2710

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

High-Quality Shared-Memory Graph Partitioning

Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz

Abstract—Partitioning graphs into blocks of roughly equal size such that few edges run between blocks is a frequently needed
operation in processing graphs. Recently, size, variety, and structural complexity of these networks has grown dramatically.
Unfortunately, previous approaches to parallel graph partitioning have problems in this context since they often show a negative
trade-off between speed and quality. We present an approach to multi-level shared-memory parallel graph partitioning that produces
balanced solutions, shows high speedups for a variety of large graphs and yields very good quality independently of the number of
cores used. For example, in an extensive experimental study, at 79 cores, one of our closest competitors is faster but fails to meet the
balance criterion in the majority of cases and another is mostly slower and incurs about 13 percent larger cut size. Important ingredients
include parallel label propagation for both coarsening and refinement, parallel initial partitioning, a simple yet effective approach to
parallel localized local search, and fast locality preserving hash tables.

Index Terms—~Parallel graph partitioning, shared-memory parallelism, local search, label propagation

1 INTRODUCTION

ARTITIONING a graph into k blocks of similar size such

that a minimum number of edges are cut is a fundamen-
tal problem with many applications. For example, it often
arises when processing a single graph on & processors.

The graph partitioning problem is NP-hard and there is
no approximation algorithm with a constant ratio factor for
general graphs [1]. Thus, to solve the graph partitioning
problem in practice, one needs to use heuristics. A very
common approach to partition a graph is the multi-level
graph partitioning (MGP) approach. The main idea is to
contract the graph in the coarsening phase until it is small
enough to be partitioned by more sophisticated but slower
algorithms in the initial partitioning phase. Afterwards, in
the refinement phase (also called uncoarsening/local search),
the quality of the partition is improved on every level of the
computed hierarchy using a local improvement algorithm.

There is a need for shared-memory parallel graph parti-
tioning algorithms that efficiently utilize all cores of a
machine. This is because providing a large number of cores
has been the main way to use growing transistor budgets of
microprocessors in recent years. Moreover, shared-memory
parallel algorithms implemented without message-passing
libraries (e.g. MPI) usually give better speedups and running
times than their MPI-based counterparts. Shared-memory
parallel graph partitioning algorithms can also be used as a
component of a distributed graph partitioner, which distrib-
utes parts of a graph to nodes of a compute cluster and then

o Y. Akhremtsev is with Google, Zurich, Switzerland.

E-mail: classboxmail@gmail .com.

P. Sanders is with the Karlsruhe Institute of Technology (KIT), 76131
Karlsruhe, Germany. E-mail: sanders@kit.edu.

C. Schulz is with the Faculty of Computer Science, University of Vienna,

Vienna 1010, Austria. E-mail: christian.schulzQunivie.ac.at.

Manuscript received 25 Oct. 2019; revised 9 May 2020; accepted 8 June 2020.
Date of publication 11 June 2020; date of current version 24 June 2020.
(Corresponding author: C. Schulz).

Recommended for acceptance by K. Madduri.

Digital Object Identifier no. 10.1109/TPDS.2020.3001645

4

employs a shared-memory parallel graph partitioning algo-
rithm to partition the corresponding part of the graph on the
node level.

Contribution: We present a high-quality shared-memory
parallel multi-level graph partitioning algorithm that parallel-
izes all of the three MGP phases — coarsening, initial partition-
ing and refinement — using C + +17 multi-threading. Our
approach uses a scalable parallel label propagation algorithm
that is able to quickly shrink large complex networks during
the coarsening phase. Our parallelization of localized local
search [2] is able to obtain high-quality solutions and guaran-
tees balanced partitions despite performing most of the work
in mostly independent local searches of individual threads.
Using cache-aware hash tables, we limit memory consumption
and improve locality.

After presenting preliminaries and related work in
Section 2, we explain details of the multi-level graph parti-
tioning approach and the algorithms that we parallelize in
Section 3. Section 4 presents our approach to the paralleliza-
tion of the multi-level graph partitioning phases. More pre-
cisely, we present a parallelization of label propagation
with size-constraints [3], as well as a parallelization of
k-way multi-try local search [2]. Section 5 describes further
optimizations. Extensive experiments are presented in
Section 6. Our approach scales comparatively better than
other parallel partitioners and has considerably higher qual-
ity which does not degrade with increasing number of
processors.

2 PRELIMINARIES

2.1 Basic Concepts

Let G=(V={0,...,n — 1}, E) be an undirected graph, where
n = |V| and m = |E|. We consider positive, real-valued edge
and vertex weight functions @ and ¢ extending them to sets,
eg, o(M):=> o). Nv):={u: {v,u} € E} denotes
the neighbors of v. The degree of a vertex v is d(v) := |N(v)|. A
is the maximum vertex degree. A vertex is a boundary vertex if it
is incident to a vertex in a different block. We are looking for

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2823-3506
https://orcid.org/0000-0002-2823-3506
https://orcid.org/0000-0002-2823-3506
https://orcid.org/0000-0002-2823-3506
https://orcid.org/0000-0002-2823-3506
mailto:classboxmail@gmail.com
mailto:sanders@kit.edu
mailto:christian.schulz@univie.ac.at

AKHREMTSEV ET AL.: HIGH-QUALITY SHARED-MEMORY GRAPH PARTITIONING

disjoint blocks of vertices Vi,..V; that partition V; ie.,
Viu...UV, =V. The balancing constraint demands that all
blocks have weight ¢(V;) < (1 +¢) (L}:)] =: Ly for some
imbalance parameter e. We call a block V; overloaded if its
weight exceeds L,,.x. The objective is to minimize the total cut
o(EN U;.;Vix V)). We define the gain of a vertex as the
maximum decrease in cut size when moving it to a different
block. We denote the number of processing elements (PEs) as p.

A clustering is also a partition of the vertices. However, k
is usually not given in advance and the balance constraint is
removed. A size-constrained clustering constrains the size
of the blocks of a clustering by a given upper bound U.

An abstract view of the partitioned graph is a quotient
graph, in which vertices represent blocks and edges are
induced by connectivity between blocks. The weighted ver-
sion of the quotient graph has vertex weights that are set to
the weight of the corresponding block and edge weights
that are equal to the weight of the edges that run between
the respective blocks. Our input graphs G have unit edge
weights and vertex weights. However, even those will be
translated into weighted problems in the course of the
multi-level algorithm. In order to avoid a tedious notation,
G will denote the current state of the graph before and after
a (un)contraction in the multi-level scheme throughout this
paper.

Atomic concurrent updates of memory cells are possible
using the compare-and-swap operation CAS(z, y, 2). If
x =y then this operation assigns x < z and returns True;
otherwise it returns False.

We analyze algorithms using the concept of total work
(the time needed by one processor) and spar; i.e., the time
needed using an unlimited number of processors [4].

2.2 Related Work

There has been intensive research on graph partitioning so
that we refer the reader to [5], [6], [7], [8] for more details.
Here, we focus on issues closely related to our main contri-
butions. All general-purpose methods that are able to
obtain good partitions for large real-world graphs are
based on the multi-level principle. Well-known software
packages based on this approach include Jostle [6],
KaHIP [2], Metis [9] and Scotch [10].

Probably the fastest commonly-used distributed memory
multi-level parallel code is the parallel version of Metis,
ParMetis [11]. This parallelization has problems maintain-
ing the balance of the blocks since at any particular time, it
is difficult to say how many vertices are assigned to a partic-
ular block. In addition, ParMetis only uses very simple
greedy local search algorithms that do not yield high-
quality solutions. Mt — Metis by LaSalle and Karypis [12],
[13] is a shared-memory parallel partitioner inspired by
ParMetis. Mt — Metis uses a hill-climbing technique during
refinement. The local search method is a simplification of
k-way multi-try local search [2] in order to make it fast. The
idea is to find a set of vertices (hill) whose move to another
block is beneficial and then to move this set accordingly.
However, it is possible that several PEs move the same ver-
tex. To handle this, each vertex is assigned a PE, which can
move it exclusively. Other PEs use a message queue to send
a request to move this vertex.

2711

PT-Scotch [10], the parallel version of Scotch, is based on
recursive bipartitioning. This is more difficult to parallelize
than direct k-partitioning since in the initial bipartition, there
is less parallelism available. The unused processor power is
used by performing several independent attempts in paral-
lel. The involved communication effort is reduced by consid-
ering only vertices close to the boundary of the current
partitioning (band-refinement). KaPPa [14] is a parallel
matching-based MGP algorithm which is also restricted to
the case where the number of blocks equals the number of
processors used. PDiBaP [15] is a multi-level diffusion-based
algorithm that is targeted at small- to medium-scale parallel-
ism with dozens of processors.

The label propagation clustering algorithm was initially
proposed by Raghavan et al. [16]. A single round of simple
label propagation can be interpreted as the randomized
agglomerative clustering approach proposed by Catalyurek
and Aykanat [17]. Moreover, the label propagation algo-
rithm has been used to partition networks by Ugander and
Backstrom [18]. The authors do not use a multi-level scheme
and rely on a given or random partition which is improved
by combining the unconstrained label propagation approach
with linear programming. This approach does not yield high
quality partitions.

Meyerhenke et al. [19] propose ParHIP, to partition large
complex networks on distributed memory parallel machines.
The partition problem is addressed by parallelizing and
adapting the label propagation technique for graph coarsen-
ing and refinement. The resulting system is more scalable and
achieves higher quality than the state-of-the-art systems like
ParMetis or PT-Scotch. Wang et al. [20] introduce a multi-level
partitioning algorithm based on label propagation without
size-constraints. In this case, no strict size-constraint on the
blocks is enforced.

Recently, Slota et al. [21] have used single-level label
propagation for partitioning complex networks in their
algorithm called PuLP as well. However, experiments on a
wide range of graphs indicate that solution quality is signifi-
cantly worse than ParHIP [19]. Later, Slota et al. [22] pro-
posed XtraPulP, which enables PuLP scale to much larger
instances. XtraPULP successfully partitioned a graph with
1.1 trillion edges.

Another related area are streaming graph partitioning
algorithms [23], [24], [25], [26], [27]. Here the algorithms
operate in a model in which vertices and their neighbor-
hood arrive one at a time and the algorithm directly has to
assign a block to the current vertex which can not be
changed. All of these algorithms perform a single-pass (or
in case of restreaming multiple-passes) over the stream of
vertices. However, for example experiments conducted in
the respective papers indicate that FENNEL [24] or Spin-
ner [26] cut significantly more edges than Metis [9] while
using more imbalance. Metis on the other hand computes
significantly worse cuts than other recent high-quality
multi-level schemes [28], [29].

3 MuULTI-LEVEL GRAPH PARTITIONING

We now give an in-depth description of the three main
phases of a multi-level graph partitioning algorithm: coars-
ening, initial partitioning and refinemen. In particular, we

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

2712

give a description of the sequential algorithms that we par-
allelize in the following sections. Our starting point here is
the fast social configuration of KaHIP which uses label
propagation for coarsening and as the only local search
algorithm during refinement. For the development of the
parallel algorithm, we add a k-way multi-try local search
scheme that gives higher quality, and improve it to perform
less work than the original sequential version. The original
sequential implementations of these algorithms are con-
tained in the KaHIP [2] graph partitioning framework A
general principle is to randomize tie-breaking whenever
possible. This diversifies the search and allows improved
solutions by repeated tries.

3.1 Coarsening

To create a new level of a graph hierarchy, the rationale here
is to compute a clustering with clusters that are bounded in
size and then to contract each cluster into a supervertex.'
Contracting a clustering works by replacing each cluster
with a single vertex. The weight of this new vertex (or
supervertex) is set to the sum of the weight of all vertices in
the original cluster. There is an edge between two vertices u
and v in the contracted graph if the two corresponding clus-
ters in the clustering are adjacent to each other in G; i.e., if
the cluster of v and the cluster of v are connected by at least
one edge. The weight of an edge (A, B) is set to the sum of
the weight of edges that run between cluster A and
cluster B of the clustering. The hierarchy created in this
recursive manner is then used by the partitioner. Due to the
way the contraction is defined, it is ensured that a partition
of the coarse graph corresponds to a partition of the finer
graph with the same cut and balance. We now describe the
clustering and the matching algorithms that we parallelize.

Clustering: We denote the set of all clusters as C' and the
cluster ID of a vertex v as C[v]. There are a variety of cluster-
ing algorithms. We use the label propagation algorithm by
Meyerhenke et al. [3] that creates a clustering fulfilling a
size-constraint.

The size constrained label propagation algorithm works
in iterations; i.e., the algorithm is repeated ¢ times, where ¢
is a tuning parameter. Initially, each vertex is in its own
cluster (C[v] = v) and all vertices are put into a queue @ in
increasing order of their degrees. During each iteration, the
algorithm iterates over all vertices in (). A neighboring clus-
ter C of a vertex v is called eligible if C will not become over-
loaded once v is moved to C. When a vertex v is visited, it is
moved to the eligible cluster that has the strongest connec-
tion to v; i.e., it is moved to the eligible cluster C that maxi-
mizes o({(v,u)|u € N(v)NC}). If a vertex changes its
cluster ID then all its neighbors are added to a queue @’ for
the next iteration. At the end of an iteration, Q and @’ are
swapped, and the algorithm proceeds with the next itera-
tion. It stops after a preset number of iterations or when @ is
empty. The sequential running time of one iteration of the
algorithm is O(m + n).

The contraction algorithm takes a graph G = (V; E) as well
as a clustering C and constructs a coarse graph G’ = (V', E).

1. Many graph partitioners only contract clusters of two vertices
(matchings). Our system also has that option but this is rarely advanta-
geous for us.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

The contraction process consists of three phases: the remap-
ping of cluster IDs to a consecutive set of IDs, edge weight
accumulation, and the construction of the coarse graph. The
remapping of cluster IDs assigns new IDs in the range
[0, |[V'| — 1] to the clusters where |V’| is the number of clusters
in the given clustering. We do this by calculating a prefix
sum on an array that contains ones in the positions equal to
the current cluster IDs. This phase runs in O(n) time. The
edge weight accumulation step calculates weights of edges
in E' using hashing. More precisely, for each cut edge
(v,u) € E we insert a pair (C[v], C[u]) such that C[v] # C[u]
into a hash table and accumulate weights for the pair if it is
already contained in the table. Due to hashing cut edges, the
expected running time of this phase is O(|E'| + m). To con-
struct the coarse graph we iterate over all edges E’ contained
in the hash table. This takes time O(|V'| + |E’|). Hence, the
total expected running time to compute the coarse graph is
O(m + n + |E'|) when run sequentially.

3.2 Initial Partitioning

We adopt the algorithm from KaHIP [2]: After coarsening,
the coarsest level of the hierarchy is partitioned into & blocks
using a recursive bisection algorithm [30]. More precisely, it
is partitioned into two blocks and then the subgraphs
induced by these two blocks are recursively partitioned into
[5] and [5| blocks each. Subsequently, this partition is
improved using local search and flow techniques. To get a
better solution, the coarsest graph is partitioned into &
blocks I times and the best solution is returned.

3.3 Refinement

After initial partitioning, a local search algorithm is applied
to improve the cut of the partition. When local search has
finished, the partition is transferred to the next finer graph
in the hierarchy (uncoarsening); i.e., a vertex in the finer
graph is assigned the block of its coarse representative. This
process of subsequent local search and uncoarsening is
repeated for each level of the hierarchy.

There are a variety of local search algorithms: size-
constrained label propagation, Fiduccia-Mattheyses k-way
local search [31], max-flow min-cut based local search [2],
k-way multi-try local search [2] Sequential versions of
KaHIP use combinations of those. Since k-way local search
is P-complete [32], our algorithm uses size-constrained label
propagation in combination with k-way multi-try local
search. More precisely, the size-constrained label propaga-
tion algorithm can be used as a fast local search algorithm if
one starts from a partition of the graph instead of a cluster-
ing and uses the size-constraint of the partitioning problem.
On the other hand, k-way multi-try local search is able to
find high quality solutions. Overall, this combination allows
us to achieve a parallelization with good solution quality
and good parallelism.

We now describe improved localized multi-try k-way
local search (LMLS) which differs from the original version
of the localized multi-try a more sophisticated for global
iterations. In contrast to previous k-way local search meth-
ods LMLS is not initialized with all boundary vertices; that
is, not all boundary vertices are eligible for movement at the
beginning. Instead, the method is repeatedly initialized

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

AKHREMTSEV ET AL.: HIGH-QUALITY SHARED-MEMORY GRAPH PARTITIONING

with a single boundary vertex. This enables more diversifi-
cation and has a better chance of finding nontrivial
improvements that begin with negative gain moves [2].

The algorithm is organized in a nested loop of global and
local iterations. A global iteration works as follows. First,
the algorithm constructs a hash table that contains all
boundary vertices. We use a hash table since after each local
iteration the set of boundary vertices changes and must be
updated. Next, instead of putting all boundary vertices
directly into a priority queue, boundary vertices under con-
sideration are put into a todo list 7'. Initially, all vertices are
unmarked. Afterwards, the algorithm repeatedly chooses
and removes a random vertex v e T. If the vertex is
unmarked, it starts to perform k-way local search around v,
marking every vertex that is moved during this search.
More precisely, the algorithm inserts v and N(v) into a pri-
ority queue using gain values as keys and marks them.
Next, it extracts a vertex with a maximum key from the pri-
ority queue and performs the corresponding move updat-
ing the hash table with boundary vertices. If a neighbor of
the vertex is unmarked then it is marked and inserted in the
priority queue. If a neighbor of the vertex is already in the
priority queue then its key (gain) is updated. Note that not
every move can be performed due to the size-constraint on
the blocks. The algorithm stops when the adaptive stopping
rule by Osipov and Sanders [33] decides to stop or when the
priority queue is empty. More precisely, if the overall gain
is negative then the stopping rule estimates the probability
that the overall gain will become positive again and signals
to stop if this is unlikely. In the end, the best partition that
has been seen during the process is reconstructed. In one
local iteration, this is repeated until the todo list is empty.

After a local iteration, the algorithm reinserts moved ver-
tices into the todo list in random order. Afterwards, it
applies the quantile-based stopping rule described in
Section 3.3.1 to decide whether to proceed to the next local
iteration or not. This allows to further decrease the cut size
without significant impact to the running time. When the
quantile-based stopping rule stops local iterations, the cur-
rent global iteration finishes. Next, the algorithm uses the
quantile-based stopping to decide whether to stop or not.
Note that when another (global) iteration is started, the
algorithm initializes the todo list with all boundary vertices
in the hash table. This nested loop of local and global itera-
tions is an improvement over the original LMLS search
from [2] since it allows more control over the trade-off
between running time and quality of the algorithm.

The running time of one local iteration is O(n+
D ovev d(v)?). Because each vertex can be moved only once dur-
ing a local iteration and we update the gains of its neighbors
using a bucket heap. Since we update the gain of a vertex at
most d(v) times, the d(v)” term is the total cost to update the
gain of a vertex v. Note, that this is an upper bound for the
worst case, usually local search stops significantly earlier due
the stopping rule or an empty priority queue.

3.3.1 Quantile-Based Stopping Rule

We developed a heuristic stopping rule that considers
work-to-gain ratios of global (local) iterations to decide
whether to perform a new global (local) iteration — see the

2713

thesis [34] for details. Here work is the number of accesses
to partition IDs of vertices during an iteration and gain is
the reduction of the cut size performed during the iteration.
This approach is based on our empirical observation that
work-to-gain ratios have a distribution similar to a log-
normal distribution. During refinement, the parameters of
this distribution are estimated. When the current ratio
exceeds a p-quantile of this distribution or the gain is zero,
search stops. Here, 1/2 < p < 1 is a tuning parameter
expressing how unlikely it is that continued search will find
improvements worth the invested effort.

4 PARALLEL MULTI-LEVEL PARTITIONING

Profiling the sequential algorithm shows that each of the
components of the multi-level scheme has a significant con-
tribution to the overall algorithm. Hence, we now describe
the parallelization of each phase of the multi-level algorithm
described above. The section is organized along the phases
of the multi-level scheme: first we show how to parallelize
coarsening, then initial partitioning and finally refinement.
Our general approach is to avoid bottlenecks as well as per-
forming independent work as much as possible.

4.1 Coarsening

In this section, we present the parallel version of the size-
constrained label propagation algorithm to build a cluster-
ing and the parallel contraction algorithm.

Parallel Size-Constrained Label Propagation: To parallelize the
size-constrained label propagation algorithm, we adapt a
clustering technique by Staudt and Meyerhenke [35] to coars-
ening. Initially, we sort the vertices by increasing degree using
the fast parallel sorting algorithm by Axtmann et al. [36]. We
then form work packets representing a roughly equal amount
of work and insert them into a TBB (threading building
blocks) concurrent queue) [37]. Note that we also tried
the work-stealing approach from [38] but it showed worse
running times. Our constraint is that a packet contains
vertices with a total number of neighbors at most B. We set
B = max(1000, y/m) in our experiments — the 1 000 limits con-
tention for small graphs and the term +/m further reduces con-
tention for large graphs. Additionally, we have an empty
queue Q' that stores packets of vertices for the next iteration.
During an iteration, each PE checks if the queue () is not
empty, and if so it extracts a packet of active vertices from the
queue. A PE then chooses a new cluster for each vertex in the
currently processed packet. A vertex is then moved if the clus-
ter size is still feasible to take on the weight of the vertex. Clus-
ter sizes are updated atomically using a compare-and-swap
(CAS) instruction. This is important to guarantee that the size
constraint is not violated. Neighbors of moved vertices are
inserted into a packet for the next iteration. If the sum of vertex
degrees in that packet exceeds the work bound B, then this
packet is inserted into queue ()’ and a new packet is created
for subsequent vertices. When the queue @ is empty, the main
PE exchanges @ and Q' and we proceed with the next itera-
tion. One iteration of the algorithm can be done with
On +m + p* + pA) work and in O(n +m)/p + p + A) paral-
lel time.

Parallel Contraction: The parallel contraction algorithm
works as follows. First, we remap the cluster IDs using the

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

2714

parallel prefix sum algorithm by Singler et al. [38]. Edge
weights are accumulated by iterating over the edges of the
original graph in parallel. We use the concurrent hash table
of Maier and Sanders [39] initializing it with a capacity of
min(avg_deg - [V'[,|E|/10). Here avg-deg = 2|E|/|V| is the
average degree of GG since we hope that the average degree
of G’ remains the same. Note that this is a rough estimation
of |E| and in case it underestimates the real value the con-
current hash table is able to grow. To parallelize the last
phase, we first calculate degrees of coarse vertices by iterat-
ing over the concurrent hash table in parallel. Then we use
the parallel prefix sum algorithm to compute offsets of
coarse vertices in the array of coarse edges. Finally, we con-
struct the array of coarse edges by iterating over the concur-
rent hash table in parallel one more time.

4.2 Initial Partitioning

To improve the quality of the resulting partitioning of the
coarsest graph G’ = (V', E'), we partition it into k£ blocks
max(p, I) times instead of I times. We perform each parti-
tioning step independently in parallel using different ran-
dom seeds. To do so, each PE creates a copy of the coarsest
graph and runs KaHIP sequentially on it. Assume that one
partitioning can be done in time 7". Then max(p, I) partitions
can be built with O(max(p,I)-T+p-(|E'| + |V'|)) work
and (’)(M +|E'|+|V']) span, where the additional
terms |V’| and |E’| account for the time each PE copies
the coarsest graph.

4.3 Refinement

Our parallel algorithm first uses size-constraint parallel label
propagation to improve the current partition and afterwards
applies our parallel LMLS. The rationale behind this combi-
nation is that label propagation is fast and easy to parallelize
and will do all the easy improvements. Subsequent LMLS
will then invest considerable work to find a few nontrivial
improvements. In this combination, only few nodes actually
need be moved globally which makes it easier to parallelize
LMLS scalably. When using the label propagation algorithm
to improve a partition, we set the upper bound U to the size-
constraint of the partitioning problem L.

Parallel LMLS works in a nested loop of local and global
iterations as in the sequential version. Initialization of a
global iteration copies all boundary vertices to a parallel
todo list 7. T is split into local buckets — one for each PE.
Since the sets of boundary vertices are stored in hash tables,
the copying operation assigns them to buckets in random
order. During a local iteration, each PE extracts vertices v
from the parallel todo list 7'. This is scalable because each
PE can mostly access its local bucket. Afterwards, it per-
forms local moves around v (PerformMoves); that is, global
block IDs and the sizes of the blocks remain unchanged.
When the todo list T is empty, the algorithm applies the
best found sequences of moves to the global data structures
(ApplyMoves). In the paragraphs that follow, we describe
how to perform local moves in PerformMoves and then
how to update the global data structures in ApplyMoves.

Performing Moves (PerformMoves): Starting from a single
boundary vertex, each PE moves vertices to find a sequence
of moves that decreases the cut — by storing vertices in a PQ

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

with gain as priority and always moving the vertex having
the largest gain). However, all moves are local; that is, they
do not affect the current global partition — moves are stored
in the local memory of the PE performing them. To perform
a move, a PE chooses a vertex with maximum gain and
marks it so that other PEs cannot move it. Then, we update
the sizes of the affected blocks and save the move. During
the course of the algorithm, we store the sequence of moves
yielding the best cut. We stop if there are no moves to per-
form or the adaptive stopping rule signals the algorithm to
stop. When a PE finished, the sequences of moves yielding
the largest decrease in the edge cut is returned.

Implementation Details of PerformMoves: In order to
improve scalability, only the array for marking moved verti-
ces is global. Note that within a local iteration, only bits in
this array are set (using CAS) and they are never unset.
Hence, the marking operation can be seen as priority update
operation (see Shun et al. [40]) and thus causes only little
contention. The algorithm keeps a local array of block sizes,
a local priority queue, and a local hash table storing
changed block IDs of vertices. Note that since the local hash
table is small, it often fits into cache which is crucial for par-
allelization due to memory bandwidth limits. When the call
of PerformMoves finishes and the thread executing it notices
that the todo list 7" is empty, it sets a global variable to signal
the other threads to finish the current call of the function
PerformMoves.

Let each PE process a set of edges £ and a set of vertices
V. Since each vertex can be moved only by one PE and mov-
ing a vertex requires the gain computation of its neighbors,
the span of the function PerformMoves is O(3_,c), > e ny)
d(u) + |V|) = O(X ey *(v) + |V]) since the gain of a vertex v
can be updated at most d(v) times. Note that this is a pessi-
mistic bound and it is possible to implement this function
with O(|€[log A + |V]) span using a priority queue. In our
experiments, we use the implementation with the former
running time since it requires less memory and the worst
case — the gain of a vertex v is updated d(v) times — is quite
unlikely.

Applying Moves (ApplyMoves): Let M; = {By, ...} denote
the set of sequences of moves performed by PE ¢, where B;;
is a set of moves performed by the j-th call of
PerformMoves. We apply moves sequentially in the follow-
ing order M, M>,...,M,. We can not apply the moves
directly in parallel since a move done by one PE can affect a
move done by another PE. More precisely, assume that we
want to move a vertex v € B;; but we have already moved
its neighbor w on a different PE. Since the PE only knows
local changes, it calculates the gain to move v (in
PerformMoves) according to the old block ID of w. If we
then apply the rest of the moves in B;; it may even increase
the cut. To prevent this, we recalculate the gain of each
move in a given sequence and remember the best cut. If
there are no affected moves, we apply all moves from the
sequence. Otherwise we apply only the part of the moves
that gives the best cut with respect to the correct gain val-
ues. Finally, we insert all moved vertices into the todo list 7".
Let M be the set of all moved vertices during this procedure.
The overall running time is then given by O3, ., d(v)).
Note that our initial partitioning algorithm generates bal-
anced solutions. Since moves are applied sequentially our

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

AKHREMTSEV ET AL.: HIGH-QUALITY SHARED-MEMORY GRAPH PARTITIONING

parallel local search algorithm maintains balanced solu-
tions; i.e. the balance constraint of our solution is never
violated.

4.4 Differences to Mt — Metis

We now discuss the differences between our algorithm and
Mt — Metis. In the coarsening phase, our approach uses gen-
eral cluster contraction while Metis always contracts match-
ings. Cluster contraction is better suited for networks that
have hierarchical cluster structure. For example, in networks
with star-like structures, a matching-based coarsener can only
match a single edge per level. Moreover, it may contract
“wrong” edges such as bridges [19]. Initial partitioning is sim-
ilar in both algorithms except that different sequential parti-
tioners are used for the base case (KaHIP and Metis). In terms
of local search, unlike Mt — Metis, our approach guarantees
that the updated partition is balanced if the input partition is
balanced and that the cut can only decrease or stay the same.
The hill-climbing technique, however, may increase the cut of
the input partition or may compute an imbalanced partition
even if the input partition is balanced. Our algorithm has
these guarantees since each PE performs moves of vertices
locally in parallel. When all PEs finish, one PE globally applies
the best sequences of local moves computed by all PEs. Usu-
ally, the number of applied moves is significantly smaller
than the number of the local moves performed by all PEs,
especially on large graphs. Thus, the main work is still made
in parallel. Additionally, we introduce a cache-aware hash
table in the following section that we use to store local changes
of block IDs made by each PE. This hash table is more compact
than an array and takes the locality of data into account.

5 FURTHER OPTIMIZATION

In this section, we describe further optimization techniques
that we use to achieve better scalability and efficiency. More
precisely, we use cache-aligned arrays to mitigate the prob-
lem of false-sharing and the TBB scalable allocator [37] for
concurrent memory allocations. We pin threads to cores to
avoid rescheduling overheads. Additionally, we use a
cache-aware hash table which we describe now. In contrast
to usual hash tables, this hash table allows us to exploit
locality of data and hence to reduce the overall running
time of the algorithm.

5.1 Cache-Aware Hash Table
The main goal here is to improve the performance of our
algorithm on large graphs. For large graphs, the gain com-
putation in the LMLS routine takes most of the time. Recall,
that computing the gain of a vertex requires a local hash
table. Hence, using a cache-aware technique reduces the
overall running time. A cache-aware hash table combines
both properties of an array and a hash table. It tries to store
data with similar integer keys within the same cache line,
thus reducing the cost of subsequent accesses to these keys.
On the other hand, it still consumes less memory than an
array which is crucial for the hash table to fit into caches.
We implement a cache-aware hash table using the linear
probing technique and tabulation hashing [41]. Linear probing
typically outperforms other collision resolution techniques in
practice and the computation of the tabular hash function can

2715

be done with a small overhead. The tabular hash function
works as follows. Let z = x; ... x;, be a key to be hashed, where
x; are t bits of the binary representation of . Let T}, i € [1, k] be
tables of size 2!, where each element is a random 32-bit integer.
Using @ as exclusive-or operation, the tabular hash function is
then defined as h(z) = Th[x1] @ ... ® T[]

Exploiting Locality of Data: As our experiments show, the
distribution of keys that we access during the computation
of the gains is not uniform. Instead, it is likely that the time
between accesses to two consecutive keys is small. On typi-
cal systems currently used, the size of a cache line is 64 bytes
(16 elements with 4 bytes each). Now suppose our algo-
rithm accesses 16 consecutive vertices one after another. If
we would use an array storing the block IDs of all vertices
instead of a hash table, we can access all block IDs of the
vertices with only one cache miss. A hash table on the other
hand does not give any locality guarantees. On the contrary,
it is very probable that consecutive keys are hashed to
completely different parts of the hash table. However, due
to memory constraints we can not use an array to store
block IDs for each PE in the PerformMoves procedure.
However, even if the arrays fit into memory this could still
be slower compared to hash tables that fit into cache.

For this, we modify the tabular hash function from
above [42]. More precisely, let © = z; ...}z, where
are the t' least significant bits of = and z, ..., z;_; are ¢ bits
each. Then we compute the tabular hash function as
hz) =Ti[z1] ® ... ® Ty—1|zk—1] ® zx. This guarantees that if
two keys = and 2’ differ only in the first ¢’ bits and, hence,
|z — /| < 2 then |h(z) — h(a')] < 2'. Thus, if ¢/ = O(logc),
where c is the size of a cache line, then z and 2’ are in the
same cache line when accessed. This hash function introdu-
ces at most 2 additional collisions since if we do not
consider ¢’ least significant bits of a key then at most 2" keys
have the same remaining bits. In our experiments, we
choose k = 3,t' = 5,¢t = 10.

6 EXPERIMENTS

6.1 Methodology

We run our experiments on two different machines.
Machine A has 80 cores (4x Intel Xeon Gold 6138) and 768
GB RAM. Machine B has 32 cores (2x Intel Xeon E5-2683v2)
and 512 GB RAM. In our experiments we leave one core
unused since this yields more stable performance.

We implemented our algorithm Mt— KaHIP (Multi-
threaded Karlsruhe High Quality Partitioning) within the
KaHIP [2] framework using C + + and the C 4 +17 multi-
threading library. Our framework is available online [43].
All binaries are built using g + + — 5.2.0 with the —O3 flag
and 64-bit index data types.

We compare ourselves to Mt — Metis0.6.0 using the
default configuration with hill-climbing being enabled
(Mt — Metis) as well as sequential KaHIP2.0 using the
fastsocial configuration (KaHIP) and ParHIP2.0 [19] using
the fastsocial configuration (ParHIP). According to LaSalle
and Karypis [13] Mt — Metis has better speedups and run-
ning times compared to ParMetis and Pt — Scotch. At the
same time, it has similar quality of the partition. Hence, we
do not perform experiments with ParMetis and Pt — Scotch.

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

2716

Our default value of allowed imbalance is 3 percent
(e = 0.03) — this is the most frequently used value in previ-
ous studies. We call a solution imbalanced if at least one
block exceeds this amount. By default, we perform ten repe-
titions for every algorithm using different random seeds for
initialization and report the arithmetic average of computed
cut size and running time on a per instance (graph and
number of blocks k) basis. When further averaging over
multiple instances, we use the geometric mean for quality in
order to give every instance a comparable influence on the
final score. For the number of blocks, we consider k €
{16,64,256,1024}.

We use performance plots to present the quality compar-
isons: For each instance, and each considered code, we plot
one point in such a plot. Let ¢ denote the “cost” of the
instance for the considered code and let ¢* denote the best
observed cost for the same instance over all codes. We then
plot 1 — ¢*/c. These values are then sorted. Thus, the result
of the best algorithm is in the bottom of the plot. Assuming
for simplicity that all considered codes produce only bal-
anced partitions, the costs are the observed cut values aver-
aged over all performed repetitions. Since some codes
sometimes compute highly imbalanced solutions, we also
have to take imbalance into account. For this purpose we
introduce a notion of penalized cut. Specifically, we multiply
average cut values for solutions that violate the balance con-
straint with a penalty factor 114: where ¢ is the average
imbalance parameter observed for that code.

In order to decide whether one algorithm performs sig-
nificantly better than another one, we use the Wilcoxon
signed-rank test [52] with a 5 percent p-value.

Algorithm Configuration: Any multi-level algorithm has a
considerable number of choices between algorithmic com-
ponents and tuning parameters. We adopt parameters from
the coarsening and initial partitioning phases of KaHIP. The
Mt — KaHIP configuration uses 10 and 25 label propagation
iterations during coarsening and refinement (as those are
the values used in KaHIP using the fastsocial configura-
tion), respectively, partitions a coarse graph max(p, 4) times
in initial partitioning. The quantile-based stopping rule for
local search described in Section 3.3.1 uses the parameter
p = 0.9. Additionally, there are at most 3 global iterations.

Instances: We evaluate our algorithms on a number of
large graphs. These graphs are collected from [44], [47], [48],
[49], [51], [53]. Table 1 summarizes the main properties of
the 38 graphs. Our benchmark set includes a number of
graphs from numeric simulations as well as complex net-
works (for the latter with a focus on social networks and
web graphs). Note that Mt — Metis and ParHIP were not
able to partition all instances. Therefore, we calculate mean
performance based on subsets of instances that were parti-
tioned by all codes. The detailed description of these subsets
can be found in the thesis of Akhremtsev [34].

The rhg graph is a complex network generated with Net-
worKit [49] according to the random hyperbolic graph
model [54]. In this model, vertices are represented as points
in the hyperbolic plane; vertices are connected by an edge if
their hyperbolic distance is below a threshold. Moreover,
we use the two graph families rgg and del for compari-
sons. rgg X is a random geometric graph with 2% vertices
where vertices represent random points in the (euclidean)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

TABLE 1
Benchmark Graphs

Graph n m Type Reference
amazon ~0.4M ~2.3M C [44]
youtube ~1.1M ~3.0M C [44]
amazon-2008 ~0.7M ~3.5M C [45]
ba 2 22 ~4.2M (222) ~8.4M C [46]
in-2004 ~1.4M ~13.6M C [45]
eu-2005 ~0.9M ~16.1M C [45]
er 2 22 2 23 ~42M (22) ~163(©2%) O [46]
packing ~2.1M ~17.5M M [47]
hugebubbles-00 ~18.3M ~27.5M M [47]
rhg 2 23 ~8.4M (223) ~32.1M C [46]
com-LiveJournal ~4M ~34.7M C [44]
channel ~4.8M ~42.7M M [47]
cagels ~5.2M ~47.0M M [47]
ljournal-2008 ~5.4M ~49.5M C [45]
europe.osm ~50.9M ~54.1M O [48]
enwiki-2013 ~4.2M ~91.9M C [45]
er-fact].5-scale23 ~8.4M ~100.3M O [48]
hollywood-2011 ~2.2M ~114.5M C [45]
com-Orkut ~3.1M ~117.2M C [44]
enwiki-2018 ~5.6M ~117.2M C [45]
indochina-2004 ~7.4M ~151.0M C [45]
rhg ~10.0M ~19.6M C [49]
del 2 26 ~67.1M (2%6) ~201.3M M [50]
uk-2002 ~18.5M ~261.8M C [45]
del 2 27 ~134.2M (227) ~303.2M M [46]
nlpkkt240 ~28.0M ~373.2M M [51]
rgg 2 26 3d ~67.1M (2%6) ~379.6M M [46]
del 2 26 3d ~67.1M ~521.3M M [46]
arabic-2005 ~22.7M ~5539M C [45]
rgg 2 26 ~67.1M (2%0) ~574.6M M [46]
uk-2005 ~39.5M ~783.0M C [45]
rgg 2 27 3d ~1342M (27) ~7877M M [46]
webbase-2001 ~118.1M ~854.8M C [45]
it-2004 ~41.3M ~1.0G C [45]
del 2 27 3d ~134.2M (2%7) ~1.0G M [46]
rgg 2 27 ~1342M (27) ~12G M [46]
sk-2005 ~50.6M ~1.8G C [45]
uk-2007 ~106M ~3.3G C [45]

C = complex networks, M = mesh type networks, and O = other networks
(sorted by number of edges).

unit square and edges connect vertices whose euclidean dis-
tance is below 0.55/Inn/n. This threshold was chosen in
order to ensure that the graph is almost certainly connected.
del X is a Delaunay triangulation of 2% random points in
the unit square. The graph er-fact1.5-scale23 is generated
using the Erdos-Rényi G(n, p) model with p = 1.5Inn/n.

6.2 Quality Comparison
In this section, we compare our algorithm against other
state-of-the-art algorithms in terms of quality. The perfor-
mance plot in Fig. 1 shows the results of our experiments
performed on Machine A for all of our benchmark graphs
shown in Table 1. Overall, we analyze 152 instances
partitioned by Mt — KaHIP, 151 instances partitioned by
ParHIP, 130 instances partitioned by Mt — Metis, and 139
instances partitioned by KaHIP.

Our algorithm dominates all other algorithms in this per-
formance plot. Mt — KaHIP usually computes the overall
best solutions or is only a few percent off. Both ParHIP and

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

AKHREMTSEV ET AL.: HIGH-QUALITY SHARED-MEMORY GRAPH PARTITIONING

1
0.75
0.5 1

0.25 1

0.1

0.05 1

1 -best / cut

0.0375
0.025 A

0.0125 o

T T
0 20 40 60 80 100 120 140
instances

Mt-KaHIP 79 Mt-Metis 79 e ParHIP 79 KaHIP

Fig. 1. Performance plot for the cut size. The number behind the algo-
rithm name denotes the number of threads used. On the y-axis we use
linear scaling for [0, 0.05] and logarithmic scaling for (0.05, 1].

Mt — Metis have cost values that are more then 10 percent
off most of the time. Mt — Metis is even more than 50 per-
cent off for a significant fraction of instances. Closer inspec-
tion reveals that these bad cases are due to severely
imbalanced solutions computed by the competing codes. To
illustrate that, the scatter plot in Fig. 2 compares imbalance
and cut separately.

The overall solution quality of Mt — KaHIP does not
heavily depend on the number of PEs used. Indeed, more
PEs give slightly higher partitioning quality since more ini-
tial partitioning attempts are done in parallel. This is an
important difference to most other parallel graph parti-
tioners — previously, parallelization was always associated
with some loss in quality.

The original fast social configuration of KaHIP as well as
ParHIP produce worse quality than Mt — KaHIP. This is due
to the high quality local search scheme that we use; i.e., paral-
lel LMLS significantly improves solution quality. Mt — Metis
with p = 79 has worse quality than our algorithm on almost
all instances. The exceptions are three networks (all of type
mesh). For Mt — Metis this is expected since it is considerably
faster than our algorithm. However, Mt — Metis also suffers
from deteriorating quality and many imbalanced partitions
as the number of PEs goes up. This is mostly the case for

2717

32
161
o
<
i
VI
L 81 -
=
73]
(o]
[9)
&
~ 9
0] 4 1 -
9
=1
=
3
E - -

R
1.5 4 A
L
1.03 A - g
T T T
0.5 0.75 1 2 4

cut / cut(Mt-KaHIP)

Mt-Metis 79 e ParHIP 79 KaHIP

Fig. 2. Scatter plot showing imbalance on the z-axis and comparing the
cut for competing codes with that of Mt — KaHIP79.

complex networks. This can also be seen from the geometric
means of the cut sizes over all instances, including the
imbalanced solutions.

We summarize the quality advantage of our code by pre-
senting geometric mean cut sizes for instances which were
partitioned by all frameworks in Table 2. We see that
Mt — KaHIP has a quality advantage over all other systems.
On the first glance, the advantage over Mt — Metis decreases
for large k. However, closer inspection shows that for large &
Mt — Metis produces highly imbalanced solutions. These
could be viewed either as infeasible or one could make a
kind of bicriteria comparison of the two systems. It looks like
either way Mt — KaHIP comes out as more robust regardless
of the choice of k. Still, all systems produce at least slightly
imbalanced solutions for large k. For (Mt) — KaHIP, this is
due to (small) problems in the initial partitioner which seems
a topic for future work. Mt — Metis and, to a lesser degree,
ParHIP make approximations in the refinement phase that
can inherently lead to highly imbalanced solutions. Further-
more, significance tests indicate that the quality advantage
of our solver over the other solvers is statistically significant.

6.2.1 Effectiveness Tests

We now compare the effectiveness of our algorithm
Mt — KaHIP against other codes using a single PE and 79

TABLE 2
Overall Quality Parameters of Instances Partitioned by all Codes (all But KaHIP With p = 79 Cores)

o Number of oy ahip

. Mt-Metis
instances

ParHIP

Geom. mean
penalized cut

KaHIP

Penalized cut difference

Mt-KaHIP Mt-Metis ~ ParHIP KaHIP

Geom. mean imb. (%) Imb (%). difference

All 126 2.724-10% 4+462% +16.0% +6.6 % 3.1% +83% +0.6% +0.0%
16 35 1.175-10% +52.0% +16.8% +8.2% 3.0 % +51% +04% +0.0%
64 33 2.374-10% 4+44.0% +155% +7.3% 3.0 % +6.8% +0.5% +0.0%

256 29 3.718 106 4+373% +14.1% +5.6% 3.1% +84% +03% +0.0%

1024 29 6.442-10% 4+51.3% +17.6% +4.8% 32% 4175% +1.6% +0.1%

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

2718

@ %\/‘It—KaHIPI o Mt-Metisl e Mt-KaHIP1 e ParHIP 1

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

e Mt-KaHIP1 e KaHIP

1-best / cut

) l\qlt-I(aHIP79 o Mt-Metis 79 @ Mt-KaHI

P79 e ParHIP79 e

T T L} T T

Mt-KaHIP 79 e KaHIP

1-best / cut

T
10000 0

0 5000
virtual instances

T
5000
virtual instances

15000 0

Ll
10000
virtual instances

T Ll
10000 5000

Fig. 3. Effectiveness tests for different codes. The number behind the algorithm name denotes the number of used threads.

PEs of Machine A. The idea is to give the faster algorithm
the same amount of time as the slower algorithm for addi-
tional repetitions that can lead to improved solutions.” We
have improved an approach used in [2] to extract more
information out of a moderate number of measurements.
Suppose we want to compare a repetitions of algorithm A
and b repetitions of algorithm B on instance /. We generate
a virtual instance as follows: We first sample one of the repe-
titions of both algorithms. Let t'; and ¢}, refer to the observed
running times. Wlog assume t! >tj,. Now we sample
(without replacement) additional repetitions of algorithm B
until the total running time accumulated for algorithm B
exceeds t}. Let t}; denote the running time of the last sam-
ple. We accept the last sample of B with probability (¢},—

Zl<7ﬁ<é’ th)/t%
Theorem 1. The expected total running time of accepted samples
for B is the same as the time for the single repetition of A.

Proof. Lett =), _,_,t%. Consider arandom variable T that
is the total time of sampled repetitions. With probability
p = (t4 —t)/t%, we accept the ¢-th sample and with proba-
bility 1 — p we declineit. Then E[T] = p - (t + %)+ (1 —p) -
b= (1 — 1)/t (t+ ty)+ (1— (t —)/th) -t =t O

The quality assumed for A in this virtual instance is the
quality of the only run of algorithm A. The quality for B is
the best quality observed for an accepted sample for B.

For our effectiveness evaluation, we used 100 virtual
instances for each pair of graph and k derived from 10 repe-
titions of each algorithm. Fig. 3 presents the resulting per-
formance plots.

2. Indeed, we asked Dominique LaSalle how to improve the quality
of Mt — Metis at the expense of higher running time and he indepen-
dently suggested to make repeated runs.

Table 3 summarizes the results of effectiveness tests.
Note that Mt — KaHIP always has smaller geometric mean
cut size. Furthermore, Mt — KaHIP has only around 2.1 per-
cent of imbalanced virtual instances in all effectiveness tests.
We conclude that Mt — KaHIP considerably outperforms the
other codes in terms of quality and that the gap increases
when parallelism is used.

6.3 Speedup and Running Time Comparison

In this section, we investigate speedups and running times
of the different algorithms. We calculate a relative speedup
of an algorithm as a ratio between its running time (aver-
aged over ten repetitions) and its running time with p = 1.
Fig. 4 shows box plots with speedups and times per edge of
the codes run on Machines A and B for k € {16,64}. Each
group stands for instances that have the same order of mag-
nitude of edges. Note that Machine A has four sockets and
thus has strong NUMA effects that affect the resulting
speedups and running times of the codes. Therefore, to
investigate the performance of the codes more thoroughly,
we additionally present experiments performed on Machine
B which is smaller but more tightly connected. The evalua-
tion is based on those instances where all codes successfully

TABLE 3
Percent of Virtual Instances Partitioned by Mt — KaHIP 79 With
Better Penalized cut; Percent of Imbalanced Virtual Instances;
and Difference in Geometric Mean Penalized Cut Size Between
Mt — KaHIP and Corresponding Other Code for all Instances

Mt-Metis 79 ParHIP 79 KaHIP
% of virtual instances o o o
with better penalized cut 8.7 % 98.9 % 98.7 %
% of imbalanced virtual instances 66.5 % 234 % 2.8%
Geom. mean 328% 160% 6.8%

penalized cut size difference

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

AKHREMTSEV ET AL.: HIGH-QUALITY SHARED-MEMORY GRAPH PARTITIONING

Machine A (k € {16,64})

2719

Machine B (k € {16,64})

i | | I i i i
70 | | | i 1 i
Wy IE AN RN T
YNNI EEEE NNy HERSERNEF
g 401 I 2 I 207 I 3|£g I
g, 30 | 1 1 i ? i
ol e g et R an Lanh L) ReE
0 |il | % | il z ITIFI TI
= 1 I I | | |
0_$T%!T??!III!I?I OII%!III!III!I?I
107 108 10° 107 108 10°
| | | | | |
10* 14 ° 0t 6o %
RN o,
4 - 8 8
0 103 4T I I 8 10° 1 ¥| 26—}
i TN HM
)
a, = 1 | 1 ® | I | 18
it R o R e
£]] I = I !] | -
= | | | | | |
of 4 TR Tl T
1 I 1 1I07 1 I 1 1I08 1 I 1 169 1 1 1 1 1 1 167 I 1 I 168 I 1 T 169 T 1 T
Number of edges Number of edges
B Mt-KaHIP Il Mt-Metis B ParHIP

Fig. 4. Box plots with speedups and times per edge (ns) of the codes for Machine A, p = 79 and Machine B, p = 31 for k € {16,64}. Here each box
spans between lower and upper quantiles, and a horizontal orange line is the median.

computed a (possibly imbalanced) partition — 126 instances
on Machine A and 68 instances on Machine B.

First, we can see that all codes have problems making use
of the large number of cores for smaller instances (m < 107).
The best speedups are observed for large instances with
m > 10%. Moreover, Mt — Metis has the best overall running
time but scales worse than the other codes. On both
machines, speedups increase with increasing graph size for
Mt — KaHIP and ParHIP. Considering the size of these
machines, the speedups are quite good for Machine B and
somewhat disappointing for Machine A. However, its not so
surprising that an irregular code like graph partitioning does
not scale well on a large loosely coupled NUMA machine.

Mt — KaHIP is somewhat faster than ParHIP and has com-
parable scalability. Considering its much better quality we
can declare Mt — KaHIP a clear winner over ParHIP for shared
memory graph partitioning. This comparison is a bit unfair
though since ParHIP is actually a distributed-memory graph
partitioner that scales much further for large “well-behaved”
inputs [19]. We see a hint of this in an interesting difference
between Machine A and B. For large instances, Mt — KaHIP
scales better than ParHIP on Machine B but its the other way
round on Machine A — apparently ParHIP is the only of the
three codes that can make reasonable use of such a large,
loosely coupled machine. A closer look reveals that this
depends a lot on the instances. ParHIP has very high variabil-
ity in the achieved speedup.

Fig. 6 shows speedup plots for three large instances from
different instance families (rgg: 2d random geometric, del:
3d-Delaunay triangulations, and uk: web graph) and for

k € {16,64}. On machine, B all instances show good
speedup with the exception of the web graph for large k. On
machine A, at least the geometric graphs (rgg/del) show
good speedup. We see that increasing k significantly limits
scalability. Further measurements indicate that the reason is
that initial partitioning becomes a bottleneck — see also [34].
Additionally, we present speed-ups of all codes for
k € {256,1024} on Fig. 5. This plot encodes partition imbal-
ances using colors. Here we can see that our competitors
produce mostly imbalanced partitions (orange and red)
unlike our code. On the other hand, Mt — KaHIP scales
worse than other codes. Specifically, initial partitioning
scales poorly. We conclude that none of codes shows good
results for large k. However note that these problems can be
circumvented by recursive k-partitioning using smaller val-
ues of k. For example, to obtain a 1024-partion, one can com-
pute a 32-partition and recursively compute 32-partitions of
each block. This might work better for Mt — KaHIP since
one needs to tighten the imbalance parameters to meet the
overall balance constraint. Codes that have difficulties to
maintain balance might have problems in that situation.

6.4 Influence of Algorithmic Components

We now analyze how the parallelization of the different
components affects solution quality of partitioning and
present the speedups of each phase. We give a rough over-
view here and refer the reader to the PhD thesis of Yaroslav
Akhremtsev [34] for more details. We perform experiments
on Machine A with configurations of our algorithm in
which only one of the components (coarsening, initial

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

2720
Machine A (k € {256,1024})
70 'y ’0
60 - (X4
50
a []
7
T 41 o
& - m
O 30 °
[)
Py t '
¢

107 108 107
Number of edges
balance < 3%: bal. € (3%, 6%]: bal. > 6%:
B Mt-KaHIP 79 Mt-KaHIP79 ~m Mt-KaHIP 79
® Mt-Metis 79 Mt-Metis 79 ® Mt-Metis 79
¢ ParHIP79 ParHIP 79 ¢ ParHIP 79

Fig. 5. Scatter plot with speed-ups of the codes for Machine A, p = 79 for
k € {256,1024}. Colors encode balance as follows: green — balanced
partitions, orange — balance between 3 and 6 percent, and red — balance
greater than 6 percent.

partitioning, refinement) is parallelized. The respective par-
allelized component of the algorithm uses 79 PEs and the
other components run sequentially. Running the algorithm
with parallel coarsening or parallel local search increases
the geometric mean of the cut by 0.68 or 0.57 percent respec-
tively. These are small deteriorations that are not statisti-
cally significant. Running the algorithm with parallel initial
partitioning decreases the geometric mean of the cut by 1.86
percent and this is statistically significant. The simple expla-
nation is that trying more initial partitions better explores
the search space.

To show that the parallelization of each phase is impor-
tant, we consider running time shares of the phases of
Mt — KaHIP with p = 79 (when all phases are parallel). On
average, the coarsening, initial partitioning, and refinement
phases take 30.4, 51.0, and 18.6 percent of the running time,
respectively. We observe that each phase has the largest
running time ratio for at least one instance. The coarsening
phase takes 83.6 percent of the running time on the graph
rgg 2 27 and k = 16. The initial partitioning phase takes 98.2
percent of the running time on the graph hollywood-2011
and k = 64. The refinement takes 71 percent of the running
time on the grapher 2 22 2 23 and k = 16.

Fig. 7 shows speed-ups and times per edges for each of
the phases of Mt -KaHIP. We can see that the coarsening
and refinement phases have good scalability and times per
edges. For refinement, this is a quite positive surprise —
apparently, the sequential application of moves is not a big
bottleneck. Initial partitioning turns out to be the main scal-
ability bottleneck since it only uses trivial parallelization of
the repetitions. This is a particular problem for small
graphs, large k, or complex networks. This can be mitigated
using a smaller base case size but this measure involves a
difficult speed/quality trade-off.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

Machine A

Speed-up

(e}
N
(=}
'
o
[o)}
(e}
x
o

Number of PEs
Machine B

Number of PEs

—&— uk-2007-05, 16
—&— rgg27,16
—0— del27.3d, 16

—— uk-2007-05, 64
—— rgg27, 64
—— del27.3d, 64

Fig. 6. Speedups for large instances (instance name, # of partitions k).

6.5 Memory Consumption

We now look at the memory consumption of Mt — KaHIP on
the eight largest graphs from our benchmark for k£ = 16 (for
k = 64 they are comparable) on Machine A. The geometric
mean memory consumptions of Mt — KaHIP, Mt — Metis,
and ParHIP are 44.8 GB, 53.2 GB, and 102.7 GB, respectively
for p =1 and 47.3 GB, 62.0 GB, and 109.1 GB for p = 79.
Note that Mt — Metis was not able to partition sk-2005 and
uk-2007. We observe only small memory overheads of
Mt — KaHIP when increasing the number of PEs. We explain
this by the fact that all data structures created by each PE
are either of small (copy of a coarsened graph) or the data is
distributed between them approximately uniformly (a hash
table in LMLS). Note that all codes have relatively little
memory overhead for parallelization. However, on average
Mt — KaHIP with 79 PEs consumes 33.1 percent less memory

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

AKHREMTSEV ET AL.: HIGH-QUALITY SHARED-MEMORY GRAPH PARTITIONING

Machine A (k € {16,64})
8

1

—

‘iii*ii

9

e

Time per edge, ns

. Hi—
L —]

O e —————————————

8 1
Number of edges

Il Initial Partit.

N
—

Il Coarsening B Refinement

Fig. 7. Box plots with speedups and times per edge (ns) of coarsening,
initial partitioning, and refinement phases of Mt -KaHIP for Machine A,
p=T9fork € {16,64}.

than Mt — Metis and 56.2 percent less memory than ParHIP
on these graphs.

7 CONCLUSION AND FUTURE WORK

Graph partitioning is a key prerequisite for efficient large-
scale parallel graph algorithms and many other applications.
We presented an approach to multi-level shared-memory par-
allel graph partitioning that achieves balanced solutions,
shows high speedups for a variety of large graphs and yields
very good quality independently of the number of cores used.
Compared to previous approaches, ours produces smaller
cuts and is better at keeping the balance constraints. Impor-
tant ingredients of our algorithm include parallel label propa-
gation for both coarsening and refinement, parallel initial
partitioning, a simple yet effective approach to parallel local-
ized local search, and fast locality preserving hash tables.

On the speed versus quality Pareto curve of state-of-the-art
graph partitioners, Mt — KaHIP achieves much higher speed
but somewhat lower quality than the high-quality settings of
KaHIP (using flow-based refinement and/or evolutionary
algorithms). Mt — Metis is faster than Mt — KaHIP but achieves
considerably lower quality and cannot reliably guarantee bal-
anced solutions. Systems like ParMetis [11] or XtraPuLP [22]
are even faster and more scalable but with even lower quality.

At the same quality point as current Mt — KaHIP, we can
probably achieve better scalability by looking for more scal-
able algorithms for initial partitioning. These also need to
be revised in order to actually guarantee the balance con-
straint. Also the other components can perhaps be made
more scalable. In particular, it would be interesting to get
rid of the sequential approach to applying moves in

2721

Section 4.3 while avoiding the imbalances produced by the
parallel approach of Mt — Metis. A scaleable distributed-
memory parallelization achieving similar quality and effi-
ciency as Mt — KaHIP would also be interesting.

Moving along the Pareto curve to higher quality solutions
makes it interesting to parallelize flow-based refinement.
Moving to faster codes while keeping at least some of the
quality advantages of Mt — KaHIP seems to be a particularly
important but challenging area for future research. Part of
this can probably be achieved by devising high speed two-
level algorithms for graph contraction/refinement that apply
a high quality algorithm like Mt — KaHIP to the coarser level.

ACKNOWLEDGMENTS

This work was supported in part by DFG Grants SA
933/10-2 and SCHU 2567/1-2.

REFERENCES

[1] T. N. Bui and C. Jones, “Finding good approximate vertex and
edge partitions is NP-hard,” Inf. Process. Lett., vol. 42, no. 3,
pp- 153-159, 1992.

[2] P. Sanders and C. Schulz, “Engineering multilevel graph parti-
tioning algorithms,” in Proc. 19th Eur. Symp. Algorithms, 2011,
pp- 469-480.

[3] H.Meyerhenke, P. Sanders, and C. Schulz, “Partitioning complex
networks via size-constrained clustering,” in Proc. 13th Symp. Exp.
Algorithms, 2014, pp. 351-363.

[4] G. E. Blelloch, “Programming parallel algorithms,
ACM, vol. 39, no. 3, pp. 85-97, 1996.

[5] K. Schloegel, G. Karypis, and V. Kumar, “Graph partitioning for
high performance scientific simulations,” in The Sourcebook of Par-
allel Computing, San Mateo, CA, USA: Morgan Kaufmann: 2003,
pp- 491-541.

[6] C. Walshaw and M. Cross, “JOSTLE: Parallel Multilevel Graph-
Partitioning Software — An Overview,” in Mesh Partitioning Techni-
ques and Domain Decomposition Techniques, 2007, pp. 27-58.

[71 A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz,
“Recent advances in graph partitioning,” in Algorithm Engineering,
L. Kliemann and P. Sanders, Eds. Berlin, Germany: Springer,
2014, vol. 9220, pp. 117-158.

[8] C. Schulz and D. Strash, “Graph partitioning: Formulations and
applications to big data,” in Encyclopedia of Big Data Technologies,
Berlin, Germany: Springer, 2019. [Online]. Available: https://doi.
org/10.1007/978-3-319-63962-8_312-2

[9] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM |. Sci. Comput.,
vol. 20, no. 1, pp. 359-392, 1998.

[10] C. Chevalier and F. Pellegrini, “PT-Scotch,” Parallel Comput.,
vol. 34, pp. 318-331, 2008.

[11] G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning
scheme for irregular graphs,” in Proc. ACM/IEEE Conf. Supercom-
puting, 1996, Art. no 35.

[12] D. LaSalle and G. Karypis, “A parallel hill-climbing refinement
algorithm for graph partitioning,” in Proc. 45th Int. Conf. Parallel
Process., 2016, pp. 236-241.

[13] D. LaSalle and G. Karypis, “Multi-threaded graph partitioning,”
in Proc. 27th IEEE Int. Parallel Distrib. Process. Symp., 2013,
pp- 225-236.

[14] M. Holtgrewe, P. Sanders, and C. Schulz, “Engineering a scalable

high quality graph partitioner,” Proc. 24th IPDPS, 2010, pp. 1-12.

H. Meyerhenke, “Shape optimizing load balancing for MPI-paral-

lel adaptive numerical simulations,” in Proc. 10th DIMACS Imple-

mentation Challenge — Graph Partitioning Graph Clustering, 2013.

[16] U.N.Raghavan, R. Albert, and S. Kumara, “Near linear time algo-
rithm to detect community structures in large-scale networks,”
Phys. Rev. E, vol. 76, no. 3, 2007, Art. no. 036106.

[17] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning based
decomposition for parallel sparse-matrix vector multiplication,”
IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 7, pp. 673-693, Jul. 1999.

[18] J. Ugander and L. Backstrom, “Balanced label propagation for par-
titioning massive graphs,” in Proc. 6th WSDM, 2013, pp. 507-516.

”

Commun.

[15]

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/978--3-319-63962-8_312-2
https://doi.org/10.1007/978--3-319-63962-8_312-2

2722

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]
(331

[34]

[35]

[36]

[37]
[38]

[391

[40]

[41]

[42]

[43]

[44]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph parti-
tioning for complex networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 9, pp. 26252638, Sep. 2017.

L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to partition a
billion-node graph,” in Proc. 30th IEEE Int. Conf. Data Eng., 2014,
pp. 568-579.

G. M. Slota, K. Madduri, and S. Rajamanickam, “Complex net-
work partitioning using label propagation,” SIAM J. Sci. Comput.,
vol. 38, no. 5, pp. 5620—5645, 2016. [Online]. Available: https://
doi.org/10.1137/15M1026183

G. M. Slota, S. Rajamanickam, K. D. Devine, and K. Madduri,
“Partitioning trillion-edge graphs in minutes,” in Proc. 31st IEEE
Int. Par. Distrib. Process. Symp., 2017, pp. 646-655.

I. Stanton and G. Kliot, “Streaming graph partitioning for large
distributed graphs,” in Proc. 18th ACM SIGKDD Conf. Knowl. Dis-
cov. Data Mining, 2012, pp. 1222-1230.

C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic,
“FENNEL: Streaming graph partitioning for massive scale graphs,”
in Proc. 7th ACM Conf. Web Search Data Mining, 2014, pp. 333-342.

Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, “Streaming
graph partitioning: An experimental study,” PVLDB, vol. 11,
no. 11, pp. 1590-1603, 2018. [Online]. Available: http://www.
vldb.org/pvldb/vol11/p1590-abbas.pdf

C. Martella, D. Logothetis, A. Loukas, and G. Siganos, “Spinner:
Scalable graph partitioning in the cloud,” in Proc. 33rd IEEE Int.
Conf. Data Eng. , 2017, pp. 1083-1094.

J. Nishimura and]. Ugander, “Restreaming graph partitioning: Sim-
ple versatile algorithms for advanced balancing,” in Proc. 19th ACM
SIGKDD Conf. Knowl. Discov. Data Mining, 2013, pp. 1106-1114.

R. Glantz, H. Meyerhenke, and C. Schulz, “Tree-based coarsening
and partitioning of complex networks,” ACM]. Exp. Algorithmics,
vol. 21, no. 1, pp. 1.6:1-1.6:20, 2016. [Online]. Available: https://
doi.org/10.1145/2851496

H. Meyerhenke, P. Sanders, and C. Schulz, “Partitioning (hierar-
chically clustered) complex networks via size-constrained graph
clustering,” J. Heuristics, vol. 22, no. 5, pp. 759-782, 2016. [Online].
Available: https://doi.org/10.1007/s10732-016-9315-8

B. W. Kernighan, “Some graph partitioning problems related to
program segmentation,” Ph.D. dissertation, Princeton, 1969.

C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic
for Improving Network Partitions,” in Proc. 19th Conf. Des. Autom.,
1982, pp. 175-181.

J. E. Savage and M. G. Wloka, “Parallelism in graph-partitioning,”
J. Parallel Distrib. Comput., vol. 13, pp. 257-272, 1991.

V. Osipov and P. Sanders, “n-level graph partitioning,” in Proc.
18th Eur. Symp. Algorithms, vol. 6346, 2010, pp. 278-289.

Y. Akhremtsev, “Parallel and external high quality graph parti-
tioning,” Ph.D. dissertation, Karlsruher Institut fiir Technologie
(KIT), 2019.

C. L. Staudt and H. Meyerhenke, “Engineering parallel algorithms
for community detection in massive networks,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 27, no. 1, pp. 171-184, 2016.

M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders, “In-place paral-
lel super scalar samplesort (IPSSSSo),” in Proc. 25th Eur. Symp.
Algorithms, 2017, pp. 9:1-9:14.

“Intel threading building blocks,” [Online]. Available: https://
www.threadingbuildingblocks.org/.

J. Singler, P. Sanders, and F. Putze, “MCSTL: The multi-core stan-
dard template library,” Proc. 13th Euro-Par, 2007, pp. 682-694.

T. Maier, P. Sanders, and R. Dementiev, “Concurrent hash tables:
Fast and general?(!),” ACM Trans. Parallel Comput. (TOPC), vol. 5,
2019, Art. no. 16.

J. Shun, G. Blelloch, J. T. Fineman, and P. B. Gibbons, “Reducing
contention through priority updates,” in Proc. 25th ACM Symp.
Parallelism Algorithms Architectures, 2013, pp. 152-163.

M. Patrascu and M. Thorup, “The power of simple tabulation
hashing,” in Proc. 43rd ACM Symp. Theory Comp., 2011, Art. no. 14.
P. Sanders, K. Mehlhorn, M. Dietzfelbinger, and R. Dementiev,
Sequential and Parallel Algorithms and Data Structures — The Basic
Toolbox. Berlin, Germany: Springer, 2019.

Multi-threaded KaHIP. [Online]. Available: http://algo2.iti.kit.
edu/kahip/ and https://github.com/yarchi/KaHIP/tree/
add_parallel local search/

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” Jun. 2014. [Online]. Available: http://snap.
stanford.edu/data

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

U. O. M. Laboratory of Web Algorithms, “Datasets,” [Online].
Available: http:/ /law.di.unimi.it/datasets.php

D. Funke, S. Lamm, P. Sanders, C. Schulz, D. Strash, and
M. von Looz, “Communication-free massively distributed
graph generation,” in Proc. IEEE Int. Parallel Distrib. Symp.,
2018, pp. 336-347.

D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes,
and D. Wagner, “Benchmarking for graph clustering and parti-
tioning,” in Encyclopedia of Social Network Analysis and Mining,
Berlin, Germany: Springer, 2014, pp. 73-82.

D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Eds.,
10th DIMACS Implementation Challenge — Graph Partitioning and
Graph Clustering, Providence, RI, USA: American Mathematical
Society and Center for Discrete Mathematics and Theoretical
Computer Science, 2013.

M. von Looz, H. Meyerhenke, and R. Prutkin, “Generating ran-
dom hyperbolic graphs in subquadratic time,” in Proc. 26th Int.
Symp. Algorithms Comput., 2015, pp. 467-478.

M. Holtgrewe, P. Sanders, and C. Schulz, “Engineering a scalable
high quality graph partitioner,” in Proc. 24th IEEE Int. Symp. Paral-
lel Distrib., 2010, pp. 1-12.

T. Davis, “The university of florida sparse matrix collection,”
[Online]. Available: www.cise.ufl.edu/research/sparse/matrices/ .
F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Bio-
metrics Bulletin, vol. 1, no. 6, pp. 80-83, 1945. [Online]. Available:
http:/ /www jstor.org/stable /3001968

P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. 13th Int. World Wide Web Conf., 2004, pp. 595-601.
D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Bogund,
“Hyperbolic geometry of complex networks,” Phys. Rev. E, vol. 82,
2010, Art. no. 036106.

Yaroslav Akhremtsev received the master's
degrees in mathematics and computer science
from the Moscow Power Engineering Institute, and
the PhD degree from the Karlsruhe Institute of
Technology. He is a software engineer with Google.
He has several papers about graph partitioning,
search trees, and randomized data structures. His
research interests include sequential and parallel
graph algorithms, randomized and non-random-
ized algorithms, and data structures.

Peter Sanders received the PhD degree in com-
puter science from Universitat Karlsruhe, Germany;,
in 1996. After 7 years at the Max-Planck-Institute
for Informatics in Saarbriicken he returned to Karls-
ruhe as a full professor, in 2004. He has more than
200 publications, mostly on algorithms for large
data sets. This includes parallel algorithms (load
balancing, etc.) memory hierarchies, graph algo-
rithms (route planning, graph partitioning, etc.), ran-
domized algorithms, full text indices, etc. He is very
active in promoting the methodology of algorithm

engineering. He won a number of prices, perhaps most notably the DFG
Leibniz Award 2012.

Christian Schulz received the master's degree
in mathematics and computer science, and the
PhD degree with summa cum laude from the
Karlsruhe Institute of Technology. He is a post-
doctoral researcher with the University of Vienna.
He recently received the Heinz Billing Prize. His
research interests include graph partitioning and
clustering, parallel algorithms and combinatorial
optimization in the context of big data.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Vienna University Library. Downloaded on September 25,2020 at 08:13:09 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1137/15M1026183
https://doi.org/10.1137/15M1026183
http://www.vldb.org/pvldb/vol11/p1590-abbas.pdf
http://www.vldb.org/pvldb/vol11/p1590-abbas.pdf
https://doi.org/10.1145/2851496
https://doi.org/10.1145/2851496
https://doi.org/10.1007/s10732--016-9315-8
https://www.threadingbuildingblocks.org/.
https://www.threadingbuildingblocks.org/.
http://algo2.iti.kit.edu/kahip/
http://algo2.iti.kit.edu/kahip/
https://github.com/yarchi/KaHIP/tree/add_parallel_local_search/
https://github.com/yarchi/KaHIP/tree/add_parallel_local_search/
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://law.di.unimi.it/datasets.php
www.cise.ufl.edu/research/sparse/matrices/.
http://www.jstor.org/stable/3001968

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

