

Theorem 2 The directed graph partitioning problem with acyclic quotient graph has
no polynomial time approximation algorithm with a finite approximation factor for
€ =0,k >3 unless P = NP.

Proof The 3-Partition problem is defined as follows. Given n = 3k integers ay, .. ., a,
and a threshold A such that A/4 < a; < A/2 and ) ;a; = kA, decide whether
the numbers can be partitioned into triples such that each triple adds up to A. This
problem is strongly NP-complete (Gary and Johnson 1979), i.e. the problem remains
NP-complete if all numbers @; and A are polynomially bounded.

Now suppose we have an approximation algorithm for the directed graph partition-
ing problem with acyclic quotient graph for e = 0. We can use this algorithm to decide
the 3-Partition problem with polynomially bounded numbers. To do so, we construct
a graph G that contains n subgraphs. Subgraph i has a; nodes. All weights are set to 1.
We make each of the subgraphs a directed clique, i.e. all edges (u, v) with u < v are
inserted into the subgraph. By construction G is a DAG. This is the main difference to
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Andreev and Récke (2006) in which the subgraphs are undirected cliques. Also since
all numbers are polynomially bounded, the construction takes polynomial time.
Now, if the 3-Partition instance can be solved, the k-DGPAQ problem in G can
be solved without cutting any edge. Note that this solution also fulfills the acyclicity
constraint. If the 3-Partition instance cannot be solved, then the optimum solution to
the k-DGPAQ problem will cut at least one edge. An approximation algorithm with
finite approximation factor has to differentiate between these two cases. Hence, it can
solve the 3-Partition problem. O

6 Heuristic algorithms

In this section we present simple yet effective construction and local search heuristics
as an initial solution for the partitioning problem. Our general approach is as follows:
First create an initial solution based on a topological ordering of the input graph
and then apply a local search strategy to improve the objective of the solution while
maintaining both constraints. We start the section with the construction algorithm and
then present different local search heuristics.

6.1 Construction algorithm

All of our local search heuristics start with an initial partitioning that fulfills both
constraints, i.e. the quotient graph is acyclic and the balance constraint is satisfied.
Our algorithm does this by computing a random topological ordering of the nodes
using a modified version of Kahn’s algorithm with randomized tie-breaking. More
precisely, the algorithm initializes a list S with all nodes that have indegree zero and
an empty list T. It then repeats the following steps until the list S is empty: Select a
node from S uniformly at random and remove it from the list. Add the node to the tail
of T. Remove all outgoing edges of the node. If this reduces the indegree of another
node to zero, add it to S. When the algorithm terminates, the list T is a topological
ordering of all nodes unless the graph has a cycle. Using list T, we can now derive
initial solutions by dividing the graph into blocks of consecutive nodes w.r.t to the
ordering. Due to the properties of the topological ordering there is no node in a block
V; that has an outgoing edge ending in a block V; with i < j. Hence, the quotient
graph of our solution is cycle-free. In addition, the blocks are chosen such that the
balance constraint is fulfilled. There is obviously a large number of possible divisions.
Our algorithm generates a balanced initial partitioning by dividing the ordering into
blocks of size L%J or (%] uniformly at random. Since the construction algorithm
is randomized, we run the heuristics £ times with different initial partitionings and
pick the best solution afterwards.

6.2 Local search heuristics

Our local search heuristics take a given initial solution and move nodes between the
blocks in order to decrease the edge cut. The reduction of the edge cut after a move
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Fig.3 A DAG divided into three blocks. Internal edges are solid, external edges are dashed. Node v is a node
that has non-zero internal and external cost for both C;,, and Cy,;. Because of (s, v) € E = Cj,, (v, 2) > 0,
the node cannot be moved to Vj. Because of (v, 1) € E = Coys(v,2) > 0, the node cannot be moved to
V3 either

is called the gain of the move. To compute the gain when moving node v, we define
two functions:

Cin(w,i) i =w({(u,v) € E:uecV)
Cour(v, i)  =w({(v,u) € E:uecV})

Roughly speaking, C;, is the combined weight for all edges that start in nodes of
block V; and end in v. Analogously, C,,; is the combined weight of all edges that
start in v and connect to nodes in the block V;. If v € V;, these costs are the weights
of internal edges. These edges will become external edges and increase the objective
if we move v to a different block. If v € V;, j # i, then these costs are weights of
external edges, which will become internal and thus reduce the edge cut if v is moved
to V;. Figure 3 shows an example of internal and external edges.

We have multiple local search heuristics that differ in the size of the local search
neighborhood: Simple Moves, Advanced Moves, Global Moves as well as FM moves.
We found that the heuristics can often yield better results with a different initial par-
titioning. In order to compare the different heuristics, we will give each heuristic the
same time budget and will restart the heuristics for different initial partitionings until
it is exhausted.

Simple Moves (SM) Simple moves start by picking a node v and moving it to a
different block if this does not violate the constraints and improves the objective. Our
simple move heuristic only considers to move a node v € V; to adjacent blocks V;_;
and V;41. This is because there is a fast algorithm to check the acyclicity constraint.
Assuming that the given solution is feasible with respect to both constraints, it is
sufficient to check whether C,,; (v, i) = 0 in the case that we want to move v to V;
and Cj,(v,i) = 0 in the case that we want to move v to V;_;. The gain of a node
movement depends on the block and is calculated as:
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{Cin(v,i — 1) — Coyr (v, i) when moving v to V;_1 )

Cour(v,i + 1) — Cj,(v,i) when moving v to Vj1.

A block is eligible if the move does not create a cycle and does not overload the
block. In addition, the gain has to be positive or zero but the balance of the partitioning
is improved. If there is such a block, we move v to it. In the case that both blocks are
eligible for the move and have the same gain, the heuristic selects one uniformly at
random.

We repeat the process for all nodes. Our heuristic stops if there is no node with pos-
itive gain or balance cannot be improved. Hence, our heuristic terminates when a local
minimum is found with respect to the local search neighborhood defined above. Note
that even though the edge cut is not strictly monotonically decreasing, the combination
of edge cut and difference in block weight is. In one pass, the heuristic considers the
in- and outgoing edges of all nodes. Thus, each edge is considered exactly twice to
calculate the gain for all nodes and the complexity of the heuristic is O(m) per round.

Advanced Moves (AM)  This algorithm increases the local search neighborhood of the
Simple Moves algorithm by considering more target blocks for a move. For the node
v € V; under consideration, all incoming edges are checked to find the node u € Vy4
where A is maximal. Also all outgoing edges are checked to find the node w € V3
where B is minimal. Since the original partition was obtained from a topological
ordering, A < i < B must hold, otherwise there would be back edges in the ordering
and thus it would not be a topological ordering. If A = i = B, then the node v has
in- and outgoing edges in its own block and cannot be moved. If A < i, then the
node can be moved to blocks preceding V; up to and including V4 in the topological
ordering without creating a cycle. This is because all incoming edges of the node will
either be internal to block V4 or are forward edges starting from blocks preceding
V4. Therefore it is still a topological ordering. However, when the node is moved to
a block preceding V4, the edge starting in this block becomes a back edge and the
ordering is not a topological ordering anymore. Similar, if i < B, the node can be
moved to blocks succeeding V; up to and including V. Thus moving the node to V;
with j € {A, ..., B} \ {i} will preserve the topological ordering of blocks. This is
a sufficient condition to ensure the acyclicity constraint and is not computationally
expensive to check. However, since it is not a necessary condition, it might prevent
the heuristic from testing some possible moves. The Global Moves heuristic does not
have this limitation, but has a higher computational complexity.

The gain of the moves to all allowed V; is computed with the cost functions
described in the previous section as Cj, (v, j) — Cyur (v, i) + Cour (v, j) — Cin(v,i). In
each iteration, the move with the largest gain such that the constraints are maintained
is selected. Tie-breaking and gains of zero are handled in the same way as in Simple
Moves.

This heuristic considers each edge exactly twice in order to calculate the gain when
moving the node to any other block. Afterwards, a block yielding maximal gain is
selected, which can be done in time proportional to the degree of a node. Thus, the
complexity of this heuristic is O (m).
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Global Moves (GM)  With this algorithm, we increase the local search neighborhood
even further by considering all other blocks. Starting from the initial partition, the
algorithm computes the adjacency lists of the quotient graph. Throughout the algorithm
the quotient graph is kept up-to-date. When moving a node we update the adjacency
information of the quotient graph and record whether a new edge has been created. If
this is the case we check the quotient graph for acyclicity by using Kahn’s algorithm
and undo the last movement if it created a cycle.

The calculation of the gain values can be done in O(m) as for the other heuristics.
For a node, the heuristic needs to check the acyclicity constraint for all considered
moves/blocks in the worst case. Since Kahn’s algorithm checks the quotient graph for
acyclicity, the total complexity of this heuristic is O(m(mg + k)) where m g is the
number of edges in the quotient graph. If the quotient graph is sparse, i.e. m g is O(k),
we get a complexity of O (km).

FM Moves (FM) This heuristic combines the quick check for acyclicity of the
Advanced Moves heuristic with an adapted Fiduccia—Mattheyses algorithm Fiduc-
cia and Mattheyses (1982) which gives the heuristic the ability to climb out of a local
minimum. The initial partitioning is improved by exchanging nodes between a pair
of blocks even if the gain is negative. The partition with the best objective that was
seen during the pass will be returned. A pass starts with two blocks A and B, where A
precedes B in the topological ordering of blocks. The algorithm will then calculate the
gain for moving enabled boundary nodes to the other block. Using the same criterion
to guarantee acyclicity as the Advanced Moves heuristic, we say that a boundary node
is enabled if it is in A and does not have outgoing edges to nodes that precede B or
itis in B and does not have incoming edges from nodes that follow A. The candidate
moves, consisting of a gain and a node identifier, are inserted into a priority queue.
The queue is a binary heap where the total order on the elements is implemented by
comparing the gain of the moves and, if the gain is the same, a random number that is
generated upon insertion.

In a loop that runs until the priority queue is depleted, the first move is extracted
from the queue. If the selected move would overload the target block or is not enabled
because it was disabled in a previous loop iteration, the heuristic continues with the next
iteration. Otherwise, the move will be committed even if the gain is negative. The node
is then locked, i.e. it cannot be moved again during this pass. This prevents thrashing
and guarantees the termination of the algorithm. Unlike the Fiduccia—Mattheyses
algorithm, a move in this scenario does not change the gain, it disables and enables
other moves. For example, if a node w is moved from A to B, the heuristic will disable
all nodes v in block B with (w, v) € E since they do not fulfill the condition for
acyclicity anymore and moving any of them to A would introduce a back edge in
the topological ordering of blocks. This does not necessarily mean that the quotient
graph would become cyclic, however, assuring this would require a more expensive
check like Kahn’s algorithm. Note that the gain of the moves does not need to be
re-calculated since w was locked and thus all nodes v will not be enabled again in this
pass. On the other hand, moving w enables nodes in A if they are connected with an
outgoing edge to w and if after the move they do not have other outgoing edges to
blocks preceding B. The heuristic will calculate the gain for these nodes, enable and
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insert them into the priority queue. A move from B to A will enable and disable moves
correspondingly. The loop will continue to move nodes between the blocks until the
priority queue is depleted, which occurs when all nodes are either disabled or locked.
Since the number of loop iterations is hard to predict due to the reinsertion of moves,
it is limited to 2n /k which did not have a measurable impact on the quality of obtained
partitionings. The best objective that was achieved in the pass is recorded. In the final
step, the last moves are undone if required to reach the corresponding partitioning.
This terminates the inner pass of the heuristic.

The outer pass of the heuristic will repeat the inner pass for randomly chosen pairs
of blocks. At least one of these blocks has to be “active”. Initially, all blocks are marked
as “active”. If and only if the inner pass results in movement of nodes, the two blocks
will be marked as active for the next iteration. The heuristic stops if there are no more
active blocks.

The overall time to compute gain values is O(m). We now analyze the running
time for a pair of blocks. In the worst case, all nodes of both blocks are enabled in the
beginning and initializing the priority queue with 2n/k nodes requires O (%) time.
Note that we cannot use a bucket priority queue, since the weights associated with
the edges can be more or less arbitrarily distributed. Removing a node with the best
gain from the queue takes O (log %) time. If a move is committed in an iteration,
the heuristic needs to calculate the gain of adjacent nodes. However, the heuristic will
never calculate the gain of a move twice during a pass. Thus the total complexity of the
inner pass is O (% log %) Note that the inner pass needs to be performed for all pairs
of blocks which yields overall time O (m +mgy log %) per round of the algorithm,
or O (m + nlog %) if the quotient graph is sparse.

7 Multi-level acyclic graph partitioning

Multi-level techniques have been widely used in the field of graph partitioning for
undirected graphs. We now transfer the techniques used in the KaFFPa multi-level
algorithm (Sanders and Schulz 2011) to a new algorithm that is able to tackle the DAG
partitioning problem. The challenge is to maintain the additional acyclicity constraint
on each level. We implement algorithms that create coarser graphs without cycles and
integrate the local search heuristics from the previous section that keep the quotient
graph acyclic.

Figure 4 shows an overview of the algorithm. A multi-level graph partitioner has
three phases: coarsening, initial partitioning and uncoarsening. We found that contract-
ing clusterings can create coarse graphs that contain cycles and that this can make it
impossible to find feasible solutions on the coarsest level of the hierarchy. Therefore,
in contrast to classic multi-level algorithms, our algorithm starts by constructing a
solution on the finest level of the hierarchy, meaning that the initial partitioning phase
is moved before the coarsening phase. The larger size of the uncontracted graph is
not a problem for our initial partitioning heuristic since it is a linear time algorithm.
Then we continue to coarsen the graph until it has no contractable edges left. During
coarsening, we transfer the solution from the finest level through the hierarchy and
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use it as initial partition on the coarsest graph. As we will see later, since the partition
on the finest level has been feasible, i.e. acyclic and balanced, so will be the partition
that we transferred to the coarsest level. The coarser versions of the input graph may
still contain cycles, but local search maintains feasibility on each level and hence, after
uncoarsening is done, we obtain a feasible solution on the finest level.

The rest of the section is organized as follows. We begin with the description of
the coarsening phase and then recap local search algorithms for the DAG partitioning
problem that are now used within the multi-level approach.

7.1 Coarsening

Our coarsening algorithms is based on the contraction of clusterings. In our approach,
we use a size-constrained label propagation algorithm (Meyerhenke et al. 2014) to
compute a clustering of the graph. To compute a graph hierarchy, the clustering is
contracted by replacing each cluster by a single node, and the process is repeated
recursively until the graph is “small enough”.

The size-constrained label propagation clustering algorithm is a very fast, near
linear-time algorithm that locally optimizes the number of edges cut. Initially, each
node is in its own cluster/block, i.e. the initial block ID of a node is set to its node
ID. The algorithm then works in rounds. In each round, the nodes of the graph are
traversed in a random order. When a node v is visited, it is moved to the block that
has the strongest connection to v, i.e. it is moved to the cluster V; that maximizes
o{(v,u) | u € N(v) N V;}) such that the target cluster size does not exceed a
predefined bound U'. Ties are broken randomly. We perform at most ¢ iterations of the
algorithm instead, where £ is a tuning parameter. One round of the algorithm can be
implemented to run in O (n 4 m) time.

The computed clustering is contracted to obtain a coarser graph. Contracting a
clustering works as follows: Each block of the clustering is contracted into a single
node. The weight of the node is set to the sum of the weight of all nodes in the original
block. There is an edge between two nodes u and v in the contracted graph if the two
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corresponding blocks in the clustering are adjacent to each other in G, i.e. block « and
block v are connected by at least one edge. The weight of an edge (A, B) is set to the
sum of the weight of edges that run between block A and block B of the clustering.
Due to the way contraction is defined, a partition of the coarse graph corresponds to a
partition of the finer graph with the same cut and balance. The process of computing
a size-constrained clustering and contracting it is repeated recursively.

Recall that our algorithm starts with a partition on the finest level of the hierarchy.
We construct this initial solution with the algorithm described in Sect. 6.1. It is then
improved by a local search algorithm. Since the construction algorithm is randomized,
we run the heuristics multiple times using different random seeds and pick the best
solution. We call this algorithm single-level algorithm. We then set cut edges not to be
eligible for the label propagation algorithm, i.e. cut edges of the partition will remain
cut edges after contraction. That means edges that run between blocks of the given
partition are not contracted. Thus the given partition can be used as a feasible initial
partition of the coarsest graph. The partition on the coarsest level has the same balance
and cut as the input partition. Additionally, it is also an acyclic partition of the coarsest
graph. Performing coarsening by this method ensures non-decreasing partition quality,
if the local search algorithm guarantees no worsening.

7.2 Uncoarsening

The refinement phase iteratively uncontracts the clusterings contracted during the
first phase. Due to the way contraction is defined, a partitioning of the coarse level
creates a partitioning of the finer graph with the same objective and balance, moreover,
it also maintains the acyclicity constraint on the quotient graph. After a clustering
is uncontracted, the local search refinement algorithms described in Sect. 6.2 move
nodes between block boundaries in order to improve the objective while maintaining
the balancing and acyclicity constraint.

After presenting our multi-level approach to handle large graphs and traverse the
vast solution space more efficiently, we present an evolutionary algorithm on top of it
in the next section that further improves the solution quality.

8 Evolutionary acyclic graph partitioning

Evolutionary algorithms start with a population of individuals, in our case partitions
of the graph created by our multi-level algorithm using different random seeds. It then
evolves the population into different populations over several rounds using recom-
bination and mutation operations. In each round, the evolutionary algorithm uses a
two-way tournament selection rule (Miller and Goldberg 1996) based on the fitness
of the individuals of the population to select good individuals for recombination or
mutation. Here, the fittest out of two distinct random individuals from the population
is selected. We focus on a simple evolutionary scheme and generate one offspring
per generation. After generation, we use an eviction rule to select a member of the
population and replace it with the new offspring. In general, one has to take both, the
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fitness of an individual and the distance between individuals in the population, into
consideration (Bédck 1996). We evict the solution that is most similar to the offspring
among those individuals in the population that have a cut worse or equal to the cut
of the offspring itself. The difference of two individuals is defined as the size of the
symmetric difference between their sets of cut edges.

We now explain our multi-level recombine and mutation operators. Our recombine
operator ensures that the partition quality, i.e. the edge cut, of the offspring is at least
as good as the best of both parents. For our recombine operator, let P; and P, be
two individuals from the population that are used as input for our multi-level DAG
partitioning algorithm. Let £ be the set of edges that are cut edges, i.e. edges that
run between two blocks, in either P; or Ps. All edges in £ are blocked during the
coarsening phase, i.e. they are not contracted during coarsening. In other words, these
edges are not eligible for the clustering algorithm used during coarsening and therefore
always run between clusters and not inside clusters. As before, the coarsening phase of
the multi-level scheme stops when no contractable edge is left. Afterwards, we apply
the better out of both input partitions w.r.t to the objective to the coarsest graph and
use this as initial partitioning. We use random tie-breaking if both input individuals
have the same objective value. This is possible since we did not contract any cut edge
of P. Again, due to the way coarsening is defined, this yields a feasible partition for
the coarsest graph that fulfills both constraints (acyclicity and balance) if the input
individuals fulfill those.

Note that due to the specialized coarsening phase and specialized initial partitioning,
we obtain a high quality initial solution on a very coarse graph. Since our local search
algorithms guarantee no worsening of the input partition and use random tie breaking,
we can assure nondecreasing partition quality. Also note why the combine operations
work: Local search algorithms can effectively exchange good parts of the solution on
the coarse levels by moving only a few nodes. Due to the fact that our multi-level
algorithms are randomized, a recombine operation performed twice using the same
parents can yield a different offspring. Each time we perform a recombine operation,
we choose one of the local search algorithms described in Sect. 6.2 uniformly at
random.

Cross Recombine This operator recombines an individual of the population with a
partition of the graph that can be from a different problem space, e.g. a k’-partition of
the graph. While P; is chosen using tournament selection as before, we create P, in
the following way. We choose k’ uniformly at random in [k /4, 4k] and €’ uniformly at
random in [€, 4¢]. We then create P (a k’-partition with a relaxed balance constraint)
by using the multi-level approach. The intuition behind this is that larger imbalances
reduce the cut of a partition and using a k’-partition instead of k may help us to discover
cuts in the graph that otherwise are hard to discover. Hence, this yields good input
partitions for our recombine operation.

Mutation We define two mutation operators. Both mutation operators use a random
individual P; from the current population. The first operator starts by creating a k-
partition P, using the multi-level scheme. It then performs a recombine operation as
described above, but not using the better of both partitions on the coarsest level, but
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P>. The second operator ensures nondecreasing quality. It basically recombines P
with itself (by setting P> = Pj). In both cases, the resulting offspring is inserted into
the population using the eviction strategy described above.

Fitness Function The fitness function is used to improve the load balancing of the
target gangs. Recall that the execution of programs in a gang is synchronized. There-
fore, a lower bound on the gang execution time is given by the longest execution time
of a program in a gang. Pairing programs with short execution times with a single
long-running program leads to a bad utilization of processors, since the processors
assigned to the short-running programs are idle until all programs have finished. To
avoid these situations, we use a fitness function that estimates the critical path length of
the entire application by identifying the longest-running programs per gang and sum-
ming their execution times. This will result in gangs where long-running programs are
paired with other long-running programs. More precisely, the input graph is annotated
with execution times for each node that were obtained by profiling the corresponding
kernels on our target hardware. The execution time of a program is calculated by accu-
mulating the execution times for all firings of its contained kernels. The quality of a
solution to the partitioning problem is then measured by the fitness function which is a
linear combination of the obtained edge cut and the critical path length. Note, however,
that the recombine and mutation operations still optimize for cuts. In the evaluation,
we compare solutions that solely optimize edge cut and solutions that optimize the
fitness function.

Miscellanea We follow the parallelization approach of Sanders and Schulz (2011):
Each processing element (PE) has its own population and performs the same operations
using different random seeds. The parallelization/communication protocol is similar
to randomized rumor spreading (Doerr and Fouz 2011). We follow the description
of Sanders and Schulz (2011) closely: A communication step is organized in rounds.
In each round, a PE chooses a communication partner uniformly at random among
those who did not yet receive P and sends the current best partition P of the local
population. Afterwards, a PE checks if there are incoming individuals and if so inserts
them into the local population using the eviction strategy described above. If P is
improved, all PEs are again eligible.

9 Experimental evaluation

In this section we evaluate the performance of our algorithms. We start by presenting
the systems we use for the evaluation. Then we compare the single-level heuristics
on small instances with the optimal solutions and test their scalability with very large
instances. Afterwards, we compare these results with the multi-level and the evolu-
tionary algorithms. Finally, we test the impact of the proposed fitness function on the
performance of a real imaging application.
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9.1 Experimental protocol
9.1.1 System

We have implemented the algorithms described above using C++. All programs have
been compiled using g++ 4.8.0 with full optimizations turned on (-O3 flag) and 32
bit index data types. We use two machines for our experiments: Machine A has two
Intel Xeon E5-2670 Octa-Core processors running at 2.6 GHz with 64 GB of local
memory. We use this machine in Sect. 9.3.1. Machine B is equipped with two Intel
Xeon X5670 Hexa-Core processors (Westmere) running at a clock speed of 2.93 GHz.
The machine has 128 GB main memory, 12 MB L3-Cache and 6 x 256 KB L2-Cache.
We use this machine for the other tests. Henceforth, a PE is one core.

9.1.2 Methodology

We perform experiments on a wide range of graphs that have been used in recent
literature as well as new instances. Depending on the aspect we look at, the instances
vary, hence we describe them in the corresponding sections.

Generally, we mostly present two kinds of data: average values and plots that
show the evolution of solution quality (convergence plots). In both cases we perform
multiple repetitions. The number of repetitions is dependent on the test that we perform
and mentioned in the corresponding sections. Average values over multiple instances
are obtained as follows: For each instance (graph, k), we compute the geometric
mean of the average edge cut for each instance. We now explain how we compute
the convergence plots, starting with how they are computed for a single instance /:
Whenever a PE creates a partition, it reports a pair (¢, cut) where the timestamp 7 is
the current elapsed time on the particular PE and cut refers to the cut of the partition
that has been created. When performing multiple repetitions, we report average values
(z, avgcut) instead. After completion of the algorithm, we have P sequences of pairs
(¢, cut) which we now merge into one sequence. The merged sequence is sorted by
the timestamp . The resulting sequence is called 7'/. Since we are interested in the
evolution of the solution quality, we compute another sequence TnIlin' For each entry (in
sorted order) in 7/ we insert the entry (¢, min, <, cut(¢')) into Tnllin' Here min, <, cut(s’)
is the minimum cut that occurred until time 7. Nr{lin refers to the normalized sequence,
i.e. each entry (¢, cut) in Tn{in is replaced by (t,, cut) where ¢, = t/t; and ¢; is the
average time that the multi-level algorithm needs to compute a partition for the instance
I.

To obtain average values over multiple instances we do the following: For each
instance we label all entries in Nélin, i.e. (#,, cut) is replaced by (#,, cut, I). We then
merge all sequences Nélin and sort by #,,. The resulting sequence is called S. The final
sequence S, presents event based geometric averages values. We start by computing
the geometric mean cut value G using the first value of all NI{lin (over I). To obtain
Sg, we sweep through S: For each entry (in sorted order) (¢,, ¢, I) in S we update G,
i.e. the cut value of I that took part in the computation of G is replaced by the new
value c, and insert (f,, G) into S,. Note that ¢ can be only smaller or equal to the old
cut value of 1.
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Lastly, we also look at performance plots. A curve in a performance plot for algo-
rithm X is obtained as follows: For each instance, we calculate the ratio between the
best cut obtained by any of the considered algorithms and the cut for algorithm X.
These values are then sorted.

9.2 Local search heuristics

We will first evaluate the local search heuristics in isolation.

9.2.1 Comparison with optimal solutions

This section compares the results of our heuristics against the optimal solution obtained
by anon-polynomial time algorithm that performs an exhaustive search. We create a set
of random graphs that are close to instances from typical applications. Our generation
algorithm works by consecutively adding new graph levels with a random number of
nodes. Each of the new nodes is connected to a random number of nodes in previous
levels. Because the application domain of this work is imaging, we use a small number
of input and output nodes (between 1 and 3) which is typically the case for imaging and
vision kernels (compare library of OpenVX vision functions Khronos Group 2017).
Since the weight of nodes is representing the program size, we select a random value
between the size of the smallest and the largest kernel in an implementation of the
Local Laplacian filter for our target platform. The weight of edges is uniformly chosen
between 1 and 100 to account for different sizes for intermediate buffers between the
functions.

Because the following parameters have a major impact on the structure of the
graph, we use two different values for each and generate 25 graphs for each of the
eight resulting parameter combinations:

— The maximum size of a graph level is either set to a high value (4/n) which results
in a graph that can in extreme cases have /n levels with about /n nodes each,
meaning that there is a high amount of data parallelism, and low values (/n)
such that the graph resembles more a long chain of nodes and thus represents the
classical imaging pipeline with low data parallelism on kernel level.

— The maximum number of edges is either set to the lowest number that ensures
that inner nodes have at least one incoming and one outgoing edge and that the
graph is connected or to /z per node such that the number of edges scales with
the problem size. This reflects applications with few and many data dependencies
between functions.

— The maximum distance in terms of node indices, over which new nodes are con-
nected to preceding nodes in the graph, is either set to a low value that results in
a graph where nodes only have incoming edges from the closest preceding levels
or it is set to n which means that there is no restriction on where edges can start.
The first case models application where data is short-lived and only needed for the
next step in a pipeline while the second case represents scenarios with a long data
lifetime.
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Table 1 Each cell shows the
averaged result of the heuristic
for the current combination of 2 20 3.41 3.41 3.41 0.26
block count k and imbalance €

k € (%) SM (%) AM (%) GM (%) FM (%)

30 11.94 11.91 11.90 0.33
40 14.71 14.78 14.58 1.29
50 23.32 23.36 23.04 1.21
4 20 1.89 1.27 1.33 0.74
30 4.03 3.22 3.25 0.67
40 5.09 3.65 3.69 0.44
50 6.50 4.04 4.19 0.31

The value is the increase in cost compared to the optimal solution
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Fig. 5 Graph showing the execution time of each heuristic and the relative edge cut on directed random
geometric graphs rggX

These 200 different problems instances were generated for problem sizes in the
range of n € [10,...,20] nodes each. Table 1 shows the averaged approximation
factor of the four heuristics when using a time budget of 10 ms. The results show a
good approximation of the optimal solution. The quality of SM, AM and GM degrades
with large € since they can get trapped in a local minimum, FM moves on the other hand
shows a close and consistent approximation. The heuristics generally perform better
on graphs that were created with more, unconstrained edges, presumably because
there are more legal moves available of which the heuristic can pick the best one. We
also found that the running time for a single pass of the heuristics is consistent across
the instances while it varies drastically between milliseconds and several days for the
exhaustive search. This emphasizes the need for a heuristic.

9.2.2 Scalability

We now look at the scalability of our heuristics. We do this on random geometric
graphs where nodes represent random points in the unit square and edges connect
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Table 2 Basic properties of our instances

Graph n m Graph n m

2mm0 36,500 62,200 atax 241,730 385,960
syr2k 111,000 180,900 symm 254,020 440,400
3mm0 111,900 214,600 fdtd-2d 256,479 436,580
doitgen 123,400 237,000 seidel-2d 261,520 490,960
durbin 126,246 250,993 trmm 294,570 571,200
jacobi-2d 157,808 282,240 heat-3d 308,480 491,520
gemver 159,480 259,440 Iu 344,520 676,240
covariance 191,600 368,775 Iudemp 357,320 701,680
mvt 200,800 320,000 gesummy 376,000 500,500
jacobi-1d 239,202 398,000 syrk 594,480 975,240
trisolv 240,600 320,000 adi 596,695 1,059,590
gemm 1,026,800 1,684,200

nodes whose Euclidean distance is below 0.55./Inn/n. This threshold was chosen
in order to ensure that the graph is almost connected. These graphs were taken from
Bader et al. (2014) and were initially undirected. We convert them into DAGs by
directing edges from smaller to larger node ids. The graph rggX has 2% nodes. We
vary X € [15,...,22]. The allowed imbalance was set to 3% since this is one of
the values used in Walshaw and Cross (2000). Figure 5 shows the averaged time
required for 100 passes of each heuristic and the relative improvement in edge cut that
was found for k = 8 by the more advanced heuristics in comparison to the Simple
Moves heuristic. The figure shows a linear growth in running time of our heuristics
respective to number of nodes. The worst case complexity of FM moves was shown to
be superlinear since it had to be assumed that all nodes are boundary nodes, which is
not the case here. In fact, that FM only considers boundary nodes appears to improve
the execution time compared to the other heuristics. We conclude that our algorithms
scale well to large problems.

In another small experiment, we evaluated the quality of the solution found by the
initial partitioning only. As expected, the best edge cut is always a fair amount larger
than the one found by the heuristics, for example 29% compared to SM for the largest
random geometric graph.

9.3 Multi-level and evolutionary DAG partitioning
We now evaluate the performance of the evoluationary algorithm. We first look at the

algorithm when the objective is edge cut and then study the impact on an imaging
application.
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s bt ol 5 Frotions,
art single-level algorithm 2 —11 -53
-9 —26
8 _8 —-22
16 —-10 —24
32 —11 -30

9.3.1 Cut as objective

We will now compare the different proposed algorithms. We use the algorithms under
consideration on a set of instances from the Polyhedral Benchmark suite (PolyBench)
(Pouchet 2012) which have been kindly provided by Herrmann et al. (2017). Basic
properties of the instances can be found in Table 2.

Our main objective in this section is the cut objective. In our experiments, we use
the imbalance parameter ¢ = 3% since this is one of the values used in literature
benchmarks, e.g. Walshaw and Cross (2000). We use 16 PEs of machine A and 2 h of
time per instance when we use the evolutionary algorithm. We parallelized repeated
executions of multi- and single-level algorithms since they are embarrassingly parallel
for different seeds and also gave 16 PEs and 2 h of time to each of the algorithms,
i.e. all algorithms have the same amount of time to compute a solution. Each call of
the multi-level and single-level algorithm uses one of our local search algorithms at
random and a different random seed. We look at k € {2, 4, 8, 16, 32} and performed
three repetitions per instance. Figure 6 shows convergence and performance plots.
First of all, the performance plot in Fig. 6 indicates that our evolutionary algorithm
finds significantly smaller cuts than the single- and multi-level scheme. Using the
multi-level scheme instead of the single-level scheme already improves the result by
9% on average. This is expected since using the multi-level scheme introduces a more
global view to the optimization problem and the multi-level algorithm starts from a
partition created by the single-level algorithm (initialization algorithm + local search).
In addition, the evolutionary algorithm always computes a better result than the single-
level algorithm. This is true for the average values of the repeated runs as well as the
achieved best cuts. The evolutionary algorithm computes average cuts that are 30%
smaller than the ones computed by the single-level algorithm and best cuts that are
32% smaller. As anticipated, the evolutionary algorithm computes the best result in
almost all cases. In three cases the best cut is equal to the multi-level, and in three
other cases the result of the multi-level algorithm is better (at most 3%, e.g. for k = 4,
adi). These results are due to the fact that we already use the multi-level algorithm
to initialize the population of the evolutionary algorithm. In addition, after the initial
population is built, the recombine and mutation operations can successfully improve
the solutions in the population further and break out of local minima (see Fig. 6).
Average cuts of the evolutionary algorithm are 22% smaller than the average cuts
computed by the multi-level algorithm (and 25% in case of best cuts).
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The largest improvement of the evolutionary algorithm over the single- and multi-
level algorithm is a factor 39 (for k = 2, 3mm0). Table 3 shows how improvements
are distributed over different values of k. Interestingly, in contrast to evolutionary
algorithms for the undirected graph partitioning problem, e.g. Sanders and Schulz
(2011), improvements to the multi-level algorithm do not increase with increasing k.
Instead, improvements more diversely spread over different values of k. We believe that
the good performance of the evolutionary algorithm is due to a very fragmented search
space that causes local search heuristics to easily get trapped in local minima, especially
since local search algorithms maintain the feasibility on the acyclicity constraint. Due
to mutation and recombine operations, our evolutionary algorithm escapes those more
effectively than the multi- or single-level approach.

9.3.2 Impact on imaging application

We evaluate the impact of the improved partitioning heuristic on an advanced imaging
algorithm, the Local Laplacian filter. The Local Laplacian filter is an edge-aware image
processing filter. A detailed description of the algorithm and theoretical background
is given in Paris et al. (2011). The algorithm uses concepts of Gaussian pyramids and
Laplacian pyramids as well as a point-wise remapping function in order to enhance
image details without creating artifacts. Nodes are annotated with program size and
execution time estimate, edges with the corresponding data transfer size. The DAG
has 489 nodes and 631 edges in total in our configuration. We use the single-level
algorithm, the evolutionary algorithm and the evolutionary algorithm with the fitness
function set to the one described in Sect. 8. The time budget given to each heuristic
is 1 min. The makespans for each resulting schedule are obtained with a cycle-true
compiled simulator of the hardware platform.

In the first experiment, we test how the graph partitioning heuristic can help the
graph compiler to adapt the application to different versions of the hardware platform.
We vary both the program and data memory size in steps of 64 KiB from 64 to 768 KiB.
This should allow the graph compiler to fit more kernels into gangs. Figure 7 shows the
makespan of the Local Laplacian filter averaged over 5 runs per data point when the
compiler uses evolutionary algorithm in comparison to the single-level algorithm. The
results in terms of edge cut as well as makespan are similar for the multi-level and the
evolutionary algorithm optimizing for cuts, as the filter is fairly small. However, both
of them outperform the single-level algorithm and improve the performance of the
application. This is mainly because the reduction of the edge cut reduces the amount
of data that needs to be transferred to external memory.

We can see that the evolutionary algorithm (solid line) consistently outperforms the
single-level algorithm (dotted line) with a makespan that is on average 11% lower. The
single-level algorithm shows high variability, with a makespan that is in one case only
0.3% larger that the evolutionary result but in three cases more than 20% larger. The
evolutionary algorithm produces more stable results. The makespans appear to fall into
three groups, beginning with around 6 x 107 cycles, then 4.5 x 107 cycles and finally
3 x 107 cycles. Further analysis revealed that the increasing memory sizes allows the
partitioning heuristic to pack the kernels into fewer gangs. The two major drops in
makespan coincide with the point where the partitioning heuristic first succeeds in
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Fig.8 Average makespan of the application over bandwidth

finding a kK" = k — 1 partition where k is the best partition found for the previous data
point.

In the second experiment, we vary the available bandwidth to external memory to
assess the impact of edge cut on schedule makespan. In the following, a bandwidth
of x refers to x times the bandwidth available on the real hardware. We compare the
evolutionary algorithm optimizing for edge cut only with the evolutionary algorithm
using our new fitness function that incorporates critical path length (Fig. 8).

The fitness function increases the makespan by 6% for the original bandwidth of
the platform. We found that the gangs in this case are almost always memory-limited
and thus reducing communication volume is predominantly important. With more
bandwidth available, a break-even point follows where both approaches lead to more
or less the same result. However, for bandwidths ranging from 4 to 10, including
critical path length in the fitness function improves the makespan by an average of
7%. Hence, using the fitness function is a convenient way to fine-tune the heuristic for a
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given memory bandwidth. For hardware platforms with a scarce bandwidth, reducing
the edge cut is the best. If more bandwidth is available, for example if more than one
memory channel is available, one can change the factors of the linear combination to
gradually reduce the impact of edge cut in favor of critical path length.

10 Conclusions

Directed graphs are widely used to model dataflow and execution dependencies in
streaming applications which enables the utilization of graph partitioning algorithms
for the problem of parallelizing computation for multiprocessor architectures. In this
work, we designed, implemented and evaluated new heuristics that partition streaming
application graphs under constraints resulting from resource restrictions in embedded
hardware. In particular, we highlighted the appearance of an acyclicity constraint. We
were able to show that this new version of the problem is NP-complete.

We designed and implemented heuristics that yield good approximations of the
optimal solution for small problem instances. We then introduced a novel multi-level
algorithm as well as the first evolutionary algorithm for the acyclic graph partitioning
problem. By applying the multi-level approach, we improve the initial objective by
9%. Adding the evolutionary component yields a total reduction of 30%. Both is
shown by extensive experiments over a large set of graphs. Applied to multiprocessor
scheduling, this can improve the makespan by an average of 11% by limiting the
communication with external memory.

Additionally, we formulated an objective function that includes load distribution
and demonstrated how it can be used to tune an application for a different hardware
platform. By adjusting the weights in the objective functions, the developer can easily
trade communication reduction in favor of a more balanced load distribution or the
other way around.

Our experiments indicate that the search space has many local minima. Hence,
in future work, we want to experiment with relaxed constraints on coarser levels of
the hierarchy. Other future directions of research include multi-level algorithms that
directly optimize the newly introduced fitness function.
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