
Data-Oriented Interface Responsibility Patterns: Types of
Information Holder Resources

Olaf Zimmermann
University of Applied Sciences of
Eastern Switzerland, Rapperswil,

Switzerland

Cesare Pautasso
Software Institute, Faculty of

Informatics, USI Lugano, Switzerland

Daniel Lübke
iQuest GmbH, Hanover, Germany

Uwe Zdun
University of Vienna, Faculty of
Computer Science, Software

Architecture Research Group, Vienna,
Austria

Mirko Stocker
University of Applied Sciences of
Eastern Switzerland, Rapperswil,

Switzerland

ABSTRACT
Remote Application Programming Interfaces (APIs) are used in
almost any distributed system today, for instance in microservices-
based systems, and are thus enablers for many digitalization efforts.
API design not only impacts whether software provided as a service
is easy and efficient to develop applications with, but also affects
the long term evolution of the software system. In general, APIs are
responsible for providing remote and controlled access to the func-
tionality provided as services; however, APIs often are also used
to expose and share information. We focus on such data-related
aspects of microservice APIs in this paper. Depending on the life
cycle of the information published through the API, its mutability
and the endpoint role, data-oriented APIs can be designed follow-
ing patterns such as Operational Data Holder, Master Data Holder,
Reference Data Holder, Data Transfer Holder, and Link Lookup Re-
source. Known uses and examples of the patterns are drawn from
public Web APIs as well as application development and integration
projects we have been involved in.

CCS CONCEPTS
• Software and its engineering → Patterns; Designing software;
ACM Reference Format:
Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko
Stocker. 2020. Data-Oriented Interface Responsibility Patterns: Types of
Information Holder Resources. In European Conference on Pattern Languages
of Programs 2020 (EuroPLoP ’20), July 1–4, 2020, Virtual Event, Germany.
ACM,NewYork, NY, USA, 25 pages. https://doi.org/10.1145/3424771.3424821

1 INTRODUCTION
Microservices architectures have evolved from previous incarna-
tions of Service-Oriented Architectures (SOAs) [17]. They consist
of independently deployable, scalable and changeable services, each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7769-0/20/07. . . $15.00
https://doi.org/10.1145/3424771.3424821

having a single responsibility. These responsibilities model busi-
ness capabilities. Microservices often are deployed in lightweight
virtualization containers, encapsulate their own state, and commu-
nicate via message-based remote APIs in a loosely coupled fashion.
Microservices solutions leverage polyglot programming, polyglot
persistence, as well as DevOps practices including decentralized
continuous delivery and end-to-end monitoring [24], [27], [45].

Microservice APIs designers must address concerns such as [50]:
• How many services should be exposed?
• Which service cuts let services and their clients deliver user
value jointly, but couple them loosely?

• How often do services and their clients interact to exchange
data? How much and which data should be exchanged?

The Microservice API Patterns (MAP) website1 covers and or-
ganizes this design space providing guidance distilled from the
experience of API design experts. This paper deals with a specific
issue that is always encountered when designing API endpoints:

Which architectural roles do API endpoints play?

Service identification activities might lead to a list of candidate
API endpoints to satisfy such diverse goals (for instance, resources
in RESTful HTTP APIs). At the beginning of a project or product
development, these interfaces are yet unspecified (or only partially
specified). Service designers have to address semantic concerns
and find an appropriate business granularity for services. Sim-
plistic statements such as “Service-Oriented Architecture (SOA)
services are coarse-grained by definition, while microservices are
fine-grained; you cannot have both in one system” or “always pre-
fer fine-grained over coarse-grained services” are insufficient as
project requirements and stakeholder concerns differ [31]. Context
always matters [35]; cohesion and coupling criteria come in many
forms. As a result, the non-functional requirements for service
design often are conflicting [48].

In response to such challenges, our responsibility patterns cover
two distinct main architectural roles for API endpoints: Processing
Resources are resources whose primary function is to handle in-
coming action requests or commands, whereas Information Holder
Resources are resources whose primary function is to expose storage
and management of data or meta-data (including its creation and

1https://microservice-api-patterns.org/

https://doi.org/10.1145/3424771.3424821
https://doi.org/10.1145/3424771.3424821
https://microservice-api-patterns.org/
https://microservice-api-patterns.org/

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

Data Transfer
ResourceState Transition

Operation

State Creation
Operation

Processing
Resource

Computation
Function

Retrieval
Operation

Information
Holder

Resource

Master Data
Holder

Operational
Data Holder

Reference Data
Holder

Link Lookup
Resource

Functional vs. data perspective
(endpoint-level)

Responsibilities &
 constraints

(operation-level)

Stored Data Characteristics
(endpoint-level)

Infrastructure for data
(endpoint-level)

Inheritance: Different types of data (life-
time, referencing, change dynamics)

Re
al

iza
tio

n
st

ra
te

gy

St
at

e
Re

ad

State Write
yes

no
ye

s

no

M
ut

ab
le

 b
y

Cl
ie

nt
ye

s
no

Life Span
Long livingShort living

X

Figure 1: Type of Information Holders and their relations to other role and responsibility patterns (bold pattern names: scope of this paper).

retrieval). The following patterns represent different types of data
holders, refining the general Information Holder Resource pattern:

• Operational Data Holder : A resource that stores short-living,
operational (a.k.a. transactional) data.

• Master Data Holder : A resource that stores long-living and
frequently referenced, but still mutable data.

• Reference Data Holder: A resource that stores long-living
(often simple) data that cannot be altered by clients.

• Data Transfer Resource: A resource whose primary function
is to offer a shared data exchange between other resources.

• Link Lookup Resource: A resource whose primary function is
supporting clients that follow or dereference links to other
resources.

Each resource (be it a Processing Resource or an Information
Holder Resource) is offered via an endpoint which in turn offers
different operations. These operations may have different responsi-
bilities:

• State Creation Operation: A write-only operation that creates
state in the endpoint.

• Retrieval Operation: An read-only operation that finds and
delivers data, but does not change server-side data.

• State Transition Operation: An operation that performs one
or more activities causing a server-side state change.

• Computation Function: An operation that computes a result
solely from its input and does not read or write server-side
state.

To design these responsibilities properly, understanding the ar-
chitectural role of the endpoint is essential. In this paper, we will
not cover Processing Resource and the four operation responsibilities

any further2, but rather provide patterns that help to better under-
stand and design the architectural endpoint role from a data-centric
point of view. In particular, we will first introduce a generic Infor-
mation Holder Resource pattern and then cover five specializations
of it.

Figure 1 shows these Information Holder Resource patterns and
their relations among each other, as well as to the other endpoint
role and operation responsibility patterns. The patterns covered in
this paper are highlighted with a bold pattern name. Other patterns
are described in a companion paper ZLZPS:2020:MAP-A.

The remainder of this paper is structured as this. Section 2
presents related work; Section 3 provides an overview of our pat-
tern language, its categories and patterns published so far. It also
introduces the API design vocabulary used in the pattern texts as
well as our pattern template. Section 4 presents the six patterns.
Section 5 summarizes the paper and provides an outlook.

2 RELATEDWORK
2.1 Data on the outside vs. data on the inside
Structuring data exchanges without breaking information hiding
is a hard problem for which no single solution exists. According
to Helland, “data on the outside” differs from “data on the inside”
significantly [15]. Data access and usage profiles drive many data
modeling decisions, both for data on the inside and for data on the
outside. However, inside and outside data have diverging mutability,
lifetime, accuracy, consistency and protection needs.

2These patterns are covered in detail in our paper “Interface Responsibility Patterns:
Processing Resources and Operation Responsibilities” [49].

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

2.2 Responsibility-Driven Design (RDD)
The patterns in this paper have vastly different invocation, process-
ing, and state management characteristics. To order and structure
the design space, we adopt terminology and role stereotypes from
Responsibility-Driven Design (RDD)3. In RDD, a stereotype is “a
conventional, formulaic, and oversimplified conception, opinion,
or image”. An application is “a set of interacting objects”, an object
ia “an implementation of one or more roles” (here: microservice).
A role is “a set of related responsibilities”, a responsibility is “an
obligation to perform a task or know information”. A collaboration
is “an interaction of objects or roles (or both)”, a contract is “an
agreement outlining the terms of a collaboration” [41].

Our microservice API design terms relate to the more general
RDD concepts in the following way: API operations take over a
responsibility, and API and their endpoints assemble these respon-
sibilities into roles. The collaborations then arise from calls to API
operations (a.k.a. service invocations). The API Description, pre-
sented in a previous paper [25], specifies the contract.

RDD defines these role stereotypes:
• An interfacer “transforms information and requests between
distinct parts of a system”.

• A service provider “performs work on demand”.
• A controller “makes decisions and closely directs others’
actions” and a coordinator “mechanically reacts to events”.

• An information holder “knows and provides information”
• A structurer “maintains relationships between objects and
information about those relationships” [41].

All API endpoints can be seen as (remote) interfacers that provide
and protect access to service providers, controllers/coordinators, and
information holders/structurers. Specifically, we (re-)use the follow-
ing role stereotype in this paper: information holder (under this
very name).

3 RECAP: THE MAP LANGUAGE 2016-2019
The patterns introduced in this paper are an extension of our prior
works: In particular, we first introduced “Interface Representation
Patterns” to structure messages in remote APIs, including Atomic
Parameter, Parameter Tree, and Pagination [51]. Next, we presented
“Interface Quality Patterns” that deal with runtime qualities and
the communication of API qualities (between provider and client),
including Service Level Agreement and Wish List [34]. The third
slice, presented last year, focused on the versioning and evolution
of API Descriptions and their implementations (“Interface Evolution
Patterns”); patterns included Version Identifier and Two in Production
[25]. The companion paper “Interface Responsibility Patterns: Pro-
cessing Resources and Operation Responsibilities” [49] gives a more
elaborate introduction to and overview of the pattern categories
our language is organized into.

3.1 Domain model
We have generalized the concepts and terminology that we found
in remote API platforms and integration technologies such as
HTTP, gRPC, WSDL/SOAP (to name just a few) into a platform-
independent domain model. We described this domain model in a

3http://www.wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf

previous EuroPLoP paper [25]; its vocabulary is used throughout
our pattern language and also in the following pattern texts.

An API endpoint is a provider-side end of a communication
channel and a specification of where the API resources are located
so that APIs can be accessed by API clients. Each API endpoint
belongs to an API ; one API can have different endpoints. The API
exposes operations.

3.2 Pattern template
We use the following template for our patterns: The context estab-
lishes preconditions for pattern applicability. The problem specifies
a design issue to be resolved. The forces explain why the problem
is hard to solve – architectural design issues and conflicting quality
attributes are often referenced here; a non-solution may be pointed
out as well. The solution answers the design question from the
problem statement, describes how the solution works and which
variants (if any) exist. It also gives an example and shares implemen-
tation hints. The consequences section discusses to which extent the
solution resolves the pattern forces; it may also include additional
pros and cons and identify alternative solutions. Known uses report
real-world pattern applications. Finally, relations to other patterns
are explained and additional pointers and references given under
more information.

4 TYPES OF INFORMATION HOLDERS
We introduce five specializations of the general Information Holder
Resource in this section. Three of these differ by life span and muta-
bility of the data (i.e., operational data, master data, reference data);
the other two have a special purpose (loosely coupled information
exchange, address management). Table 1 gives an overview.

4.1 Pattern: Information Holder Resource

a.k.a. Generic Information Service, Data Entity Resource,
Siloed/Isolated Data Holder

Context. A domain model4, a conceptual entity-relationship di-
agram5 or another form of glossary of key application concepts
and their interconnections have been specified. The model contains
entities that have an identity and a life cycle as well as attributes;
entities cross-reference each other.

From this analysis and design work, it has become apparent
that structured data will have to be used in multiple places in
the distributed system being designed; hence, these shared data
structures have to be made accessible from multiple remote clients.

It is not possible or not easy to hide the shared data structured
behind domain logic (i.e., processing-oriented actions such as busi-
ness activities and commands); the application under construction
does not have a workflow or other processing nature.

4http://www.scaledagileframework.com/domain-modeling/
5https://www.visual-paradigm.com/guide/data-modeling/
what-is-entity-relationship-diagram/

http://www.wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf
http://www.wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf
http://www.scaledagileframework.com/domain-modeling/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
http://www.scaledagileframework.com/domain-modeling/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

Table 1: Problem-solution pairs of the six patterns presented in this paper.

Pattern Name Problem Solution

Information Holder Resource How can domain data be exposed in an API,
but its implementation still be hidden? More
specifically, how can an API expose data
entities so that API clients can access and/or
modify these entities concurrently without
compromising data integrity and quality?
How to segregate operations into separate
CRUD-like APIs by data lifetime, link
structure, and mutability?

Add an Information Holder Resource endpoint to the
API, representing a data-oriented entity. Expose
Create, Read, Update, Delete (CRUD) as well as search
operations in this endpoint to access and manipulate
this entity.

Operational Data Holder How can an API support clients that want to
create, read, update, and/or delete instances of
domain entities that are rather short-lived,
change often during daily business operations
and have many outgoing relations?

Tag an Information Holder Resource as Operational
Data Holder endpoint and add API operations to it that
allow API client to Create, read, update, and delete its
data often and fast.

Master Data Holder How can I create, read, update, and (possibly)
delete data that lives long, does not change
frequently, and is referenced often by other
data directly or indirectly?

Mark an Information Holder Resource to be a dedicated
Master Data Holder endpoint that bundles master data
access and manipulation operations in such a way that
the data consistency is preserved and references are
managed.

Reference Data Holder How should data that is referenced in many
places, lives long, and is immutable for clients
be treated in API contracts? How can such
reference data be used in requests to and
responses from arbitrary endpoints
(Processing Resources [49] or Information
Holder Resources)?

Provide a special type of Information Holder Resource
endpoint, a Reference Data Holder as a single point of
reference for the static, immutable data. Provide read
operations, but no create, update, or delete operations.
Update the reference data elsewhere (backend,
separate management API).

Data Transfer Resource How can two or more communication
participants exchange data without knowing
each other, without being available at the
same time, and without having to wait until
the data has been completely transferred?

Introduce a special type of Information Holder Resource,
a Data Transfer Resource endpoint with a globally
unique, network-accessible address that two or more
clients can use as a shared data exchange blackboard.
Add at least one State Creation Operation and one
Retrieval Operation to it.

Link Lookup Resource How can message representations refer to
other, possibly many and frequently changing,
API endpoints and operations without binding
the message recipient to the actual addresses
of these endpoints? How can clients deal with
broken links?

Introduce a special type of Information Holder Resource,
a dedicated Link Lookup Resource endpoint that
exposes special Retrieval Operation operations that
return single instances or collections of Link Elements
that represent the current addresses of the referenced
API endpoints.

Problem. How can domain data be exposed in an API, but its
implementation still be hidden?

More specifically, how can an API expose data entities so that
API clients can access and/or modify these entities concurrently
without compromising data integrity and quality? For instance,
how to deal with race conditions?

How to segregate operations into separate CRUD-like APIs by
data lifetime, link structure, and mutability?

Forces. Dealing with structured, possibly replicated data is one
of the most challenging design issues in distributed systems; mi-
croservice APIs are no exception. Generally speaking, key factors
that influence this general design issue are:

• Modeling approach, for instance endpoint identification
method, and its impact on coupling

• Quality attribute conflicts and tradeoffs such as concurrency,
consistency; data quality and integrity; recoverability and
availability; mutability and immutability

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

• Compliance with architectural design principles, e.g., when
making architectural decisions6 about logical layers and
physical tiers

The detailed forces that arise from these general concerns, as well
as their relations, are discussed in the five concrete, specific types
of information holders featured as separate patterns (Sections 4.2
to 4.6 of this paper): Operational Data Holder, Master Data Holder,
Reference Data Holder, Data Transfer Resource, and Link Lookup
Resource.

A key decision is whether the endpoint should have activity
(processing) semantics or data-oriented (entity state) semantics.
This pattern explains how to emphasize data; its Processing Resource
[49] sibling focusses on action/activity orientation.

Details. Modeling approach and and its impact on coupling. Some
software engineering and Object-Oriented Analysis and Design
(OOAD)7 methods balance processing and structural aspects in
their steps, artifacts, and techniques; some put a strong emphasis
on either computing or data. Domain-Driven Design (DDD)8, for
instance, is an example of a balanced approach. Entity-Relationship
Diagrams focus on data structure and relationships rather than
behavior. If a data-centric modeling and API endpoint identification
approach is chosen, there is a risk that many CRUD (Create, Read,
Update, Delete) APIs operating on data are exposed, which can
have a negative impact on dependency management (information
hiding principle violated) and data quality (because arbitrary data
manipulations can be performed from any authorized client). CRUD-
oriented data abstractions in interfaces introduce operational and
semantic coupling.

Quality attribute conflicts and tradeoffs. One example of such
tradeoff is the desire for data currentness/freshness vs. the effort
required to keep it consistent and accurate (P. Helland: “Data on
the Outside vs. Data on the Inside” [15]). Design time qualities such
as simplicity and clarity, runtime qualities such as performance,
availability and scalability and evolution time qualities such as
maintainability and flexibility often conflict with each other. Cross-
cutting concerns such as application security also make it difficult
to deal with data in APIs. A decision to exposing or publish internal
data through an API cannot be made without considering which
consumer should have the correct read/write access rights and
what are the consequences for consumers if such data may become
temporarily or permanently unavailable in the future.

Compliance with architectural design principles. The API under
constructionmight be part of a project that has already established a
logical and a physical software architecture; it should also play nice
w.r.t. organization-wide architectural decisions [42], for instance
those establishing architectural principles such as loose coupling,
logical and physical data independence or microservices tenets
such as independent deployability9. Such principles might include
suggestive or normative guidance if and how data can be exposed
in APIs; a number of pattern selection decisions are required, with

6https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html
7https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
8https://en.wikipedia.org/wiki/Domain-driven_design
9https://www.ifs.hsr.ch/uploads/tx_icscrm/1_msa-pospaperzio4summersoc2016v15nc.
pdf

those principles serving as decision drivers [43], [18]. The informa-
tion holder patterns in this paper provide the concrete alternatives
and criteria for making such architectural decisions10.

Non-solution. One could think of hiding all data structures be-
hind processing-oriented API operations and Data Transfer Objects
(DTOs) analogous to object-oriented programming (i.e., local object-
oriented APIs expose access methods and facades while keeping all
individual data members private). Such approach is feasible and pro-
motes information hiding; however, it may limit the opportunities
to deploy, scale, and replace remote components (services) inde-
pendently of each other (because either many fine-grained, chatty
API calls are required or data has to be stored redundantly). It also
introduces an undesired extra level of indirection sometimes (for
instance, when building data-intensive applications and integration
solutions).

Another possibility would be to give direct access to the database
so that consumers can see for themselves what data is available and
directly read and even write it if allowed. The API in this case be-
comes a tunnel to the database, where consumers can send arbitrary
queries and transactions through it; databases such as CouchDB
provide such API out-of-the-box. This solution completely removes
the need to design an API, since the internal representation of the
data is directly exposed to consumers. However, by breaking basic
information hiding principles, it also results in a tightly coupled
architecture where it will be impossible to ever touch the database
schema without affecting every API consumer. This solution also
introduces security threats.

Solution. Add an Information Holder Resource endpoint to the API,
representing a data-oriented entity. Expose Create, Read, Update,
Delete (CRUD), and search operations in this endpoint to access
and manipulate this entity. Define and manage reference links to
other endpoints.

Make the endpoint remotely accessible for one or more API
clients by providing a unique logical address. In the API imple-
mentation, coordinate calls to these operations to protect the data
entity.

How it works. Let each operation of the Information Holder
Resource have one and only one of the following operation responsi-
bilities:

• State Creation Operations [49] create the entity that is repre-
sented by the Information Holder Resource.

• Retrieval Operations [49] access and read an entity, but do
not update it. They may search for and return collections of
such entities.

• State Transition Operations [49] access existing entities and
modify/update them fully or partially.

For each operation, design the request and, if needed, response
message structures. For instance, represent entity relationships
as Link Elements (another pattern in our language). If basic refer-
ence data such as country codes or currency codes are looked up,
the response message typically is an Atomic Parameter [51]; if a
rich, structured domain model entity is looked up, the response
is more likely to contain a Parameter Tree [51] that represents the

10https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html

https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Domain-driven_design
https://www.ifs.hsr.ch/uploads/tx_icscrm/1_msa-pospaperzio4summersoc2016v15nc.pdf
https://www.ifs.hsr.ch/uploads/tx_icscrm/1_msa-pospaperzio4summersoc2016v15nc.pdf
https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Domain-driven_design
https://www.ifs.hsr.ch/uploads/tx_icscrm/1_msa-pospaperzio4summersoc2016v15nc.pdf
https://www.ifs.hsr.ch/uploads/tx_icscrm/1_msa-pospaperzio4summersoc2016v15nc.pdf
https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html
https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

EndpointRoles

Datastore

«pattern»
InformationHolderResource

preconditions
invariants
postconditions
resourceState // here: data entity state
datastoreConnection

id create(DataTransferRepresentation DTR)
DTR read(id)
«state_transition_operation» boolean update(id, DTR) // full or partial
boolean delete(id)
DTRSet «retrieval_operation» search(filterCriteria)
«state_creation_operation» processUpdateEvent(DTR)
coordinateAndProtectDataAccess()

API

ResourceState

createReadDelete(Data)
Result lookupById(Key)
ResultSet searchAndFilter(Query)

Figure 2: Information Holder Resources model and expose general
data-oriented API designs. This endpoint role groups information-
oriented responsibilities. Its operations create, read, update, or
delete the data held. Searching for data sets is also supported.

data transfer representation of the looked up information. Define
operation-level preconditions and postconditions as well as invari-
ants to protect the resource state. Figure 2 sketches this solution.

Decide whether the Information Holder Resource should be a
Stateful Component11 or a Stateless Component12. In the latter
case, there still is state but the entire resource state management is
outsourced to a backend system.

Define the quality characteristics of the new endpoint and its
operation as well (e.g., transactionality, idempotence, access control,
accountability, and consistency):

• Introduce access/modification control and coordination poli-
cies (e.g., API Keys [34], conversation patterns13).

• Protect the concurrent data access by applying an optimistic
or a pessimistic locking strategy from the database and con-
current programming literature. For instance, consider the
patterns in [29] and [47].

• Implement consistency preserving checks (which may sup-
port strict14 or eventual15 consistency).

Five patterns in our language refine this general solution to data-
oriented API endpoint modeling: Operational Data Holder, Master
Data Holder, Reference Data Holder, Data Transfer Resource, and
Link Lookup Resource. See Sections 4.2 to 4.6 of this paper.

11http://www.cloudcomputingpatterns.org/stateful_component/
12http://www.cloudcomputingpatterns.org/stateless_component/
13https://www.enterpriseintegrationpatterns.com/patterns/conversation/
14http://www.cloudcomputingpatterns.org/strict_consistency/
15http://www.cloudcomputingpatterns.org/eventual_consistency/

Example. The Customer Coremicroservice in the LakesideMu-
tual sample16 exposes master data. Its semantics and its operations
(e.g., changeAddress(...)) are data- rather than action-oriented
(the service is consumed by other microservices that are Processing
Resources [49]):
@RestController
@RequestMapping("/customers")
public class CustomerInformationHolder {

@ApiOperation(
value = "Change a customer's address.")

@PutMapping(
value = "/{customerId}/address")

public ResponseEntity<AddressDto> changeAddress(
@ApiParam(

value = "the customer's unique id",
required = true)

@PathVariable CustomerId customerId,
@ApiParam(

value = "the customer's new address",
required = true)

@Valid @RequestBody AddressDto requestDto) {
[...]

}

@ApiOperation(
value = "Get a specific set of customers.")

@GetMapping(
value = "/{ids}")

public ResponseEntity<CustomersResponseDto>
getCustomer(

@ApiParam(
value = "a comma-separated list of customer ids",

required = true)
@PathVariable String ids,
@ApiParam(
value = "a comma-separated list of the fields

that should be included in the response",
required = false)

@RequestParam(
value = "fields", required = false,
defaultValue = "")

String fields) {
[...]

)
}

Implementation hints. Architects and developers who decide
to apply and realize Information Holder Resources should take the
following advice into consideration:

• Model the life cycle of the entities owned and controlled by
instances of this pattern to identify their behavioral charac-
teristics (e.g., master data vs. transactional data), e.g. starting
from their appearance in use cases or user stories. Do not

16https://github.com/Microservice-API-Patterns/LakesideMutual/tree/master/
customer-core

http://www.cloudcomputingpatterns.org/stateful_component/
http://www.cloudcomputingpatterns.org/stateless_component/
https://www.enterpriseintegrationpatterns.com/patterns/conversation/
http://www.cloudcomputingpatterns.org/strict_consistency/
http://www.cloudcomputingpatterns.org/eventual_consistency/
http://www.cloudcomputingpatterns.org/stateful_component/
http://www.cloudcomputingpatterns.org/stateless_component/
https://www.enterpriseintegrationpatterns.com/patterns/conversation/
http://www.cloudcomputingpatterns.org/strict_consistency/
http://www.cloudcomputingpatterns.org/eventual_consistency/
https://github.com/Microservice-API-Patterns/LakesideMutual/tree/master/customer-core
https://github.com/Microservice-API-Patterns/LakesideMutual/tree/master/customer-core
https://github.com/Microservice-API-Patterns/LakesideMutual/tree/master/customer-core
https://github.com/Microservice-API-Patterns/LakesideMutual/tree/master/customer-core

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

let the Information Holder Resource and its implementation
turn into an anemic domain model17.

• Do not unveil implementation details such as indexing and
encodings in the technical part of theAPI Description [25] (ra-
tionale: adhere data independence principles from database
design and information management best practices).

• Make any transferred data immutable once it leaves the API
(only allow changing it through the API).

• Provide metadata as required to promote syntactic and se-
mantic interoperability (for instance, data provenance infor-
mation, timestamps, and data protection means).

• Do not directly access Information Holder Resources from
Web clients unless the usage scenario is truly data-oriented
(for instance as in storage sharing services such as Dropbox
and ownCloud, see Known Uses of this pattern); rather call
Information Holder Resources from Processing Resources to
decouple the Web client from the storage.

• Do not let implementation details such as Object/Relational
(O/R) mapper configurations or SQL snippets slip into the
API. Transferring data sent to the API directly into the SQL
used to query the underlying data store can expose the mi-
croservice to SQL injection attacks [12].

• Version the endpoint adequately, for instancewith the help of
Semantic Versioning and Version Identifiers [25]. Also define
an evolution roadmap for the data definitions and version
the data exchanged through the API (i.e., the request and
response message structured exposed by the Information
Holder Resource).

Consequences.

Resolution of forces.
+ Modeling approach and API endpoint/service identification
method. Introducing Information Holder Resources often is
the consequence of a data-centric approach to API mod-
eling. It depends on the scenario at hand and the project
goals/product vision whether such approach is adequate;
while activity- or process-orientation is often preferred, is
simply is not natural in a number of scenarios.

+ Compliance with architectural design principles. Processing
will typically shift to the consumer of the Information Holder
Resource. The Information Holder Resource then is solely re-
sponsible for acting as a reliable source of linked data (Master
Data Holder Reference Data Holder, Link Lookup Resource),
relationship sink (Operational Data Holder) or both (Data
Transfer Resource).

− Quality attribute conflicts and tradeoffs. Using the API as an
Information Holder Resource requires to carefully consider
security, data protection, consistency, availability and cou-
pling implications. Not all consumers may be authorized
to access each Information Holder Resource. If they do, data
consistency has to be preserved for concurrent access of
multiple consumers. Likewise, consumers must deal with
the consequences of temporary outages, e.g., by introduc-
ing an appropriate caching and offline data replication and
synchronization strategy. Any change to the Information

17https://www.martinfowler.com/bliki/AnemicDomainModel.html

Holder Resource content, meta-data and representation for-
mats needs to be controlled to avoid breaking consumers.

− Compliance with architectural design principles. Information
Holder Resources have the reputation to increase coupling
and violate the information hiding principle (see below).

The detailed qualities are determined on the operation level (e.g.,
State Creation Operations and Retrieval Operations).

Further discussion. Modeling approach and API end-
point/service identification method. Data-oriented methods are well
suited to identify Information Holder endpoints, but sometimes
go too far.18 The counter position is taken by a post in M.
Nygard’s blog19 for a responsibility-based strategy for avoiding
pure Information Holder Resources, which he refers to as “entity
service anti-pattern”: He recommends to always evolve away from
this pattern20 (because it creates high semantic and operational
coupling) and rather “focus on behavior instead of data” (which we
describe as Processing Resource and “divide services by life cycle
in a business process” (which we see as one of several service
identification strategies). In our opinion, this advice goes too far
as well: Information Holder Resources do have their place, but any
usage should be a conscious decision motivated and justified by
the business and integration scenario at hand — because of the
impact on coupling that Nygard describes. For some data, it might
be better indeed not to expose it at the API level but hide it behind
Processing Resources.

Compliance with architectural design principles. The introduction
of Information Holder Resource endpoints may break higher-order
principles such as strict logical layering that forbids direct access
to data entities in the presentation layer. It might be required to
refactor the architecture [44] (or grant an explicit exception to the
rule).

NFR tradeoffs. Quality attribute trees can steer the selection pro-
cess [18]. In practice, the decision between availability and con-
sistency is not as binary and strict as the CAP theorem suggests,
which is discussed by its original authors in a 12-year retrospective
and outlook21 [4]. The Backup, Availability, Consistency (BAC) the-
orem adds an additional quality concern that causes conflicts [29].
The theoretical limitations or their practical implications cannot be
argued or designed away; patterns such as the ones in this language
can help to identify and manage them in clearly visible and well
defined places in the architecture [32].

If several fine-grained Information Holders appear in an API,
many calls might be required to get a user story realized, and data
quality is hard to ensure (because it becomes a shared, distributed
responsibility). Consider hiding several of them behind any type
of Processing Resource or introduce composite Information Holder
Resources.

Note that our usage and interpretation of the message exchange
pattern Request-Reply [19] does not make any assumptions about

18One of the classic cognitive biases is that every construction problem looks likes a
nail if you know how to use a hammer and have one at hand.
19http://www.michaelnygard.com/blog/2018/01/services-by-lifecycle/
20http://www.michaelnygard.com/blog/2018/04/evolving-away-from-entities/
21https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

https://www.martinfowler.com/bliki/AnemicDomainModel.html
https://www.martinfowler.com/bliki/AnemicDomainModel.html
http://www.michaelnygard.com/blog/2018/01/services-by-lifecycle/
http://www.michaelnygard.com/blog/2018/01/services-by-lifecycle/
http://www.michaelnygard.com/blog/2018/04/evolving-away-from-entities/
http://www.michaelnygard.com/blog/2018/04/evolving-away-from-entities/
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.michaelnygard.com/blog/2018/01/services-by-lifecycle/
http://www.michaelnygard.com/blog/2018/04/evolving-away-from-entities/
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

the number of connections on the application- and transport proto-
col level. For instance, request-response uses a single HTTP connec-
tion according to the default SOAP/HTTP binding22. However, two
interactions could also be used, one for supplying the request/input
message and one for the response/output message; this has been
specified by the ancient WS-Addressing standard23, which also
defines how the callback address is transmitted.

You might be wondering whether a new sort of data (e.g., ana-
lytical data, monitoring data) would have to be reflected by a new
pattern in our language (by whatever nomenclature). This can be
thought of, but is not required; arguably, the three dimensions
and characteristics that we chose to carve out in the patterns (i.e.,
lifetime, mutability, and link reference structure) are particularly
important when designing APIs and then implementing and de-
ploying them (for instance, to cloud offerings). Analytical data can
be seen as a special type of Reference Data (as it will not change);
monitoring data has operational character. As a fallback, API de-
signers can simply talk about the more general Information Holder
Resource pattern if they struggle with our distinction by life time,
mutability, and reference management.

Known Uses. Information Holders can be found in many public
Web APIs and in middleware; they are seen less but do exist in
business information systems:

• The Star Wars API24 positions itself as data-oriented; it pro-
vides six Information Holder Resources: films, people, plan-
ets, species, starships, and vehicles. Its operations include
Retrieval Operations (HTTP GETs), supporting searches by
name and, in some cases, other attributes such as starship
model.

• Document-oriented databases such as CouchDB and
MongoDB provide native and direct access to the stored
documents via HTTP interfaces; hence, these documents
qualify as instances of the pattern. See for instance GET
/{db}/_all_docs in the CouchDB API25.

• Information management products deal with and expose
Information Holder Resources by definition. Examples of such
products include Master Data Management (MDM)26 and
Product InformationManagement (PIM)27 systems; yet other
systems deal with customer relationship data.

• Account information, billing statements, currency codes ex-
posed in the APIs of cloud providers also qualify as known
uses.

• Storage offerings such Dropbox, ownCloud and Amazon S3
provide abstractions such as file system space and key-value
buckets; their APIs therefore also implement the Information
Holder Resource pattern.

• A large data analytics solution currently being developed
by a Swiss telecommunication service provider also uses
this pattern to configure Hadoop jobs and supporting file
systems.

22https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11_Framework_HTTP_
Binding
23https://www.w3.org/2002/ws/addr/
24https://swapi.co/
25http://docs.couchdb.org/en/2.1.1/api/
26https://en.wikipedia.org/wiki/Master_data_management
27https://en.wikipedia.org/wiki/Product_information_management

• A Spring sample28 uses this pattern. It is criticized for its
impact on coupling by M. Nygard in this blog post29.

Pattern uses in enterprise and government SOAs include:
• The Dynamic Interface described in an OOPSLA 2004 expe-
rience report30 features a service that allows API clients to
request an overview of selected bank customers and their
financial transactions.

• Terravis [2] offers a GetParcelIndex operation, which can
be called with different search parameters. The operation
returns a list of EGRIDs (i.e., electronic parcel identifiers),
which uniquely identify parcels Swiss-wide and can be used
to retrieve detailed parcel information from the federated
land registry systems.

• Usage scenarios such as open government data31, partner in-
formation inventory, e-government data32, and “show-only”
data, e.g. mapping of partner id to user view in the real-estate
process hub Terravis [26].

Related Patterns. This general Information Holder Resource pat-
tern has several refinements that differ w.r.t. mutability, relation-
ships, and instance lifetimes: Operational Data Holder, Master Data
Holder, and Reference Data Holder. See Sections 4.2 to 4.4 of this
paper.

The Lookup Resource pattern is another specialization; the lookup
results may be Information Holder Resources. Finally, Data Transfer
Resource holds temporary data owned by the clients. See Sections
4.5 and 4.6 of this paper.

The Processing Resource [49] pattern represents complementary
semantics and is an alternative to this pattern.

State Creation Operations and Retrieval Operations can typically
be found in Information Holder Resources, modeling create, read,
update, and delete semantics. Stateless Computation Functions and
read-write State Transition Operations are less common, but also
permitted.

Information Holder is a role stereotype in Responsibility-Driven
Design (RDD) [41]. Implementations of this pattern often can be
seen as an API pendant to the Repository pattern in Domain-Driven
Design (DDD) [8], [36]. Information Holder Resources are often im-
plemented with one or more Entities from DDD, possibly grouped
into an Aggregate. Note that no one-to-one correspondence be-
tween Information Holder Resource and Entities should be assumed
because the primary job of the tactic DDD patterns is to organize
the business logic layer of a system, not a (remote) Service Layer
[11].

Other Sources. Chapter 8 in “Process-Driven SOA” is devoted
to business object integration and dealing with data [16]. “Data on
the Outside versus Data on the Inside”33 by P. Helland explains the
differences between data management on API and API implemen-
tation level [15]; the article is commented in this blog post34.

28https://spring.io/blog/2015/07/14/microservices-with-spring
29http://www.michaelnygard.com/blog/2017/12/the-entity-service-antipattern/
30http://soadecisions.org/soad.htm#oopsla04
31https://de.wikipedia.org/wiki/Open_Data
32https://opendata.swiss/en/
33http://cidrdb.org/cidr2005/papers/P12.pdf
34https://blog.acolyer.org/2016/09/13/data-on-the-outside-versus-data-on-the-inside/

https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11_Framework_HTTP_Binding
https://www.w3.org/2002/ws/addr/
https://swapi.co/
http://docs.couchdb.org/en/2.1.1/api/
http://docs.couchdb.org/en/2.1.1/api/
https://en.wikipedia.org/wiki/Master_data_management
https://en.wikipedia.org/wiki/Product_information_management
https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11_Framework_HTTP_Binding
https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11_Framework_HTTP_Binding
https://www.w3.org/2002/ws/addr/
https://swapi.co/
http://docs.couchdb.org/en/2.1.1/api/
https://en.wikipedia.org/wiki/Master_data_management
https://en.wikipedia.org/wiki/Product_information_management
https://spring.io/blog/2015/07/14/microservices-with-spring
http://www.michaelnygard.com/blog/2017/12/the-entity-service-antipattern/
http://soadecisions.org/soad.htm#oopsla04
http://soadecisions.org/soad.htm#oopsla04
https://de.wikipedia.org/wiki/Open_Data
https://opendata.swiss/en/
http://cidrdb.org/cidr2005/papers/P12.pdf
http://cidrdb.org/cidr2005/papers/P12.pdf
https://blog.acolyer.org/2016/09/13/data-on-the-outside-versus-data-on-the-inside/
https://spring.io/blog/2015/07/14/microservices-with-spring
http://www.michaelnygard.com/blog/2017/12/the-entity-service-antipattern/
http://soadecisions.org/soad.htm#oopsla04
https://de.wikipedia.org/wiki/Open_Data
https://opendata.swiss/en/
http://cidrdb.org/cidr2005/papers/P12.pdf
https://blog.acolyer.org/2016/09/13/data-on-the-outside-versus-data-on-the-inside/

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

The online article “Understanding RPC Vs REST For HTTP
APIs”35 talks about RPC vs. REST, but taking a closer look it actually
(also) is about deciding between Information Holder Resources and
Processing Resources.

Various consistency management patterns exist. We refer the
reader to [9] which features patterns such as Strong Consistency and
Eventual Consistency. A blog post from the Amazon Web Services
CTO also covers this topic in depth [38].

4.2 Pattern: Operational Data Holder
a.k.a. Transaction(al) Data Holder, Secondary Data Access and Mod-
ification

Context. A domain model, an entity-relationship diagram or a
glossary of key business concepts and their interconnections have
been specified; it has been decided to expose some of these data
entities in an API by way of Information Holder Resource instances.

The data specification unveils that the entity lifetimes/update
cycles differ significantly (for instance, from seconds, minutes and
hours to months, years and decades) and that the frequently chang-
ing entities participate in relationships with slower-changing ones.
For instance, fast-changing data may mostly act as link sources
while slow-changing data mostly appear as link targets.36

Problem. How can an API support clients that want to create, read,
update, and/or delete instances of domain entities that represent op-
erational data: data that is rather short-lived, changes often during
daily business operations and has many outgoing relations?

Forces. Particularly relevant design time and runtime qualities
when dealing with frequently changing data that is related to other
data entities (including slower moving ones) include:

• Processing speed for daily content update operations
• Business agility and update flexibility, schema update flexi-
bility and speed

• Conceptual integrity and consistency, e.g., of outgoing rela-
tionships

Details. Processing speed (for daily content update operations).
Depending on the business context, services dealing with opera-
tional data must be extremely fast, with low response time both for
reading and updating.

Business agility and update flexibility, schema update flexibility
and speed.Depending on the business context, services dealing with
operational data must also be easy to change (e.g, when performing
A/B testing with parts of the live users) on the data definition
(schema) level.

Conceptual integrity and consistency (e.g., of outgoing relation-
ships). The created and modified operational data must meet the
high accuracy and quality standards if the system is subject to audits,
for instance in system and process assurance audits of financially
35https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
36The context of this pattern is the similar to that of its sibling pattern Master Data
Holder, but acknowledges and points out that the lifetimes and relationship structure
of these two types of data differs (in German: “Stammdaten” vs. “Bewegungsdaten”,
see [10], [40]).

InformationHolderEndpointTypes

Datastore BackendSystems

«informationHolderResource»
OperationalDataHolder

activityPreconditions
operationalInvariants // business rules, business transaction controls
activityPostconditions

NewEntity create(valuesForNewEntity)
EntitySet read(keysAndOrSelectionCriteria)
UpdatedEntity update(key, newValues)
StatusCode delete(key)
StatusCode archive(keys)
InformationHolderLinkElementSet listOutgoingReferences()

API

LocalState SystemOfEngagementSystemOfRecord

Figure 3: Operational Data Holder (Sketch). Operational data has a
short to medium lifetime and may change a lot. It may reference
master data and other operational data.

relevant business objects in enterprise applications a.k.a. business
information systems (called “Fin-BOs” in [20]). Operational data
might be owned, controlled and managed by a (vertical or hori-
zontal) integration partner, and might have many outgoing links
(relations) to similar data and longer lived, less frequently chang-
ing data (i.e., master data; see sibling pattern Master Data Holder).
Consumers expect that the referred entities will be correctly acces-
sible, after the interaction with an operational data resource has
successfully completed.

Non-solution. One could think of treating all data equally
to promote solution simplicity, irrespective of its lifetime and
relationship characteristics. However, such unified approach might
only yield a mediocre compromise that meets all of the above
needs somehow, but does not excel with regard to any of them.
If, for instance, operational data is treated as master data, one
might end up with an over-engineered API w.r.t consistency and
reference management that also leaves room for improvement w.r.t.
processing speed and change management.

Solution. Tag an Information Holder Resource as Operational Data
Holder and add API operations to it that allow API clients to Create,
Read, Update, and Delete (CRUD) its data often and fast.

Optionally, expose additional operations to give the Operational
Data Holder domain-specific responsibilities. For instance, a shop-
ping basket might offer fee and tax computations, product price
update notifications, discounting, and other state-transitioning op-
erations.

How it works. The request and response messages of such Op-
erational Data Holders often take the form of Parameter Trees [51] or
Annotated Parameter Collections (if accompanied by metadata); how-
ever, the other types of request and response message structure can
also be found in practice. Figure 3 sketches the solution.

https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

ApplicationAndServiceLayer DomainLayer

«operationalDataHolder»
OfferRemoteFacade

«masterDataHolder»
CustomerRemoteFacade

«operationalDataHolder,masterDataHolder»
ContractManagementRemoteFacade

OfferAggregate

CustomerAggregate

ContractAggregate

Figure 4: Examples of an Operational Data Holder (andMaster Data
Holders): offers reference contracts and customers, contracts refer-
ence customers. In this example, the remote facades accessmultiple
aggregates isolated from each other.

Sometimes even operational data is kept for a long time: in
a world of big data analytics and business intelligence insights,
operational data is often archived for analytical processing, e.g., in
data marts and data warehouses or semantic data lakes37.

One must be aware of relationships with master data and con-
sider adding them into messages via Embedded Entity or Linked
Information Holder instances, two of our patterns not contained in
this paper but covered in [50].

Example. Lakeside Mutual38, our sample application from the
insurance domain, manages operational data such as claims and risk
assessments that are exposed as Web services and REST resources
(Figure 4).

All basic and advanced structural patterns can be applied when
designing the request and response messages of the operations of
the Operational Data Holder, for instance Pagination [51]. Their
applicability heavily depends on the actual data semantics. For
instance, entering items into a shopping basket might expect a
Parameter Tree [51] and return a simple success flag as an Atomic
Parameter [51]. The checkout activity then might require multiple
complex parameters (Parameter Forest [51]) and return the order
number and the expected delivery date in an Atomic Parameter List
[51]. The deletion of operational data can be triggered by sending
a single Id Element and might return a simple success flag and/or
Error Report representation.

Protect instances of this pattern with microservices infrastruc-
ture patterns such as Circuit Breaker39 that shuts down an outgoing
communication channel in case of connectivity problems (to avoid
an increase of the stress level of the overall system and its com-
ponents) and Bulk Head40 that shuts down parts of a system (or
services landscape) temporarily to protect other parts [28]. In the
context of Information Holder Resources, outbound calls from Oper-
ational Data Holders toMaster Data Holders can for instance be pro-
tected by a Circuit Breaker; closely relatedOperational Data Holders,

37https://en.wikipedia.org/wiki/Data_lake
38https://github.com/Microservice-API-Patterns/LakesideMutual
39https://microservices.io/patterns/reliability/circuit-breaker.html
40https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead

for instance those forming/exposing anAggregate in domain-driven
designs [36], can be guarded by a joint Bulk Head.

Implementationhints. When realizingOperational Data Hold-
ers, one should consider to:

• Model the entities so that they actually serve an information
need that can be traced back to a user story or use case.

• Test as realistically as possible, for instance with all data
combinations and variations of cardinalities (e.g., account id
vs. customer id in a core banking system: 1:1 or n:m?).

• Include the financially relevant Operational Data Holders in
the system and process assurance audits [20].

• If justified by project-level quality requirements, optimize
data access for mixed read/write operations; for instance,
create read-only replicas and/or apply the Command Query
Responsibility Segregation (CQRS)41 pattern by introducing a
command endpoint (that offers State Creation Operations and
State Transfer Operations [49]) and a query endpoint (that
offers Retrieval Operations [49]).

• Decide for an evolution strategy [25]: an Operational Data
Holder may be subject to Aggressive Deprecation or only offer
a Limited Lifetime Guarantee; mission-critical data might be
released with a Two in Production policy.

Consequences.

Resolution of forces. The pattern primarily serves as a
“marker pattern” in API documentation, helping with making
technical interfaces “business-aligned”, which is one of the SOA
principles and microservices tenets identified in [45]:

+ The less inbound dependencies an Operational Data Holder
has, the easier to update it is. Its limited life time helps to
support backward compatibility when evolving the API.

+ There aremany tactics42 and patterns whose goal is to design
Operational Data Holders that perform and scale well. For
instance, relaxing its consistency properties can improve its
availability. Turning it into a Stateless Component43 promotes
horizontal scalability.

− The consistency and availability management of Operational
Data Holders may prioritize the conflicting requirements dif-
ferently thanMaster Data Holders (depending on the domain
and scenario); eventual consistency might be preferred over
strict consistency at times.

Even if this pattern and suited related ones are chosen and ap-
plied well, the API implementations can still harm extensibility,
performance, consistency, and availability.44

Further discussion. The distinction between master data and
operational data is somewhat subjective and depending on applica-
tion context; data that is needed only temporarily in one application
might be a core asset in another one. For instance, think about pur-
chases in an online shop: while the shopper only cares about the
order until it it delivered and paid for (unless there is a warranty
41https://martinfowler.com/bliki/CQRS.html
42https://www.viewpoints-and-perspectives.info/home/perspectives/
performance-and-scalability/
43https://www.cloudcomputingpatterns.org/stateless_component/
44Such quality-related forces and patterns addressing them have many, many-to-many
relationships.

https://en.wikipedia.org/wiki/Data_lake
https://github.com/Microservice-API-Patterns/LakesideMutual
https://microservices.io/patterns/reliability/circuit-breaker.html
https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://en.wikipedia.org/wiki/Data_lake
https://github.com/Microservice-API-Patterns/LakesideMutual
https://microservices.io/patterns/reliability/circuit-breaker.html
https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://www.viewpoints-and-perspectives.info/home/perspectives/performance-and-scalability/
https://www.cloudcomputingpatterns.org/stateless_component/
https://martinfowler.com/bliki/CQRS.html
https://www.viewpoints-and-perspectives.info/home/perspectives/performance-and-scalability/
https://www.viewpoints-and-perspectives.info/home/perspectives/performance-and-scalability/
https://www.cloudcomputingpatterns.org/stateless_component/

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

case or (s)he wants to return the good or repeat the same order in
the future), the shop provider will probably keep all details forever
to be able to analyze buying behavior over time (customer profiling,
product recommendations, and targeted advertisement).

The Operational Data Holder pattern can help to satisfy regula-
tory requirements expressed as compliance controls, for instance
“all purchase orders reference a customer that actually exists in a
system of record and in the real world” (to avoid fraud); see this
example45 of insufficient data management and controls [20].

Known Uses. Most, if not all, business applications deal with mul-
tiple instances of this pattern; many of these are exposed in solution-
internal APIs or community APIs as well as public ones (which
leads to "Software-as-a-Service* offerings). A few known uses are:

• The Cargo Tracking system that serves as Domain-Driven
Design Sample Application46 keeps operational data such
as Cargo, RouteSpecification and Itinerary progress
(leg/hop arrival is expressed as handling events) and exposes
them to the application frontend via its (rather thin) applica-
tion and presentation layer. See the root entity of the Cargo
Aggregate47 and its contained entities.

• Several of the “method families” in the Slack Web API48
are data-oriented; the “conversations”49 family, for instance,
deals with operational data.

• Tweets and posts in social networks such as Twitter and
Facebook also qualify as known uses if/as exposed in Public
APIs.

As a process integration platform, Terravis [2] deals with many
different process types and thus many transaction-specific data
holders. For instance, when a loan is transferred from one bank to
another, the securities also have to be transferred – in exchange
for payments. Within this process, the two involved banks must
negotiate the terms by offering (and accepting) a payment promise
and a creditor release. These two entities depend on each other, and
are only relevant until the transaction has been completed. Thus,
they represent operational data (rather than master data).

Account endpoints in core banking APIs such as [3] also qualify
as pattern instances; actually, the accounts can also be seen to
be long-lived master data, while account transactions are truly
operational.

Related Patterns. The alternative to this pattern are Master Data
Holder and Reference Data Holder (instances of which live longer
and have more incoming references); a less data- and more action-
oriented alternative is Processing Resource. All operation responsibil-
ities patterns including State Creation Operation and State Transfer
Operation can be used in Operational Data Holder endpoints.

The Data Type Channel pattern in [19] describes how to organize
a messaging system by message semantics and syntax (e.g., Query,
Price Quote and Purchase Order). These channel types can be or-
ganized according to the terminology introduced by our pattern
category Responsibility Patterns.
45https://en.wikipedia.org/wiki/Enron_scandal
46http://dddsample.sourceforge.net/characterization.html
47https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/
dddsample/domain/model/cargo
48https://api.slack.com/web
49https://api.slack.com/methods#conversations

Operational Data Holders referencing other Operational Data
Holders may chose to include this data in the form of an Embedded
Entity. On the contrary, references to Master Data Holders often
are not included/embedded but externalized via Linked Information
Holder [50] references.

Other Sources. See Master Data Holder for a brief discussion
of the connection of our patterns to Domain-Driven-Design [8].

“Software Systems Architecture: Working With Stakeholders Us-
ing Viewpoints and Perspectives”50 [33] has an information view-
point.

“Data on the Outside versus Data on the Inside”51 by P. Helland
explains design forces and constraints for data exposed in APIs and
application-internal data [15].

4.3 Pattern:Master Data Holder
a.k.a. Master Data Resource, Primary Data Access and Modification

Context. A domain model, an entity-relationship diagram, a glos-
sary, or a similar dictionary of key concepts and their interconnec-
tions have been specified; it has been decided to expose some of
these data entities in an API by way of Information Holder Resources.

The data specification unveils that the lifetimes and update cycles
of these Information Holder Resource endpoints differ significantly
(for instance, from seconds, minutes and hours to months, years
and decades). Long-living data typically has many incoming rela-
tionships, whereas shorter-living data often references long-living
data (outgoing relationships). In many application scenarios, data
that is referenced in multiple places and lives long has high data
quality and data protection needs. The data access profiles of these
two types of data differ substantially.52

Problem. How can I create, read, update, and (possibly) delete data
that lives long, does not change frequently, and is referenced often
by other data directly or indirectly?53

Forces. The top-level forces that have to be resolved when dealing
with any Information Holder Resource are discussed in the Informa-
tion Holder Resource pattern. Additional concerns specific to master
data are:

• Master data quality
• Master data protection
• Data under external control, for instance master data man-
agement systems

Details. Master data quality.Master data should have high qual-
ity as it is used (in)directly and/or implicitly in many places, from
daily business to strategic decision making. If it is not stored and
managed in a single place, uncoordinated updates, software bugs
and other unforeseen circumstances may lead to inconsistencies
50https://www.viewpoints-and-perspectives.info/home/viewpoints/information/
51http://cidrdb.org/cidr2005/papers/P12.pdf
52The context of this pattern is the similar to that of its alternative pattern Operational
Data Holder, but emphasizes that the lifetimes and relationship structure of these two
types of data differs.
53Such data is often called master data and is contrasted to operational data a.k.a.
transaction data (in German: “Stammdaten” vs. “Bewegungsdaten”, see [10], [40]).

https://en.wikipedia.org/wiki/Enron_scandal
https://en.wikipedia.org/wiki/Enron_scandal
http://dddsample.sourceforge.net/characterization.html
http://dddsample.sourceforge.net/characterization.html
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
https://api.slack.com/web
https://api.slack.com/methods#conversations
https://en.wikipedia.org/wiki/Enron_scandal
http://dddsample.sourceforge.net/characterization.html
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
https://api.slack.com/web
https://api.slack.com/methods#conversations
https://www.viewpoints-and-perspectives.info/home/viewpoints/information/
https://www.viewpoints-and-perspectives.info/home/viewpoints/information/
http://cidrdb.org/cidr2005/papers/P12.pdf
https://www.viewpoints-and-perspectives.info/home/viewpoints/information/
http://cidrdb.org/cidr2005/papers/P12.pdf

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

that are hard to detect. If it is stored centrally, access to it might be
slow due to access contention, communication and coordination
overhead.

Master data protection. Irrespective of its storage and manage-
ment policy, master data must be well protected with suitable access
control policies, as it make an attractive target for attacks, and the
consequences of data breaches can be severe.

Data under external control.Master data may be owned and man-
aged by dedicated systems, often purchased by (or developed in) a
separate organizational unit (for instance, master data management
systems specializing on product or customer data). Data ownership
and audit procedures differ, and the data has a monetary value
appearing in balance sheets of enterprises. Therefore its definitions
and interfaces are hard to influence and change; due to the external
influence on its lifecycle, master data may evolve at a different
speed than operational data that references it. An external hosting
(strategic outsourcing) of the specialized master data management
systems further complicates the integration scenario.

Non-solution. One could think of treating all entities/resources
equally to promote solution simplicity, irrespective of their lifetime
and relationship patterns. However, such an approach runs the risk
of not addressing the concerns of stakeholders such as security
auditors, data owners and stewards, and hosting providers (and,
last but not least, the real-world correspondents of the data, for
instance customers and other system users) satisfyingly.

Solution. Mark an Information Holder Resource to be a dedicated
Master Data Holder endpoint that bundles master data access and
manipulation operations in such a way that the data consistency
is preserved and references are managed adequately. Treat delete
operations as special forms of updates (that must meet compliance
requirements).

Optionally, offer other life cycle events or state transitions in this
Master Data Holder endpoint. Also optionally, expose additional
operations to give theMaster Data Holder domain-specific responsi-
bilities. For instance, an archive might offer time-oriented retrieval,
bulk creations and purge operations.

How it works. A Master Data Holder is a special type of Infor-
mation Holder Resource. Figure 5 shows its specific design elements.

This type of information holder offers certain operations to fol-
low references; unlike the Reference Data Holder, it offers operations
to manipulate the data via the API.

The request and response messages ofMaster Data Holders often
take the form of Parameter Trees [51]; however, more atomic types
of request and response message structure can also be found in
practice: master data creation operations typically receive a simple
to medium complex Parameter Tree because master data might be
complex but is often created in one go, e.g., if entered completely
by a user in a form (such as an account creation form). They usually
return an Atomic Parameter [51] or an Atomic Parameter List [51] to
report the Id Element or Link Element that identifies the master data
entity uniquely/globally and reports whether the creation request
was successful or not (for instance, using the Error Report pattern).
Reasons for failure can be duplicate keys, violations of business
rules and other invariants, or internal server-side processing errors
(for instance, temporary unavailability of backend systems).

InformationHolderEndpointTypes

BackendSystems

«informationHolderResource»
MasterDataHolder

mutationPreconditions
lifetimeInvariants // business rules, regulatory compliance rules
mutationPostconditions

NewEntity create(valuesForNewEntity)
EntitySet read(keysAndOrSelectionCriteria)
UpdatedEntity update(key, newValues)
StatusCode delete(key)
StatusCode archive(keys)
InformationHolderLinkElementSet listIncomingReferences()
MasterDataHolderLinkElementSet listOutgoingReferences()
boolean validate()

API

SystemOfRecordMasterDataManagementSystem

Figure 5: Master Data Holder (Sketch). Master data lives long and is
frequently referenced by other master data and by operational data.
It therefore faces specific quality and consistency requirements.

A master data update may come in two forms:

• as coarse-grained operation that replaces most or all
attributes in a master data entity such as customer or
product.

• as fine-grained operation that updates only one or a few of
the attributes in a master data entity, for instance the address
of a customer (but not its name) or the price of a product
(but not its supplier and taxation rules).

Read access to master data is often performed via Retrieval Oper-
ations that offer parameterized search-and-filter query capabilities
(possibly expressed declaratively).

Deletion might not be desired or hard to implement. It might
also be mandatory to offer due to legislation: Delete operations on
master data are complicated and risky due to the large amount of
incoming references; sometimes, it might not be permitted to delete
it for legal reasons. Hence, master data often is not deleted at all,
but set into a “immutable/archived” state in which updates are no
longer possible. This also allows keeping audits trails and historic
data manipulation/access journals because master data changes are
often critical and thus must be non-repudiable. If deletion is really
necessary (and this can be a regulatory requirement as well), the
data may be actually be hidden from (some) consumers but still
preserved in a hidden or invisible state (unless legislation forbids
this).

In an HTTP resource API, the address (URI) of a master data
resource can be widely shared among clients referencing it, which
can access it via HTTP GET (a read-only method that supports
caching). The creation and update calls make use of POST, PUT,
and PATCH methods, respectively [1].

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

LakesideMutualApplicationAndDomainLayer

«operationalDataHolder»
OfferRemoteFacade

«retrievalOperation» lookupCustomerByName(String name)
«stateCreationOperation» processOfferPlacedEvent(...)

«masterDataHolder»
CustomerRemoteFacade

«retrievalOperation» lookupBySearchCriteria(...)
«retrievalOperation» getDetails(id)
«stateCreationOperation» emitCustomerUpdatedEvent(...)

«masterDataHolder»
ContractManagementRemoteFacade

«stateTransitionOperation» checkOffer(...) // uses customer master data
«stateTransitionOperation» acceptOffer(...)
«stateTransitionOperation» rejectOffer(...)
«stateCreationOperation» processCustomerUpdatedEvent(...)

CustomerAggregate

ContractAggregate

RiskManagementBackend

Figure 6: Example of Operational Data Holder and Master Data
Holder interplay. In this example, the remote facades access each
other and domain-layer aggregates.

Example. Lakeside Mutual54, our sample application from the
insurance domain, features master data such as customers and
contracts that are exposed as Web services and REST resources
(Figure 6), thus applying the Master Data Holder pattern.

Implementation hints. When introducing Master Data Hold-
ers into API architectures, one should consider these hints:

• Be aware of relationships with other master data and care-
fully consider whether to reference them or to include them
in messages. Due to the amount of incoming references,Mas-
ter Data Holders often are not included in responses from
Operational Data Holders via Embedded Entities [50], but
rather externalized via Linked Information Holders [50]. An-
alyze collection of API use cases across clients to decide
between these two patterns. Avoid circular dependencies,
as they make understanding the data and changing it much
harder.

• If the (many) clients of Master Data Holders have different
information needs, patterns such asWish List andWish Tem-
plate can be used to reduce unnecessary data transfer. An-
other alternative is known as the Backends For Frontends55
pattern.

• Consider to separate read access to master data from write
access, e.g., applying Command-Query Responsibility Segre-
gation (CQRS)56.

• Use the conceptual separation of Master Data Holders and
Operational Data Holders to drive service cuts57. Do not
update master data as a hidden side effect of updates to

54https://github.com/Microservice-API-Patterns/LakesideMutual
55https://samnewman.io/patterns/architectural/bff/
56https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-2-richardson/
57https://github.com/ServiceCutter/ServiceCutter/wiki/CC-8-Content-Volatility

Operational Data Holders, but make this dependency and
impact on application state explicit in the API

• By definition, master data is “shareable data” because it has
incoming references. Therefore, a crisp exact definition and
strong syntactical validation is required in many scenarios
(e.g., of phone numbers and addresses across countries). You
can consider to assigned this responsibility to an explicit
Validation Service [49] operation.

• Write and keep conversion utilities; do not rely on publicly
available ones that might disappear or commercial products
that might be discontinued over long time periods.

• Invest in data quality initiatives, incentives, and metrics for
all business-critical master data, particularly if this data in-
cluded in data analytics efforts (algorithms, reports) driving
strategic business decisions. If insufficient emphasis is put
on data quality and overcoming heterogeneity, a “data lake”
as defined in the semantic big data management community
easily morphs into a data “swamp” (or data “bog”).

• Define Service Level Objectives (SLOs) for all operations
and group them into a Service Level Agreement [34] for the
Master Data Holder. Include data freshness information in
these SLOs/SLAs.

• Decide for an evolution strategy [25]: a Master Data Holder
may offer a rather long but still Limited Lifetime Guarantee.
A Two in Production policy is often chosen so that the many
clients can evolve more independently.

• Backup data in different formats to make it future-proof
(and test the restore functions regularly, e.g., after software
updates).

• Consider a Master Data Management (MDM)58 solution or
product as service realization (but acknowledge that this
is a nontrivial make-or-buy-decision with long term conse-
quences).

Consequences.

Resolution of forces.
+ Tagging an API endpoint as a Master Data Holder can help
to achieve the required focus on data quality and data pro-
tection.

− Master data by definition has many inbound dependencies
and might also have outbound ones. Additional patterns are
required to ensure the consistency, freshness, etc. of these
link relationships.

Tagging an API endpoint as aMaster Data Holder alone does not
resolve any of the forces; the implementation hints should be taken
into account when doing so during endpoint realization. Additional
patterns from other languages are eligible to resolve the individual
forces [14], [13], [6].

Further discussion. Master data often is a valuable company
asset that appears in the balance sheet (or turns a company into an
acquisition target). Hence, it is particularly important to plan its
future evolution in a roadmap that respects backward compatibility,
considers digital preservation, and protects the data from theft and
tampering.

58https://en.wikipedia.org/wiki/Master_data_management

https://github.com/Microservice-API-Patterns/LakesideMutual
https://samnewman.io/patterns/architectural/bff/
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-2-richardson/
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-2-richardson/
https://github.com/ServiceCutter/ServiceCutter/wiki/CC-8-Content-Volatility
https://github.com/Microservice-API-Patterns/LakesideMutual
https://samnewman.io/patterns/architectural/bff/
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-2-richardson/
https://github.com/ServiceCutter/ServiceCutter/wiki/CC-8-Content-Volatility
https://en.wikipedia.org/wiki/Master_data_management
https://en.wikipedia.org/wiki/Master_data_management

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

Known Uses. Known uses of Master Data Holders are many, ap-
pearing in sample applications, public Web APIs, and in real-world
enterprise and government information systems:

• The Cargo Tracking system that serves as Domain-Driven
Design Sample Application59 holds master data such as ports
and possible routes and exposes this data to the application
frontend via its (rather thin) application and presentation
layer. See the root entity of the Cargo Aggregate60 and its
contained entities.

• In the e-commerce application that serves as example for
Chris Richardson’s microservices patterns61 the Inventory
Service and the Account Service use this pattern.

• Several of the “method families” in the Slack Web API62 are
data-oriented; the “users”63 family, for instance, deals with
master data.

• In the order management SOA described in [46], customers
with their billing plans and the managed telephony network
qualify as master data. Specific business services are dedi-
cated to updating it.

• The UID service offered by the Swiss government64 exposes
company information that qualifies as master data. The pub-
lic part of the API supports company searches and tax num-
ber validation.

• A major German car manufacturer offers a REST level 2 user
profile management service for all its clients; this service
features known uses of several responsibility patterns. For
instance, it validates data strictly, converts addresses and
phone numbers to country-specific standards, and offers
create, read, update (but no search) operations in its Swag-
ger/Open API contracts exposed in an API Description [25]
website. One objective of this elaborate design is to comply
with the EU General Data Protection Regulation (GDPR)65.

• The Terravis system [2] offers a Web service to query feder-
ated master data concerning parcels, rights, and persons in
Swiss land registers. Terravis also offers a service which can
be used to query rich master data including name, address
and contact information for all banks, notaries, and land
registries participating in the platform.

Related Patterns. The Master Data Holder pattern has two alter-
native patterns Reference Data Holder (immutable) and Operational
Data Holder (shorter lived, less incoming references). Each opera-
tion exposed by an endpoint with Master Data Holder semantics
requires a request and response message structure that can be ex-
pressed with patterns such as Atomic Parameter List [51].

Domain-Driven Design (DDD) does not distinguish between
master data and operational data in its tactic patterns [8]; both
operational data and master data may be part of the Published

59http://dddsample.sourceforge.net/characterization.html
60https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/
dddsample/domain/model/cargo
61http://microservices.io/patterns/microservices.html
62https://api.slack.com/web
63https://api.slack.com/methods#users
64https://www.isb.admin.ch/isb/de/home/e-services-bund/services/uid-webservice.
html
65https://www.eugdpr.org/

Language and appear in dedicated Bounded Contexts and Aggregates
as Entities (see [36]).

Other Sources. The notion of master data vs. opera-
tional/transaction(al) data comes from literature in the database
community (more specifically, information integration) and in
business informatics (“Wirtschaftsinformatik” in German, [10]).
It also plays an important role in Online Analytical Processing
(OLAP), Data Warehouses, and Business Intelligence (BI) efforts
[22]. Such efforts are predecessors of the current big data analytics
trend.

“Data on the Outside versus Data on the Inside”66 [15] does not
distinguish between master data and operational data, but still is a
good read when it comes to designing Mater Data Holders.

4.4 Pattern: Reference Data Holder
a.k.a. Immutable Endpoint/Immutable Data Holder, Static Data
Resource, Reference Data Lookup Table

Context. A requirements specification unveils that some data is
referenced in most if not all system parts, but changes only very
rarely (if ever); these changes are of administrative nature and not
caused by API clients operating during everyday business. Such
data is called reference data.67 It comes in many forms: units of mea-
surement, zip codes, country codes, currency codes, geo locations,
etc.69

The data transfer representations in the request and response
messages of API operations may either contain – or point at – ref-
erence data to satisfy the information needs of a message receiver.

Problem. How should data that is referenced in many places, lives
long, and is immutable for clients be treated in API contracts?
How can such reference data be used in requests to and responses
from API endpoints such as Processing Resources [49] or Information
Holder Resources?

Forces. The following specific forces have to be resolved when
dealing with static, immutable data:

• Performance vs. consistency trade-off for read access
• Do not repeat yourself (DRY)

Details. Performance vs. consistency trade-off for read access.
Since static reference data rarely changes, it may pay off to in-
troduce a cache to reduce round-trip access response time and
reduce server traffic if it is referenced and read a lot. Such repli-
cation tactics have to be designed carefully so that they function
as desired and do not make the end-to-end system overly complex
and hard to maintain. For instance, caches should not grow too
big and replication has to be able to tolerate network partitions
(outages); if the static data does change (on schema or on content
level), updates have to be applied consistently. Examples: new zip

66http://cidrdb.org/cidr2005/papers/P12.pdf
67See “Data on the Outside vs. Data on the Inside”68 by P. Helland, for an introduction
to reference data (in the broad sense of the word).
69See https://en.wikipedia.org/wiki/Reference_data for links to inventories/directories
of reference data.

http://dddsample.sourceforge.net/characterization.html
http://dddsample.sourceforge.net/characterization.html
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
http://microservices.io/patterns/microservices.html
https://api.slack.com/web
https://api.slack.com/methods#users
https://www.isb.admin.ch/isb/de/home/e-services-bund/services/uid-webservice.html
https://www.eugdpr.org/
http://dddsample.sourceforge.net/characterization.html
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
http://microservices.io/patterns/microservices.html
https://api.slack.com/web
https://api.slack.com/methods#users
https://www.isb.admin.ch/isb/de/home/e-services-bund/services/uid-webservice.html
https://www.isb.admin.ch/isb/de/home/e-services-bund/services/uid-webservice.html
https://www.eugdpr.org/
http://cidrdb.org/cidr2005/papers/P12.pdf
http://cidrdb.org/cidr2005/papers/P12.pdf
https://msdn.microsoft.com/en-us/library/ms954587.aspx
https://en.wikipedia.org/wiki/Reference_data

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

InformationHolderEndpointTypes ServiceInfrastructure

BackendSystems

«informationHolderResource»
ReferenceDataHolder

boolean populate(RefDataSet)
RefDataInstance lookup(RefDataKey)

API
ContentDeliveryNetwork

ReferenceDataTable

StaticDataHolder lookupById

Figure 7: Reference Data Holder (Sketch). Static reference data lives
long but never changes. It is referenced often and in many places.

codes in a country, transition from local currencies to Euro (EUR) in
Europe.

Do not repeat yourself (DRY). Since reference data rarely changes
(if ever), there is a temptation to simply hard code it within the
API consumers, or if using a cache, retrieve it once and then store
a local copy forever. Such designs work well in the short run and
might not cause any problems – until the data and its definitions
are to change.70 Since the DRY (do not repeat yourself) principle is
violated, the change will impact every client, and if clients are out
of reach, it may no longer or not even be possible to update them.

Non-solution. One could treat static and immutable reference
data just like dynamic data that is both read and written. This works
fine in many scenarios, but misses opportunities to optimize the
read access, for instance, via data replication in Content delivery
Networks (CDNs) and might lead to unnecessary duplication of
storing and computing efforts.

Solution. Provide a special type of Information Holder Resource
endpoint, a Reference Data Holder, as a single point of reference for
the static, immutable data.71 Provide read operations, but no create,
update, or delete operations in this endpoint. Update the reference
data elsewhere if needed (backend, separate management API).

The Reference Data Holder may allow clients to retrieve the
entire reference data set so that they can copy it locally (e.g., for
accessing it multiple times), partially filter its content before doing
so (e.g., to implement some auto-completion feature in a form), or
to lookup individual entries of the reference data (e.g., for validation
purposes).

How it works. The request and response messages of Reference
Data Holders often take the form of Atomic Parameters [51] or
Atomic Parameter Lists [51], for instance when the reference data is
unstructured and merely enumerates certain flat values; however,
the other types of request and response message structure can also
be found in practice. Figure 7 sketches the solution.

The currency list can be copy-pasted all over the place (as it
never changes) or it can be retrieved and cached from the Reference
Data Holder API as described here. Such API can provide a com-
plete enumeration of the list (to initialize and refresh the cache) or
70For instance, it was sufficient to use two digits for calendar years until 20 years ago.
71 To use terms from data warehousing and master data management: “single version
of the truth” or “golden copy”.

LakesideMutualSampleApplication.SharedServices

AdminApplication

«service, staticDataHolder»
AddressManagementUtility

int lookupZIPCode(String streetName, String cityName)

OperationalAPI

Figure 8: Reference Data Holder (Example): ZIP code lookup

feature the ability to project/select the content (for instance, a list of
European currency names), or allow clients to check if some value
is present in the list for client-side validation (“does this currency
exist”?).

The operations of Reference Data Holders offer direct access to
a reference data table. Such lookupById can map a short identi-
fier (e.g., a provider-internal surrogate key) to a more expressive,
human-readable identifier and/or entire data set.

The pattern does not prescribe any type of implementa-
tion; for instance, a relational database might come across as an
over-engineered solution when managing a list of currencies; a
file-based key-value store or Indexed Sequential Access Method
(ISAM)72 files might be sufficient. Key-value stores such as a Redis
or document-oriented NoSQL database may also be considered.

Example. There is one main usage scenarios for this pattern,
simple value data lookup (e.g., for country codes, currency codes).
Figure 8 shows an instance of the pattern that allows API clients to
lookup zip codes.

Implementation hints. Architects and developers that decide
to feature explicit Reference Data Holders in their API architectures
should consider following tips:

• Do not reinvent the wheel: to enhance the reusability of the
endpoint, look for standard(ized) formats and content, for
instance when dealing with lists of country codes. Both de
facto and de jure standards may be considered, both public
and organization-wide ones.

• Document data provenance information such as de-jure or
de-facto standards and their versions that define the data
and its structure as Metadata Elements.

• When outsourcing commodity reference data management,
note that his may introduce an external dependency for
information that may be of critical importance for normal
operation (what if the list of countries disappears or, even
worse, gets polluted with incorrect data?).

• Define a management interface in addition to the operational
interface, for instance to allow for batch updates and to
obtain API usage statistics.

72https://en.wikipedia.org/wiki/ISAM

https://en.wikipedia.org/wiki/ISAM
https://en.wikipedia.org/wiki/ISAM
https://en.wikipedia.org/wiki/ISAM

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

• Maintain a regression test suite to be prepared for the rare but
not impossible event that the reference data and its structure
do change.

• Decide for an evolution strategy: a Reference Data Holder
is one of the few situations in which an Eternal Lifetime
Guarantee [25] may make sense economically.

• Reference Data Holder lookups should be included in IT audits
and systems and system process assurance audits to make
sure that proper compliance controls are in place [20]. These
controls protect the reference data from being tampered with
as well as other security threats that may harm the accurate
functioning of the data lookup and, in turn, all business
services depending on them.

Consequences.

Resolution of forces.

+ Explicit, separate Reference Data Holders avoid unnecessary
repetition (so DRY force resolved). The purpose of the Refer-
ence Data Holder is to give a central point of reference for
helping disseminate the data while keeping control over it.

+ Read performance can be optimized; immutable data can be
replicated rather easily (no risk of inconsistencies).

− Explicit, separate Reference Data Holders have to be devel-
oped, documented, managed, and maintained. This causes
effort.

Further discussion. Performance optimization for read
access. The pattern hides the actual data behind the API and
therefore allows the API provider to introduce proxies, caches and
read-only replicas behind the scenes. The only effect that is visible
to the API clients is an improvement (if done right) in terms of
quality properties such as response times and availability, possibly
expressed in the Service Level Agreement [34] that accompanies the
functional API contract.

Do not repeat yourself (DRY). Client no longer have to im-
plement reference management on their own, at the expense of
introducing a dependency on a remote API call. This positive effect
can be viewed as a form of data normalization73 as known from
database design and information management.

If a standalone Reference Data Holder turns out to cause more
work and complexity than it adds value (in terms of data normaliza-
tion and performance improvements), one can consider to merge
the simple static/immutable reference data with an already existing,
more complex and somewhat more dynamic Master Data Holder
endpoint in the API by way of an interface refactoring [21].

Known Uses. Publicly visible known uses include:

• The country abstractions/endpoints in the public, donation-
funded API RESTCountries74 are instances of this pattern.
Similar services exist for currency codes.

73http://searchsqlserver.techtarget.com/definition/normalization
74https://restcountries.eu/

• Taxonomies such as the topic keywords used in digital li-
braries such as the ACM Digital Library Computing Classifi-
cation System75 and IEEE Xplore qualify when exposed in
APIs such as the IEEE Xplore API Portal76.

• Geographic data such as maps, coordinates and zip codes
also change rarely (although they still do change over long
periods of time), and many APIs for them can be seen as
Reference Data Holders.
– An example is the Overpass API for Open Street Map77.
– The location database behind the Open Weather Map
API78 uses its own city IDs (for more than 200k cites)
and also works with country codes, zip codes, and geo
coordinates long(itude) and lat(itudes).

• The unique company identifiers79 (“UIDs”) assigned by the
Swiss government and available via a Web service qualify as
reference data.

The core banking integration SOA described in [3] works with
region codes and product/market categories.

Many digital archives must guarantee that stored documents are
never changed and will therefore return them as static data. For
instance, Terravis [2] uses such a digital archive and offers only
read operations (i.e., Retrieval Operations) on existing documents.
Moreover, Terravis offers a process meta-data search feature/service
that returns information about process instances that will never
change once a process instance has been completed, but might be
amended before because additional information about a process
instance is collected (e.g., process outcome.) For example, a notary
might invite another bank to participate in a land register transac-
tion. This newly added bank will be added to the reference data of
the process instance.

Examples of somewhat unexpected changes to static/immutable
reference data include the introduction of the Euro currency in
many European countries and new zip codes in Germany in the
1990s; APIs that work with such abstractions must make the data
catalog version and data types (for instance, units of measures for
distances and weights) explicit.

RelatedPatterns. TheMaster Data Holder pattern is an alternative
to Reference Data Holder. It also represents long-living data, which
still is mutable. Operational Data Holders represent more ephemeral
data.

The Reference Management subcategory of our Quality Patterns
features two related patterns, Embedded Entity and Linked Infor-
mation Holder [50]. Simple static data is often embedded (which
eliminates the need for a dedicated Reference Data Holder), but can
also be linked (with the link pointing at a Reference Data Holder).

Other Sources. A definition of the term reference data can be
found at TechTarget80: “consisting of sets of values, statuses or
classification schema”.

75https://dl.acm.org/ccs
76https://developer.ieee.org/
77https://wiki.openstreetmap.org/wiki/Overpass_API
78http://openweathermap.org/api
79https://www.isb.admin.ch/isb/de/home/e-services-bund/services/uid-webservice.
html
80http://whatis.techtarget.com/definition/reference-data

http://searchsqlserver.techtarget.com/definition/normalization
https://restcountries.eu/
http://searchsqlserver.techtarget.com/definition/normalization
https://restcountries.eu/
https://dl.acm.org/ccs
https://dl.acm.org/ccs
https://developer.ieee.org/
https://wiki.openstreetmap.org/wiki/Overpass_API
http://openweathermap.org/api
http://openweathermap.org/api
https://www.isb.admin.ch/isb/de/home/e-services-bund/services/uid-webservice.html
http://whatis.techtarget.com/definition/reference-data
https://dl.acm.org/ccs
https://developer.ieee.org/
https://wiki.openstreetmap.org/wiki/Overpass_API
http://openweathermap.org/api
https://www.isb.admin.ch/isb/de/home/e-services-bund/services/uid-webservice.html
https://www.isb.admin.ch/isb/de/home/e-services-bund/services/uid-webservice.html
http://whatis.techtarget.com/definition/reference-data

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

4.5 Pattern: Data Transfer Resource
a.k.a. Connector Resource, Integration Resource, Share, Temporary
Data Store, Transient Information Holder

Context. Two or more communication participants want to ex-
change data. The number of exchange participants may change
over time, and their existence only partially be known to each other.
They might not always be active at the same time. For instance,
additional participants may want to access the same data after it
has already been shared by its source.

Participants may also only be interested in accessing the latest
version of the shared information and do not need to observe every
change applied to it. Communication participants may not be able
to install any messaging middleware beyond a basic HTTP client
library locally.

Problem. How can two or more communication participants ex-
change data without knowing each other, without being available
at the same time, and even if the data has already been sent before
its recipients became known?

Forces. The following forces have to be resolved in this setting:
• Coupling (dimensions: time and location)
• Communication constraints
• Reliability
• Scalability
• Storage space efficiency
• Latency
• Ownership management

Details. Coupling (time). Communication participants may not
be able to communicate synchronously (at the same time) as their
availability and connectivity state may change over time. The more
communication participants want to exchange data, the more un-
likely it is that all will be ready to send and receive messages at the
same time.

Coupling (location). The location of communication participants
may be unknown to the other participants. It may not be possible
to directly address all participants due to asymmetric network
connectivity, making it difficult, for example, for senders to know
how to reach the recipients of the data exchange that are hidden
behind a Network Address Translation (NAT)81 table or a firewall.

Communication constraints. Some communication participants
may be unable to directly talk to each other. For instance, clients in
the client/server architectural style by definition are not capable
of accepting incoming connections. Also, some communication
participants may not be allowed to install software required for
communication locally (e.g., messaging middleware). In such cases,
indirect communication is the only possibility.

Reliability.Networks cannot be assumed to be reliable, and clients
are not always active at the same time. Hence, any distributed
data exchanges must be designed to deal with temporary network
partitions and system outages.

81https://en.wikipedia.org/wiki/Network_address_translation

Scalability. The number of recipients may not be known at the
time the data is sent. This number could also become very large
and increase access requests in unexpected ways. This, in turn, may
harm throughput and response times. Also, scaling up the amount of
data can be an issue: the amount of data to be exchanged may grow
unboundedly and beyond the capacity limits of individual messages
(as defined by the communication and integration protocols used).

Storage space efficiency. The data to be exchanged has to be stored
somewhere, and sufficient storage space must be available. The
amount of data to be shared must be known as there may be limits
on how much data can be transferred (bandwidth) or stored.

Latency. Direct communication tends to be faster than indirect
communication via relays or intermediaries.

Ownership management. Ownership of the shared information
has to be established to achieve explicit control over its availabil-
ity lifecycle. The initial owner is the participant sharing the data;
however there may be different parties responsible for cleanup: the
original sender (interested in maximizing the reach of the shared
data), the intended recipient (who may or not want to read it mul-
tiple times), or the host of the transfer resource (who must keep
storage costs in check).

Non-solution. One could think of using enterprise integration
patterns such as Publish-Subscribe Channel [19] offered by Message-
Oriented Middleware (MOM) such as ActiveMQ, Apache Kafka
or Rabbit MQ, but then the clients would have to run their own
local messaging system endpoint to receive and process incoming
messages. MOM needs to be installed and operated, which adds to
the overall systems management effort [19].

Solution. Introduce a special type of Information Holder Resource,
a Data Transfer Resource endpoint with a globally unique, network-
accessible address that two or more clients can use as a shared data
exchange blackboard. Add at least one State Creation Operation and
one Retrieval Operation to it.

Decide on data ownership and its transfer; prefer client owner-
ship over provider ownership (in this case).

Figure 9 sketches the solution.

How it works. Multiple applications (in API client roles) can
use the shared Data Transfer Resource as a medium to exchange
information which is originally created by one of them and then
transferred to the shared resource. Once the information has been
published in the shared resource, any additional client that knows
the URI of the shared resource and is authorized to do so may
retrieve it, update it, add to it, and delete it (when the data is no
longer useful for any client application).

The shared Data Transfer Resource82 establishes a shared, asyn-
chronous data flow channel between its clients to mediate all inter-
actions among them. As a result, clients can exchange data without
having to directly connect to each other, or – perhaps even more
importantly – without having to address each other directly and
without being up and running at the same time. Hence, it decouples
them in time (no need to be available at the same time) and makes
their location irrelevant — as long as they all can reach the shared
Data Transfer Resource.

82a.k.a. blackboard or, for younger readers, whiteboard.

https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Network_address_translation

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

EndpointTypes

Datastore

«informationHolderResource»
DataTransferResource

URI
authorizationProfile

publish(APIKey, DTR)
DTR fetch(APIKey)
boolean delete(APIKey)
authorizeClient()

API

KeyValueStore

save(URI, DTR)
DTR load(URI)

APIClientA APIClientsBCD

publish fetch

Figure 9: Data Transfer Resource (Sketch). A Transfer Resource end-
point holds temporary data and decouples two or more API clients.
The pattern instance acts as a software connector (or data exchange
blackboard) between these clients. Data ownership remains with
the loosely coupled application clients.

How do client negotiate the URI for the shared resource? Clients
may need to agree in advance about the shared resource address
or they may dynamically discover it using a dedicated Link Lookup
Resource. Also, it is possible that the first client sets the URI while
publishing the original content and informs the others about it via
some other communication channel, or by registering the address
with a Link Lookup Resource, whose identity has been, again, agreed
upon in advance by all clients.

HTTP support for the pattern: From an implementation per-
spective, this solution is directly supported in HTTP, whereby client
A first performs a PUT request to publish the information on the
shared resource, uniquely identified by a URI, and then client B
performs a GET request to fetch it from the shared resource. Note
that the information published on the shared resource does not
disappear as long as no clients perform an explicit DELETE request.
Client A publishing the information to the shared resource can do
so reliably, as the HTTP PUT request is idempotent. Likewise, if
the subsequent GET request fails, Client B may simply retry it to be
able to eventually read the shared information. Figure 10 illustrates
the HTTP realization of the pattern.

Clients cannot know whether other clients have retrieved the
information from the shared resource. To address this limitation,

Client A

Client A

Shared Resource

Shared Resource

Clients B, C, D

Clients B, C, D

PUT

GET

Figure 10: Data Transfer Resource (HTTP Realization)

Client A Relay Resource Client B
PUT GET

Figure 11: Relay Resource (Sketch)

Client A

Published Resource

Client B Client C Client D

PUT

GET GET GET

Figure 12: Published Resource (Sketch)

the shared resource can track access traffic and offer additional
metadata about the delivery status so that it is possible to inquire
whether and how many times the information has been fetched
after it has been published. Such Metadata Elements may also help
with the garbage collection of shared resources that are no longer
in use.

Variants. Access patterns and resource lifetimes may differ,
which suggests the following variants of this pattern:

1. Relay Resource: There are two clients only, one that writes
and one that reads (Figure 11). Ownership is shifted from
the writer to the reader.

2. Published Resource: One client writes as before, but then a
very large, unpredictable number of clients read it at different
times (maybe years later), as shown in Figure 12. Routing pat-
terns can be supported this way, e.g. Recipient List [19]. The
original writer determines for how long the shared resource
remains publicly available to the multiple readers.

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

Client A

Conversation Resource

Client B

Client C Client D

PUT GET

GETPUT GET DELETE

Figure 13: Conversation Resource (Sketch)

ClaimTransferResource

URI
temporaryDataStorage

publish(APIKey, URI, InsuranceClaimDTR)
InsuranceClaimDTR fetch(APIKey, URI)
boolean delete(APIKey, URI)

ClaimReceptionSystemOfEngagement

ClaimProcessingSystemOfRecords FraudDetectionArchive

PUT (claim received event)

GET (claim received event) (GET claim received event)

Figure 14: Claims management data flow as an example of a Data
Transfer Resource; access is controlled with an API Key.

3. Conversation Resource: Many clients read and write and even-
tually delete the shared resource (Figure 13). Any participant
owns (i.e., can both update or delete) the transfer resource.

Example. The example in Figure 14 instantiates the pattern
for an integration interface in a fictitious insurance scenario.
The ClaimReceptionSystemOfEngagement is the data source,
and a ClaimTransferResource decouples the two data sinks
(ClaimProcessingSystemOfRecords, FraudDetectionArchive)
from it.

Implementation hints. Architects and developers that decide
to introduce Data Transfer Resources into an integration architec-
ture or microservices-based system should consider the following
advice:

• Include the Data Transfer Resource endpoint into the systems
management procedures and other operations concepts. For
instance, purge the resource in regular intervals or alert
an administrator if it is untouched for a certain amount of

time or grows beyond a predefined quota. Dead Letter Queue
and Message Expiration are related “Enterprise Integration
Patterns” [19].

• Stick to other design and implementation advice for HTTP
resource APIs, for instance regarding URI design, Web link-
ing, and content negotiation. The “RESTful Web Services
Cookbook” presents related recipes [1].

• You also may want to choose a REST maturity level83 con-
sciously and provide rationale for the decision; for Data
Transfer Resources, level 2 (proper use of URIs and verbs)
may not be sufficient as the URI of the shared resource has
to be dealt with explicitly (i.e., included in response message
bodies, which corresponds to maturity level 3).

Consequences.

Resolution of forces.
+ Coupling (time and location): asynchronous and indirect

communication are supported.
+ Communication constraints: clients which cannot directly

connect use the transfer resource as a shared blackboard.
+ Reliability by idempotent transfers.
+ Scalability both of amount of exchanged data and number

of clients reading or writing it.
+ It depends on the chosen variant how flexible the ownership

is/should and can be.
− Client polling: clients are unable to receive notifications from

the transfer resource.
− Storage space efficiency: the Data Transfer Resource provider

has to allocate sufficient space.
− Latency: indirect communication requires two hops between

participants, which however do not have to be available at
the same time. In this pattern, the ability to transfer data
across large periods of time and multiple participants takes
priority over the performance of the individual transfer.

Further discussion. The pattern combines the benefits of mes-
saging and shared data repositories; flexibility of data flow and
asynchrony [30]. Let us go through the forces and pattern proper-
ties one by one (in the context of HTTP and Web APIs).

Client constraint. Clients sometimes cannot directly talk to each
other because:

1. They are clients (so not supposed to receive any incoming
request).

2. They are running behind a firewall/Network Address Trans-
lator (NAT) which only allows outgoing connections.

3. They are running inside a Web browser which only allows
sending HTTP requests to and receiving responses from a
Web server.

4. They are not running at the same time.
If direct connectivity is impossible, then an indirect route may

still work. The shared Data Transfer Resource provides such inter-
mediary element and can serve as a shared information blackboard,
which is reachable from both clients and remains available even
when some of the clients temporarily disappear.

83https://martinfowler.com/articles/richardsonMaturityModel.html

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

Reliability/asynchrony and systems management.When using the
messaging style, the connection from the client to the middleware
can be a local one (the messaging system broker process then takes
care of the remote messaging, guaranteeing message delivery). Such
“programming without a call stack” is conceptually harder and
more error prone than blocking remote procedure invocations, but
also more powerful when done properly [19]. When applying the
Data Transfer Resource pattern, the client-to-resource connection
always is a remote one. Moreover, HTTP cannot guarantee message
delivery. However, the idempotency of the PUT and GET methods
in HTTP can mitigate the problem because the sending clients
can retry calls to the Data Transfer Resource until the upload or
download succeeds. When using such idempotent HTTP methods
to access the shared resource, the middleware or the receiver do
not have to detect and remove duplicate messages.

Scalability. The amount of data that can be stored on a Web
resource is bound by the capacity of the data storage/file system
that underlies the Web server. The amount of data that can be
transferred to and from the Web resource within one standard
HTTP request/response is virtually unlimited according to the
protocol and therefore limited only by the underlying middleware
implementations and client/server hardware capacity.

Data ownership. Depending on the pattern variant, data owner-
ship – the right but also the obligation to ensure the validity of the
shared resource content and to clean it up eventually – can stay
with the source, be shared among all parties aware of its URI, or,
be transferred to the Data Transfer Resource. The latter option is
adequate if the source originally publishing the data is not expected
to be present until all recipients have had a chance to read it.

Once a Data Transfer Resource has been introduced into an inte-
gration architecture, additional design issues arise:

• Access control: Depending on the type of information being
exchanged, clients reading from the resource trust that the
resource was initialized by the right sources. So in some
scenarios, only authorized clients may be allowed to read
from or write to the shared resource.

• Lack of coordination: Clients may read from and write to
the shared resource at any time, even multiple times. There
is little coordination between writers and readers beyond
being able to detect empty (or non-initialized) resources.

• Optimistic locking: Multiple clients writing at the same time
may run into conflicts, which should be reported as an error.

• Polling: Some clients cannot receive notifications when the
shared resource state is changed and must resort to polling
to be able to fetch the most recent version.

• Garbage collection: The Data Transfer Resource cannot know
whether any client that has completed reading will be the
last one; hence, there is a risk of leaking data unless it is ex-
plicitly removed. Housekeeping is required: purging Transfer
Resource which have outlived their usefulness avoids waste
of storage resources.

Known Uses. DropBox and ownCloud created a business model
for usage of this pattern (Software-as-a-Service, SaaS) and provide

related integration APIs (see here84 and here85). The Doodle sched-
uling service is not a API, but a Web application that uses this
pattern as well.

An article by B. Rücker introduces event command transforma-
tion86, mentions asynchronous Web-based integration, and pro-
vides working examples.

A major German car manufacturer offers a REST level 2 user
profile management service for all its clients; this service features
a different, queue-based type of Data Transfer Resource to decouple
clients from each other and from servers. In the spirit of the Reac-
tive Manifesto87, it uses asynchronous message passing (here: Ama-
zon SQS). The queue is populated in the implementation of one API
operation. Another API operation offers clients an opportunity to
poll (look for) new appearances in the queue via a Web resource; if
there are none, the call does not block but returns a “come back
later” message after 30 seconds. Clients can select what they are
interested in; the server also filters by authentication roles (which
can be seen as an implementation of a Retrieval Operation [49]).
Consumption policies and message structure vary.

Related Patterns. The pattern differs from other types of Informa-
tion Holder Resources with respect to data access. The Data Transfer
Resource exclusively owns and controls its own data store; the only
way to access its content is via the published API of the Data Trans-
fer Resource. Instances of other Information Holder Resource types
may work with data that is accessed and possibly even owned by
other parties (e.g. backend systems and their non-API clients). Like-
wise the Data Transfer Resource acts both as a data source and data
sink, unlike other Information Holders which may either store oper-
ational data, master data, or reference data. A Link Lookup Resource
only exposes metadata; a Data Transfer Resource can hold any data.

65 patterns for asynchronous messaging are described in [19]. A
Data Transfer Resource can be seen as a Web-based realization of a
Message Channel, supporting message routing and transformation,
as well as several message consumption options (e.g., Competing
Consumers and Idempotent Receiver). Queue-based messaging and
Web-based software connectors (as described by this Data Transfer
Resource pattern) can be seen as two different but related integration
styles; these styles are compared in [30].

Blackboard pattern is a POSA 1 pattern [5], intended to eligible in
a different context, but similar in its solution sketch. The Remoting
Patterns book [37] describes the remoting style shared repository;
ourData Transfer Resource can be seen as the API for aWeb-flavored
shared repository.

Other Sources. Interfacer is a role stereotype in Responsibility-
Driven Design (RDD) that describes a related but more generic
programming-level concept [41].

84https://www.dropbox.com/developers/documentation/http/overview
85https://doc.owncloud.com/server/developer_manual/core/apis/ocs-capabilities.
html
86https://www.infoq.com/articles/microservice-event-choreographies#
87https://www.reactivemanifesto.org/

https://www.dropbox.com/developers/documentation/http/overview
https://doc.owncloud.com/server/developer_manual/core/apis/ocs-capabilities.html
https://www.infoq.com/articles/microservice-event-choreographies
https://www.infoq.com/articles/microservice-event-choreographies
https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://www.dropbox.com/developers/documentation/http/overview
https://doc.owncloud.com/server/developer_manual/core/apis/ocs-capabilities.html
https://doc.owncloud.com/server/developer_manual/core/apis/ocs-capabilities.html
https://www.infoq.com/articles/microservice-event-choreographies#
https://www.reactivemanifesto.org/

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

4.6 Pattern: Link Lookup Resource
a.k.a. Address Data Holder, API Directory, Endpoint Repository,
Inventory/Discovery Resource, Service Registry

Context. The message representations in request and response
messages of an API operation must satisfy the information needs
of the message receivers entirely. To do so, these messages may
contain references to other API endpoints. Sometimes, it is not
desirable to expose such endpoint references to all clients directly
because such direct exposure adds coupling (thus harming location
and reference autonomy88).

Two reasons to avoid an address coupling between communica-
tion participants are:

• As an API provider, I want to be able to change the desti-
nations of links freely when evolving API while workload
grows and requirements change.

• As an API client, I do not want to have to change code and
configuration (e.g., application startup procedures) when the
naming and structuring conventions for links change on the
provider side.

Problem. How can message representations refer to other, possi-
bly many and frequently changing, API endpoints and operations
without binding the message recipient to the actual addresses of
these endpoints?

Forces. When structuring an API that deals with linked resources
and data (in the broadest sense of these words), conflicting concerns
exist:

• Cohesion within one endpoint and coupling between end-
points

• Dynamic endpoint references: flexible runtime changeability
of endpoint references

• Number of endpoints and API complexity
• Centralization vs. de-centralization
• Message sizes, number of calls, resource use
• Dealing with broken links

Details. Cohesion and coupling. Information Holder Resource end-
points typically have rich interfaces, exposing multiple operations
to create, read, update, delete the held data. If comprehensive lookup
capabilities are also added to the endpoint contract, all features that
deal with one particular data element are in one place (which is
good), but this place becomes difficult to document and learn (and
also to maintain and test); it can be seen to already violate the Single
Responsibility Principle89 (i.e., do one thing and do it right, and
have only one reason to change).

Dynamic endpoint references. Solutions for binding references to
endpoints at design or deployment time, including hard-coded ref-
erences in the clients as well as more sophisticated binding schemes,
are often not flexible enough to deal with situations in which dy-
namic changes to endpoint references at runtime are required. End-
points that are taken offline temporarily for maintenance or load
88https://www.cloudcomputingpatterns.org/loose_coupling/
89https://en.wikipedia.org/wiki/Single-responsibility_principle

balancing with a dynamic number of receiving endpoints a typical
examples. Another usage scenario are intermediaries and redirect-
ing helpers that help overcome formatting differences after new
API versions have been introduced.

Number of endpoints and API complexity. The coupling problem
could be avoided by having a specific endpoint only for getting the
address of another endpoint (e.g., an Information Holder Resource).
But this would in the extreme case that all endpoints require such
functionality, double the number of endpoints which would harden
API maintenance and increase complexity of the API.

Centralization vs. de-centralization. Hard-coding references and
having one specific endpoint per Information Holder Resource, dis-
cussed before, are highly de-centralized solutions; other designs
could centralize the binding of references instead. However, any cen-
tralized solution will receive more traffic than partially autonomous,
distributed ones.

Message sizes, number of calls, resource use. An alternative solu-
tion to consider any form of references used in clients, is to avoid
them following the Embedded Entity pattern [50]. However, this
increases message sizes. This has to be contrasted to any solutions
for managing references to endpoints in clients, which generally
requires more calls (but sometimes less). All these considerations
influence the resource use in terms of server processing resources
and network bandwidth.

Dealing with broken links. Consumers following references will
assume these references lead to the correct API endpoint. If such
references no longer work because the API endpoint address has
changed, consumer may either fail as they are no longer able to con-
nect to the API or access out-of-date information from a previous
API version.

Non-solution. A simple approach could be to add lookup oper-
ations (a.k.a. special types of Retrieval Operations that return Link
Elements) to already existing endpoints (such as Information Holder
Resources and/or Processing Resources). This solution is workable but
compromises cohesion within the endpoints and couples endpoints
in the reference and location autonomy dimensions.

Solution. Introduce a special type of Information Holder Resource,
a dedicated Link Lookup Resource endpoint that exposes special
Retrieval Operation operations that return single instances or col-
lections of Link Elements that represent the current addresses of
the referenced API endpoints.

How it works. These Link Elements may point both at data-
oriented Information Holder Resources endpoints as well as action-
oriented Processing Resources [49].

The most basic Link Lookup Resource uses a single Atomic Pa-
rameter for the request message to identify the lookup target by its
primary key, e.g., a plain/flat, but globally unique string identifier.90
On the next level of client convenience, an Atomic Parameter List
can be used if multiple lookup options and query parameters exist
(this way, the lookupmode can/has to be specified by the client). The
Link Lookup Resource returns global, network-accessible references
to the held information (each taking the form of a Link Element,
possibly amended with *->Metadata ELements that disclose the
link type).
90Such unique identifiers are also used to create API Keys.

https://www.cloudcomputingpatterns.org/loose_coupling/
https://www.cloudcomputingpatterns.org/loose_coupling/
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://www.cloudcomputingpatterns.org/loose_coupling/
https://en.wikipedia.org/wiki/Single-responsibility_principle

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

InformationHolderEndpointTypes

«informationHolderResource»
LinkLookupResource

StatusCode «stateCreationOperation»populate(...)
ResponseMessage «retrievalOperation» lookup(...)

RequestMessage

searchAndFilterCriteria

ResponseMessage

LinkElementCollection foundEndpointResources

String renderAsJSON() // JSON-LD, HAL, ...
String renderAsXML() // WS-Addressing, ...

API

expects delivers

Figure 15: Link Lookup Resource (Sketch). A Lookup Resource is an
API endpoint that merely holds information about other ones.

If the network addresses of one or more Information Holder Re-
sources (or any of its refinements dealing with operational data,
master data, reference data or serving as temporary Data Transfer
Resource) are returned, the client can access these resources subse-
quently to obtain attributes, relationship information, and so on.
Figure 15 sketches this solution.

Variants. When the Link Elements point at Processing Resources
[49] rather than Information Holder Resources, a variant of this
pattern is constituted:

Hypertext as the Engine of Application State (HATEOAS). HA-
TEOAS is one of the defining characteristics of truly RESTful Web
APIs according to the definitions of the REST style [7], [39].

The addresses of a few root endpoints (a.k.a. home resources)
are published (i.e., communicated to prospective API clients); the
addresses of related services can then be found in each response.
The clients parse the responses to discover the URIs of subsequent
Processing Resource. If a Processing Resource is referenced this way,
the control flow and application state management become dy-
namic and highly decentralized; the operation-level pattern State
Transition Operation [49] covers this REST principle in detail.

Example. In the Lakeside Mutual sample application, we can
define two operations to find Information Holder Resources that
represent customers (notation: Microservice Domain-Specific Lan-
guage (MDSL)91, a new style- and technology-independent service
contract modeling language [21]):
API description MAPLinkLookupResource

data type URI P // protocol, domain, path, parameters

endpoint type LinkLookupResourceInterface // sketch

91https://microservice-api-patterns.github.io/MDSL-Specification/

exposes
operation lookupInformationHolderByLogicalName

expecting payload
<<Identifier_Element>> "name": ID

delivering payload
<<Link_Element>> "endpointAddress": URI

operation lookupInformationHolderByCriteria
expecting payload {

"filter": P
}
delivering payload {
<<Link_Element>> "uri": URI* // 0..m cardinality

}

API provider CustomerLookupResource
offers LinkLookupResourceInterface

If multiple results of the same type are returned, the Link Lookup
Resource turns into a Collection Resource [1].

Implementation hints. Architects and developers that decide
to use dedicated Link Lookup Resources should take the following
advice into consideration:

• Do not create “über-directories” but design in a user
requirement-driven way, for instance ask and answer “how
do you find this information?” questions.92

• Apply hyperlink formats that are supported by tools such as
HAL or JSON-LD; add link type information.

• Conditional Requests may help to meet advanced perfor-
mance requirements. Caching is another option, but known
to be generally difficult93 to design and implement right.

• Ensure that write access is granted only to authorized par-
ties, as consumers implicitly trust the lookup results as they
follow them.

• To promote microservices principles such as agility and au-
tonomy, make sure that all endpoints have a single reason to
change [31]. This is particularly important for intermediaries
such as Link Lookup Resources because by definition each of
them add at least two dependencies to the overall services
and API landscape.

• Define appropriate life cycle models and versioning strate-
gies for the directory entries (i.e., the actual resources looked
up) to avoid cluttering. Sunset entries when you can; apply
evolution patterns [25] such as Aggressive Deprecation and
Limited Lifetime Guarantee to govern their life cycle.

Consequences.

Resolution of forces.

+ The pattern decouples clients and providers in terms of loca-
tion autonomy.

92Universal Description Discovery and Integration (UDDI)], https://en.wikipedia.org/
wiki/Web_Services_Discovery#Universal_Description_Discovery_and_Integration,
one of the core XML Web services technologies from the early 2000s [52], had a
reputation of not having followed this advice sufficiently in its API design and data
model.
93https://martinfowler.com/bliki/TwoHardThings.html

https://microservice-api-patterns.github.io/MDSL-Specification/
https://microservice-api-patterns.github.io/MDSL-Specification/
https://microservice-api-patterns.github.io/MDSL-Specification/
https://martinfowler.com/bliki/TwoHardThings.html
https://martinfowler.com/bliki/TwoHardThings.html
https://en.wikipedia.org/wiki/Web_Services_Discovery#Universal_Description_Discovery_and_Integration
https://en.wikipedia.org/wiki/Web_Services_Discovery#Universal_Description_Discovery_and_Integration
https://martinfowler.com/bliki/TwoHardThings.html

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

+ The pattern promotes high cohesionwithin and low coupling
within one endpoint as the lookup responsibility is separated
from the actual processing and information retrieval.

− The pattern causes extra calls and increases the number of
endpoints.

− The pattern causes operational costs; the lookup resource
must be kept current.

Further discussion. Number of endpoints vs. cohesion.Us-
age of the pattern improves cohesion within endpoints at the ex-
pense of adding additional, specialized ones.

Performance. The pattern usage has a negative impact on the
number of calls clients are required to send (liability) unless caching
is introduced to mitigate this effect and lookup calls are only per-
formed after detecting broken links. The pattern can only improve
performance if the overhead for looking up the Information Holder
Resource (or other provider-internal data storage) over an API oper-
ation boundary (so making two calls) does not exceed the savings
achieved by leaner message payloads (of each operation).

Amount of endpoints. If the combination of a Linked Infor-
mation Holder [50] with a Lookup Resource turns out to add more
overhead than performance and flexibility gains, the Link Lookup
Resource can be replaced with a direct link; if the direct linking still
leads too overly chatty message exchanges (conversations) between
API clients and API providers, the referenced data could be flattened
as an instance of Embedded Entity [50].

Hypermedia usage is one of the defining constraints of the REST
style and required to implement HATEOAS94. One has to decide
whether the hypermedia should refer to the resources responsible
for server-side processing (of any endpoint type) directly orwhether
a level of indirection should be introduced to further decouple
clients and endpoints (this pattern).

Centralization vs. de-centralization. A maintenance budget
for a shared APIs is often hard to get approved and renewed as
it competes with requests for feature and project funding. While
this is a general observation, it is particularly challenging to deal
with when relatively simple features with a context-crossing nature
have to be developed; hence, lookups to centralized Link Lookup
Resources that cross domain boundaries should be handled with
care.

Dealing with broken links. The added indirection can help
to change the system runtime environment. For example, when
directly using URIs, system might be harder to change because
server names change etc. The REST principle of HATEOAS solves
this problem for the actual names; only hardcoded client-side links
are problematic. Microservices middleware such as API gateways95
can be used as well; however, such usage adds complexity to the
overall architecture as well as additional runtime dependencies.

Infrastructure-level service discovery can be used alternatively.
For instance patterns such as Service Registry96, Client-Side Dis-
covery97, and Self Registration98 have been captured.

94https://en.wikipedia.org/wiki/HATEOAS
95https://microservices.io/patterns/apigateway.html
96https://microservices.io/patterns/service-registry.html
97https://microservices.io/patterns/client-side-discovery.html
98https://microservices.io/patterns/self-registration.html

Known Uses. Instances of Link Lookup Resource can be found in
public Web APIs and sample applications:

• The Cargo Repository in the Cargo Aggregate99 of the
Domain-Driven Design Sample Application100 implements
two basic find operations.

• Slack, which discloses an elaborate OpenAPI contract for
its endpoints and operations101, has the notion of object
types102 which can be seen as pattern instances (if exposed
as API endpoints).

Terravis [2] internally offers and utilizes a lookup service that
returns concrete API endpoints for given banks, notaries, and land
registries. All these parties are referred to by a so-called Business
Partner Identifier (BPID), which can be sent to the lookup service
which then returns all known API endpoints offered by the identi-
fied partner.

Terravis also requires all parties to offer a service endpoint that
returns a list of all supported APIs with their respective versions
as a Version Identifier [25], as well as the actual endpoint. Terravis
will query this service daily and cache the offered API versions and
endpoints for use throughout the day.

Web Service Inspection Language (WSIL)103 support in SOAP-
basedWeb services endpoints and Universal Description, Discovery,
and Integration (UDDI) APIs can be seen as obsolete implementa-
tions and known uses of Link Lookup Resource concepts.

Related Patterns. Instances of this pattern can return links to any
of the endpoint types/roles, often to Information Holder Resources.

The pattern can be combined with Retrieval Operations (on op-
eration level). For instance, a Retrieval Operation instances may
return Id Elements pointing at Information Holder Resources indi-
rectly (that in turn return the data); the Link Lookup Resource turns
the Id Element into a Link Elements.

The Collection Resource recipe 2.3 in the RESTful Web Services
Cookbook [1] can be seen as a RESTful HTTP pendant of this pat-
tern, adding add and remove support; Chapter 14 then discusses
discovery.

This pattern is an API-specific version/refinement of the more
general Lookup pattern described in [23] and [37]. At a more ab-
stract level, the pattern also is a specialization of the Repository
pattern described in [8].

Other Sources. SOA books cover related concepts such as ser-
vice repositories and registries. In Responsibility-Driven Design
(RDD) terms, a Link Lookup Resource acts as a structurer [41].

5 CONCLUSIONS AND OUTLOOK
The knowledge captured in this paper (and its companion paper [49]
that focuses on action-oriented endpoints and operation responsi-
bilities) already has been used as guidance for making architectural
decisions in industry projects. Our patterns are applicable not only
to microservice APIs, but also to any remote API leveraging plain

99https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/
dddsample/domain/model/cargo
100http://dddsample.sourceforge.net/characterization.html
101https://api.slack.com/specs/openapi/v2/slack_web.json
102https://api.slack.com/types
103http://www.onjava.com/pub/a/onjava/2002/10/16/wsil.html

https://en.wikipedia.org/wiki/HATEOAS
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/service-registry.html
https://microservices.io/patterns/client-side-discovery.html
https://microservices.io/patterns/client-side-discovery.html
https://microservices.io/patterns/self-registration.html
https://en.wikipedia.org/wiki/HATEOAS
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/service-registry.html
https://microservices.io/patterns/client-side-discovery.html
https://microservices.io/patterns/self-registration.html
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
http://dddsample.sourceforge.net/characterization.html
https://api.slack.com/specs/openapi/v2/slack_web.json
https://api.slack.com/specs/openapi/v2/slack_web.json
https://api.slack.com/types
https://api.slack.com/types
http://www.onjava.com/pub/a/onjava/2002/10/16/wsil.html
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
http://dddsample.sourceforge.net/characterization.html
https://api.slack.com/specs/openapi/v2/slack_web.json
https://api.slack.com/types
http://www.onjava.com/pub/a/onjava/2002/10/16/wsil.html

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker

document messages rather than stateful protocols or remote ob-
jects, synchronous ones using direct HTTP exchanges as well as
asynchronous ones based on message queues. A reflection of the
evolution of our pattern language since 2017 can be found online:
“MAP Retrospective and Outlook”104.

Selected patterns are implemented in the Lakeside Mutual105

scenario and sample application. Lakeside Mutual is a fictitious
insurance company that implemented its core business capabilities
for customer, contract, and risk management as a set of microser-
vices with corresponding application frontends. Furthermore, the
emerging Microservice Domain Specific Language (MDSL)106 fea-
tures all patterns introduced in this paper as endpoint decorators,
and our Software/Service/API Design Practice Repository (DPR) fea-
tures the responsibility patterns in Step 5 of its stepwise service
design method107.

For the future, we consider to extend our pattern collection with
further patterns that belong to other categories: for instance, addi-
tional structural representation patterns are currently being mined,
captured, and validated. We also consider to cover implementation
aspects of Information Holders and its refining patterns presented in
this paper: concurrent access and modifications require some kind
of business- or system-level transaction management, which can
be implemented in several ways, including ACID-style consistency
control as well as more relaxed BASE108 approaches, including
sagas109 and other forms of business-level compensation.

ACKNOWLEDGMENTS
We want to thank our shepherd Stefan Sobernig, EuroPLoP 2020
writers’ workshop participants, students and members of our pro-
fessional networks who helped to investigate public Web APIs,
donated candidate patterns and known uses, and reviewed drafts
of pattern candidates and language structure. The work of Olaf
Zimmermann and Mirko Stocker on MDSL and DPR is supported
by the Hasler Foundation. The work of Cesare Pautasso and Uwe
Zdun was supported by the API-ACE project, funded by SNF project
184692 and FWF (Austrian Science Fund) project I 4268.

REFERENCES
[1] Subbu Allamaraju. 2010. RESTful Web Services Cookbook. O’Reilly.
[2] Walter Berli, Daniel Lübke, and Werner Möckli. 2014. Terravis – Large Scale

Business Process Integration between Public and Private Partners. In Lecture
Notes in Informatics (LNI), Proceedings INFORMATIK 2014, Erhard Plödereder,
Lars Grunske, Eric Schneider, and Dominik Ull (Eds.), Vol. P-232. Gesellschaft für
Informatik e.V., Gesellschaft für Informatik e.V., 1075–1090.

[3] Michael Brandner, Michael Craes, Frank Oellermann, and Olaf Zimmermann.
2004. Web services-oriented architecture in production in the finance in-
dustry. Informatik-Spektrum 27, 2 (2004), 136–145. https://doi.org/10.1007/
s00287-004-0380-2

[4] E. Brewer. 2012. CAP twelve years later: How the "rules" have changed. Computer
45, 2 (Feb 2012), 23–29.

[5] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, andMichael
Stal. 1996. Pattern-Oriented Software Architecture - Volume 1: A System of Patterns.
Wiley.

104https://ozimmer.ch/patterns/2020/04/29/MAPRetrospective.html
105https://github.com/Microservice-API-Patterns/LakesideMutual
106https://microservice-api-patterns.github.io/MDSL-Specification/
107https://github.com/socadk/design-practice-repository/blob/master/activities/
SDPR-StepwiseServiceDesign.md
108https://queue.acm.org/detail.cfm?id=1394128
109https://microservices.io/patterns/data/saga.html

[6] Robert Daigneau. 2011. Service Design Patterns: Fundamental Design Solutions
for SOAP/WSDL and RESTful Web Services. Addison-Wesley Professional. http:
//www.servicedesignpatterns.com/

[7] Thomas Erl, Benjamin Carlyle, Cesare Pautasso, and Raj Balasubramanian. 2013.
SOA with REST - Principles, Patterns and Constraints for Building Enterprise Solu-
tions with REST. Prentice Hall. I–XXXII, 1–577 pages.

[8] Eric Evans. 2003. Domain-Driven Design: Tacking Complexity In the Heart of
Software. Addison-Wesley.

[9] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter
Arbitter. 2014. Cloud Computing Patterns: Fundamentals to Design, Build, and
Manage Cloud Applications. Springer.

[10] Otto K. Ferstl and Elmar J. Sinz. 2006. Grundlagen der Wirtschaftsinformatik.
Oldenbourg.

[11] Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-
Wesley.

[12] William G Halfond, Jeremy Viegas, and Alessandro Orso. 2006. A classifica-
tion of SQL-injection attacks and countermeasures. In Proceedings of the IEEE
International Symposium on Secure Software Engineering, Vol. 1. IEEE, 13–15.

[13] Robert Hanmer. 2007. Patterns for Fault Tolerant Software. Wiley.
[14] D.C. Hay. 1996. Data Model Patterns: Conventions of Thought. Dorset House.

https://books.google.ch/books?id=a7VQAAAAYAAJ
[15] Pat Helland. 2005. Data on the Outside Versus Data on the Inside. In CIDR

2005, Second Biennial Conf. on Innovative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2005, Online Proceedings. 144–153. http://cidrdb.org/cidr2005/
papers/P12.pdf

[16] Carsten Hentrich and Uwe Zdun. 2011. Process-Driven SOA: Patterns for Aligning
Business and IT. Auerbach Publications.

[17] Gregor Hohpe. 2007. SOA Patterns: New Insights or Recycled Knowl-
edge? Online article. https://www.enterpriseintegrationpatterns.com/docs/
HohpeSOAPatterns.pdf

[18] Gregor Hohpe, Ipek Ozkaya, Uwe Zdun, and Olaf Zimmermann. 2016. The
Software Architect’s Role in the Digital Age. IEEE Softw. 33, 6 (2016), 30–39.
https://doi.org/10.1109/MS.2016.137

[19] Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley.

[20] Klaus Julisch, Christophe Suter, Thomas Woitalla, and Olaf Zimmermann. 2011.
Compliance by design–Bridging the chasm between auditors and IT architects.
Computers & Security 30, 6 (2011), 410–426.

[21] Stefan Kapferer and Olaf Zimmermann. 2020. Domain-driven Service Design -
Context Modeling, Model Refactoring and Contract Generation. In Proc. of the
14th Advanced Summer School on Service-Oriented Computing (SummerSOC’20)
(to appear). Springer CCIS.

[22] Ralph Kimball and Margy Ross. 2002. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling (2nd ed.). John Wiley.

[23] Michael Kircher and Prashant Jain. 2004. Pattern-Oriented Software Architecture,
Volume 3: Patterns for Resource Management. Wiley.

[24] James Lewis and Martin Fowler. 2014. Microservices: a definition of this new
architectural term. https://martinfowler.com/articles/microservices.html. https:
//martinfowler.com/articles/microservices.html

[25] Daniel Lübke, Olaf Zimmermann, Mirko Stocker, Cesare Pautasso, and Uwe Zdun.
2019. Interface Evolution Patterns - Balancing Compatibility and Extensibility
across Service Life Cycles. In Proc. of the 24th European Conference on Pattern
Languages of Programs (EuroPLoP ’19).

[26] Daniel Lübke and Tammo van Lessen. 2016. Modeling Test Cases in BPMN for
Behavior-Driven Development. IEEE Software 33, 5 (Sept.-Oct. 2016), 15–21.

[27] Sam Newman. 2015. Building Microservices: Designing Fine-Grained Systems.
O’Reilly.

[28] Michael Nygard. 2018. Release It! Design and Deploy Production-Ready Software
(2nd ed.). Pragmatic Bookshelf.

[29] Guy Pardon, Cesare Pautasso, and Olaf Zimmermann. 2018. Consistent Disaster
Recovery for Microservices: the BAC Theorem. IEEE Cloud Computing 5, 1 (12
2018), 49–59. https://doi.org/10.1109/MCC.2018.011791714

[30] Cesare Pautasso and Olaf Zimmermann. 2018. The Web as a Software Connector:
Integration Resting on Linked Resources. IEEE Software 35 (January/February
2018), 93–98. https://doi.org/10.1109/MS.2017.4541049

[31] Cesare Pautasso, Olaf Zimmermann,Mike Amundsen, James Lewis, andNicolaiM.
Josuttis. 2017. Microservices in Practice, Part 1: Reality Check and Service Design.
IEEE Software 34, 1 (2017), 91–98. https://doi.org/10.1109/MS.2017.24

[32] Cesare Pautasso, Olaf Zimmermann,Mike Amundsen, James Lewis, andNicolaiM.
Josuttis. 2017. Microservices in Practice, Part 2: Service Integration and Sustain-
ability. IEEE Software 34, 2 (2017), 97–104. https://doi.org/10.1109/MS.2017.56

[33] Nick Rozanski and EóinWoods. 2005. Software Systems Architecture:WorkingWith
Stakeholders Using Viewpoints and Perspectives. Addison-Wesley Professional.

[34] Mirko Stocker, Olaf Zimmermann, Daniel Lübke, Uwe Zdun, and Cesare Pautasso.
2018. Interface Quality Patterns - Communicating and Improving the Quality of
Microservices APIs. In Proc. of the 23nd European Conference on Pattern Languages
of Programs (EuroPLoP ’18).

https://ozimmer.ch/patterns/2020/04/29/MAPRetrospective.html
https://github.com/Microservice-API-Patterns/LakesideMutual
https://microservice-api-patterns.github.io/MDSL-Specification/
https://github.com/socadk/design-practice-repository/blob/master/activities/SDPR-StepwiseServiceDesign.md
https://github.com/socadk/design-practice-repository/blob/master/activities/SDPR-StepwiseServiceDesign.md
https://queue.acm.org/detail.cfm?id=1394128
https://microservices.io/patterns/data/saga.html
https://doi.org/10.1007/s00287-004-0380-2
https://doi.org/10.1007/s00287-004-0380-2
https://ozimmer.ch/patterns/2020/04/29/MAPRetrospective.html
https://github.com/Microservice-API-Patterns/LakesideMutual
https://microservice-api-patterns.github.io/MDSL-Specification/
https://github.com/socadk/design-practice-repository/blob/master/activities/SDPR-StepwiseServiceDesign.md
https://github.com/socadk/design-practice-repository/blob/master/activities/SDPR-StepwiseServiceDesign.md
https://queue.acm.org/detail.cfm?id=1394128
https://microservices.io/patterns/data/saga.html
http://www.servicedesignpatterns.com/
http://www.servicedesignpatterns.com/
https://books.google.ch/books?id=a7VQAAAAYAAJ
http://cidrdb.org/cidr2005/papers/P12.pdf
http://cidrdb.org/cidr2005/papers/P12.pdf
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://doi.org/10.1109/MS.2016.137
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/MCC.2018.011791714
https://doi.org/10.1109/MS.2017.4541049
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1109/MS.2017.56

Data-Oriented Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

[35] Francisco Torres. 2015. Context is King: What’s Your Software’s Operating
Range? IEEE Software 32, 5 (2015), 9–12. https://doi.org/10.1109/MS.2015.121

[36] Vaughn Vernon. 2013. Implementing Domain-Driven Design. Addison-Wesley
Professional.

[37] Markus Voelter, Michael Kircher, and Uwe Zdun. 2004. Remoting Patterns -
Foundations of Enterprise, Internet, and Realtime Distributed Object Middleware. J.
Wiley & Sons, Hoboken, NJ, USA.

[38] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (January 2009),
40–44. https://doi.org/10.1145/1435417.1435432

[39] Jim Webber, Savas Parastatidis, and Ian Robinson. 2010. REST in Practice: Hyper-
media and Systems Architecture (1st ed.). O’Reilly Media, Inc.

[40] AndrewWhite, David Newman, Debra Logan, and John Radcliffe. 2006. Mastering
master data management. G00136958.

[41] RebeccaWirfs-Brock andAlanMcKean. 2002. Object Design: Roles, Responsibilities,
and Collaborations. Pearson Education.

[42] Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso, and Daniel Lübke.
2018. Guiding Architectural Decision Making on Quality Aspects in Microservice
APIs. In 16th International Conference on Service-Oriented Computing ICSOC 2018.
78–89. http://eprints.cs.univie.ac.at/5956/

[43] Olaf Zimmermann. 2009. An architectural decision modeling framework for service-
oriented architecture design. Ph.D. Dissertation. University of Stuttgart, Germany.
http://elib.uni-stuttgart.de/opus/volltexte/2010/5228/

[44] Olaf Zimmermann. 2015. Architectural Refactoring: A Task-Centric View on
Software Evolution. IEEE Software 32, 2 (Mar.-Apr. 2015), 26–29. https://doi.org/
10.1109/MS.2015.37

[45] Olaf Zimmermann. 2017. Microservices Tenets. Comput. Sci. 32, 3-4 (July 2017),
301–310. https://doi.org/10.1007/s00450-016-0337-0

[46] Olaf Zimmermann, Vadim Doubrovski, Jonas Grundler, and Kerard Hogg. 2005.
Service-oriented architecture and business process choreography in an order
management scenario: rationale, concepts, lessons learned. (2005), 301–312.

[47] Olaf Zimmermann, Jonas Grundler, Stefan Tai, and Frank Leymann. 2007. Archi-
tectural Decisions and Patterns for Transactional Workflows in SOA. In Service-
Oriented Computing - ICSOC 2007, Fifth International Conference, Vienna, Austria,
September 17-20, 2007, Proceedings (Lecture Notes in Computer Science), Bernd J.
Krämer, Kwei-Jay Lin, and Priya Narasimhan (Eds.), Vol. 4749. Springer, 81–93.
https://doi.org/10.1007/978-3-540-74974-5_7

[48] Olaf Zimmermann, Pal Krogdahl, and Clive Gee. 2004. Elements of service-
oriented analysis and design.

[49] Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker.
2020. Interface Responsibility Patterns: Processing Resources and Operation
Responsibilities. In Proc. of the European Conference on Pattern Languages of
Programs (EuroPLoP ’20).

[50] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun.
2020. Introduction to Microservice API Patterns (MAP). In Joint Post-proceedings
of the First and Second International Conference on Microservices (Microservices
2017/2019) (OpenAccess Series in Informatics (OASIcs)), Luís Cruz-Filipe, Saverio
Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and Sabine
Sachweh (Eds.), Vol. 78. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 4:1–4:17. https://doi.org/10.4230/OASIcs.Microservices.
2017-2019.4

[51] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun. 2017. Interface
Representation Patterns: Crafting and Consuming Message-Based Remote APIs.
In Proc. of the 22nd European Conference on Pattern Languages of Programs (Euro-
PLoP ’17). ACM, Article 27, 36 pages. https://doi.org/10.1145/3147704.3147734

[52] Olaf Zimmermann, Mark Tomlinson, and Stefan Peuser. 2003. Perspectives on
Web Services: Applying SOAP, WSDL and UDDI to Real-World Projects. Springer
Science & Business Media.

https://doi.org/10.1109/MS.2015.121
https://doi.org/10.1145/1435417.1435432
http://eprints.cs.univie.ac.at/5956/
http://elib.uni-stuttgart.de/opus/volltexte/2010/5228/
https://doi.org/10.1109/MS.2015.37
https://doi.org/10.1109/MS.2015.37
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/978-3-540-74974-5_7
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.1145/3147704.3147734

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data on the outside vs. data on the inside
	2.2 Responsibility-Driven Design (RDD)

	3 Recap: The MAP Language 2016-2019
	3.1 Domain model
	3.2 Pattern template

	4 Types of Information Holders
	4.1 Pattern: Information Holder Resource
	4.2 Pattern: Operational Data Holder
	4.3 Pattern: Master Data Holder
	4.4 Pattern: Reference Data Holder
	4.5 Pattern: Data Transfer Resource
	4.6 Pattern: Link Lookup Resource

	5 Conclusions and Outlook
	References

