
P4Fuzz: Compiler Fuzzer for
Dependable Programmable Dataplanes

Andrei Alexandru Agape
Mădălin Claudiu Dănceanu

René Rydhof Hansen
Aalborg University
Aalborg, Denmark

Stefan Schmid
University of Vienna

Vienna, Austria

ABSTRACT
Emerging software-defined networks and programmable dataplanes
promise to render communication networks more dependable, over-
coming today’s manual and error-prone approach to operate net-
works. Indeed, programmable dataplanes such as P4 provide great
opportunities for improving network performance and developing
innovative security features, by allowing programmers to reconfig-
ure and tailor switches towards their needs. However, extending
programmability to the dataplane also introduces new threat mod-
els. In this paper, using a systematic security analysis, we identify
a particularly worrisome vulnerability: the automated program
compilers which lie at the core of programmable dataplanes. The
dataplane compilers introduce a risk of persistent threats which
are covert and hard to detect, and may be exploited for large-scale
attacks, affecting many devices. Our main contribution is P4Fuzz,
a compiler fuzzer to find bugs and vulnerabilities in P4 compilers,
in an efficient and automated manner. We discuss the challenges
involved in designing such a compiler fuzzer for P4, present our
fuzzing and taming algorithms, and report on experiments with our
prototype implementation, considering the standard compilers of
BMv2, eBPF, and NetFPGA. Our experiments confirm that P4Fuzz
is able to generate and test the validity of dozens of P4 programs
per minute. Using P4Fuzz, we also successfully found several bugs
which have been acknowledged and fixed by the community.

CCS CONCEPTS
•Networks→ Programming interfaces; Protocol correctness;Bridges
and switches; • Security and privacy → Software security engi-
neering.

KEYWORDS
software defined networking, p4 compiler, fuzzing

Research supported by the Vienna Science and Technology Fund (WWTF) project
ICT19-045.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICDCN ’21, January 5–8, 2021, Nara, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8933-4/21/01. . . $15.00
https://doi.org/10.1145/3427796.3427798

1 INTRODUCTION
Communication networks have become a critical infrastructure of
our digital society. The resulting stringent dependability require-
ments however stand in stark contrast to today’s manual and error-
prone approach to manage and operate networks. Software-Defined
Networks (SDNs), and its de facto standard protocol, OpenFlow,
have recently emerged as an attractive alternative, enabling pro-
grammability and automation.

SDNs separate the two core functions of the network-processing
elements, the control plane and the data plane, by outsourcing
and consolidating the control over switches and routers to a logi-
cally centralized software. The latter can manipulate the network
configuration via an API (e.g., using OpenFlow). This decoupling
allows a variety of control plane implementations for each data-
plane, and supports fast innovations in the control plane, at the
speed of software development, and independent of the life cycles
and restrictions of the underlying hardware.

However, despite the additional flexibility brought by separating
these functions, SDN still assumes that the behavior of the network
data plane is fixed. This is a significant impediment to innovation.
For example, the deployment of new network security features and
protocols, such as the tunneling protocol VxLAN which is now
widely used for data center network virtualization, can take several
years: in the case of VxLAN, there were 4 years between the initial
proposal and its commercial availability in high-speed devices [3].

The advent of programmable dataplanes and P4 [2] overcomes
this problem by unlocking the next stage of flexibility: after Open-
Flow introduced great flexibilities in how switches from different
vendors can be controlled in a unified manner, P4 supports re-
configurability in the dataplane. P4 makes the deployment of new
protocols simpler, e.g., a VxLAN implementation in P4 requires 175
lines of code and can be deployed via a software upgrade.

More specifically, P4 allows to change the way switches process
packets at runtime. At the heart of these emerging programmable
networks lies an open, flexible and silicon-independent API, which
unties switches from the specific network protocol (“protocol inde-
pendence”), and which enables packet processing functionality to
be programmed independently of the specifics of the underlying
hardware (“target independence”). In particular, P4 not only provides
a high-level programming language which can be compiled against
many different types of execution machines (called “P4 targets”,
which have a P4 compiler back-end), but also offers a common
so-called P4 Runtime API that allows an operator to change and
immediately start using new forwarding tables, without restarting
the API or the control plane.

https://doi.org/10.1145/3427796.3427798

ICDCN ’21, January 5–8, 2021, Nara, Japan A.Agape, M.C.Dănceanu, R.R.Hansen, S.Schmid

This paper is motivated by the observation that programmable
dataplanes do not only enable more flexible communication net-
works, interesting new use cases, and an unprecedented perfor-
mance, but also new dependability challenges. In particular, we
observe that the introduction of a domain-specific language, P4,
and the concomitant development tools, especially the compiler
which is a key asset on the P4 platform, also opens the doors to
new bugs [8] and security vulnerabilities well-known from the
software development community. This includes some of the most
pernicious bugs, namely those found in compilers, leading to fun-
damental questions about how much trust can/should be put into
the development tools and infrastructure [26].

Despite being a fundamental and constituent part of pro-
grammable dataplanes, the compilation process is for most devel-
opers unknown. Indeed, existing tools usually focus either on the
packet generation (e.g., p4pktgen [13]) or the language and pro-
grams (e.g., ASSERT-P4 [8]), by checking the execution paths and
validating the intended program behavior. However, the compiler
does not only increase the attack surface, it may also be a partic-
ularly attractive target for adversaries, due to the large impact an
attack can have: an (often hard-to-detect) vulnerability can effect
many devices (i.e., all devices based on this code).
Contributions. This paper studies the novel security challenges
introduced by programmable dataplanes. Charting a systematic
taxonomy of the attack surface, we identify the compiler as a novel
threat to the network’s dependability.

Our main contribution is an automated compiler fuzzer frame-
work for P4, called P4Fuzz which can enhance the dependability
of emerging programmable networks. P4Fuzz is able to stress the
P4 compiler and find bugs hidden deep in the implementation, by
generating syntactically and semantically valid P4 programs, using
novel algorithms. P4Fuzz follows a blackbox and generation-based
approach and incorporates taming techniques which, after finding
bugs, use a clustering algorithm to identify different categories of
vulnerabilities. Generally, P4Fuzz is designed such that it can sup-
port multiple architectures such as BMv2, eBPF, or NetFPGA, and is
easily extendable. Our experiments, using our prototype implemen-
tation, show that P4Fuzz generates up to 100 valid programs per
minute and is able to test validity for approximately 20 programs
per minute. Furthermore, during a feasibility study, in relatively
short time, P4Fuzz discovered and reported four bugs, out of which
two have already been fixed on the official repository of P4C, the
standard compiler for P4. We also report on our experiments and
experience with a NetFPGA board and compiler, for which further
bugs were found.

To facilitate further research in this area and explore even more
effective fuzzing strategies, we will make our tool, P4Fuzz, publicly
available to the research community, together with this paper, as
open source.
Novelty and RelatedWork.While fuzzing is a popular technique
used in security to explore corner cases and find bugs that may
prove to be exploitable (see e.g., [17, 25] for case studies in the con-
text of SDN), apart from some successful examples (e.g., Csmith [27]
for the C language), less is known about fuzzers for compilers: poten-
tially an effective tool to find weaknesses and bugs in the compiler.
We in this paper hence initiate the study of compiler fuzzers for P4.

More generally, there is much prior work on the design, perfor-
mance and use cases for programmable dataplanes and P4 [2, 10,
14, 20], as well as the security [7, 9, 11, 12, 16, 18, 19, 24] and verifi-
cation [1, 4] of software-defined networks. While some of the latter
studies also apply to programmable dataplanes, programmable dat-
aplanes introduce additional challenges, as we also show in this
paper.

Dargahi et al. [6] presented a first analysis of the attack surface
of programmable dataplanes and P4. Freire et al. proposed a ver-
ification approach to prevent bugs, through the use of assertions
and symbolic execution, and presented ASSERT-P4 [8] accordingly.
Nötzli et al. proposed p4pktgen [13], a tool for automated test case
generation for P4 programs, allowing to validate if P4 programs act
as intended on a given device.

Our work is the first to consider issues related to the P4 com-
piler. However, very recently, Ruffy et al. [15] followed up on our
work (started 2017 with a student thesis) and presented Gauntlet,
which provides several domain-specific techniques to find bugs in
programmable packet processing compilers.
Organization. The reminder of this paper is organized as follows.
We provide a short background on programmable dataplanes and
P4 in §2, conduct a STRIDE analysis of programmable dataplanes
in §3, and introduce a threat model in §4. We describe our tool in §5,
and evaluate it in §6–§8. We conclude in §9.

2 BACKGROUND
This section presents the background on the P4 language and com-
piler required in order to understand the scope, design and imple-
mentation of P4Fuzz.

P4 Language. P4 is a domain-specific language that provides a
number of constructs optimized around network data forwarding.
The version used within this project is P4-16 [23]. The target inde-
pendent goal specifies that the language can be compiled against
many different types of execution machines. These machines are
known as “P4 targets”, and each P4 target has a P4 compiler back-
end. The P4 compiler maps the P4 source code into the target switch
model. The protocol independent goal states that the P4 programs
are the ones that specify how a switch processes packets. The P4
language has no support for protocols; it is the P4 programmer that
describes the header formats and field names. Once the program-
mer does so, they are interpreted and processed by the compiled
program on the target device. The reconfigurability allows network
administrators to change how switches process packets even after
they are deployed. This design is made possible by the protocol
independence and the abstract language model.

A P4 program can generally be structured into three main parts:
data declaration, parse program and control flow program. The data
declaration defines the data types for header and metadata bus. The
parse program section defines the packet parser and de-parser as a
finite state automaton using states and transitions. The control flow
program section defines how packets are forwarded and processed
using actions such as noop, drop, modify, push, pop etc.

P4 Compiler. P4C is the compiler for the P4 programming lan-
guage that supports both the P4-14 and P4-16 versions1. P4C comes
with a standard front-end andmid-end, which can be combinedwith

1https://github.com/p4lang/p4c

https://github.com/p4lang/p4c

P4Fuzz: Compiler Fuzzer ICDCN ’21, January 5–8, 2021, Nara, Japan

Figure 1: Overview of P4 components, assets and attack
points in ONOS Controller

a target-specific back-end in order to obtain a complete compiler.
While the front-end deals with the semantic checks, the mid-end
performs optimization, and the back-end outputs target-specific
code. This separation makes it possible to easily integrate new back-
ends. Multiple back-ends have already been developed, generating
code for ASICs, NICs, FPGAs, software switches and other targets.

The main components of the compiler are the parser (either P4-
14 or P4-16), an Intermediate Representation (IR) converter that
enables backwards compatibility with P4-14 language, a fixed front-
end component, customizable mid-ends, and back-ends provided
by the vendor for specific targets.

The front-end is fixed, the back-end target specific. The P4C
provides passes which can be used to implement various mid-ends,
but new passes (or even a whole mid-end) can also be easily added.

3 ANALYSIS OF SECURITY CHALLENGES
We start by conducting a systematic study of the security challenges
introduced by programmable dataplanes, fromwhich we will derive
our threat model. We first provide a brief overview of the main
assets of a (typical) P4 SDN environment and then perform a STRIDE
analysis of the attack surface presented by such an environment.

3.1 P4 Assets
In order to perform our security and vulnerability analysis of P4,
we first have to identify and prioritise the potential targets, i.e., the
assets of the P4 platform. An asset in this context is any data, device,
or other component that supports information related P4 activities.
For convenience we have grouped the P4 assets of interest into
four general categories: control plane assets, channel plane assets,
data plane assets, and the P4 compiler, see Fig. 1 and Fig. 2 for an
overview. In the following we briefly describe the categories and
their concomitant assets.

Figure 2: Overview of P4 components, assets and attack
points in BMv2 Switch

Control Plane. The control plane, as a whole, is concerned with
the routing process, including ongoing management and setup of
the process.

• Applications. These are the primary assets in the control
plane. An application is (potentially third-party) software
designed to manage and perform specific actions within an
SDN. Applications are one of the great attractions of SDN,
since they offer deep and wide-ranging flexibility and can
be installed/removed as and when needed for specific tasks.
They are also one of the obvious targets of attack.

• P4Info. This is the result of compiling the P4 program. This
asset contains critical information such as tables, meters,
counter, etc. as well as assigned IDs, enabling communica-
tion between controller and switch. This information is also
used by both the P4 controller to setup the forwarding con-
figuration and the P4 runtime (denoted P4Runtime in Fig. 1)
for translating IDs into objects.

• P4DeviceConfig. The result of compiling the P4 control
program to the target switch using the appropriate back-end
compiler, e.g., bmv2JSON is the output of the bmv2 back-end
compiler. This asset is used by the controller, together with
the P4Info asset, to set up the forwarding plane configuration.

• SwitchPipeConf. This is a controller application that
defines the switch pipeline by using the P4Info and
P4DeviceConfig assets to set up a mapping between P4 and
platform specific objects.

• Switch driver. The switch driver is a switch-specific appli-
cation running on the controller and typically developed by
the switch vendor. It provides an interface for adding and
removing target specific table entries using the mapping
set up by SwitchPipeConf. As an example, in ONOS, it maps
ONOS flows to P4 table entries.

• P4Runtime agent. This is an application on the controller
that serializes the P4 objects and the forwarding configura-
tion to Protobuf and calls the intended RPC methods.

• P4Runtime.proto. The P4Runtime protocol specification.
It defines the RPC methods and messages that can be used

ICDCN ’21, January 5–8, 2021, Nara, Japan A.Agape, M.C.Dănceanu, R.R.Hansen, S.Schmid

between controller and switch. The protocol provides dif-
ferent RPC methods such as SetForwardingPipelingConfig
and StreamChanel. On top of these, the protocol provides a
multitude of message types. The P4Runtime.proto is present
in both controller and switch.

• gRPC. The remote procedure call (RPC) system developed at
Google. It uses HTTP/2 for transport, Protocol Buffers as the
interface description language, and provides features such
as authentication, bidirectional streaming and flow control,
cancellation and timeouts etc.

From the above, it should be clear that the control plane contains
a wide variety of assets, ranging from applications to simple files,
resulting in a wide attack surface.
Channel Plane. The channel plane is concerned with inter-
component communication (through channels), mainly between
controller and switch. For our use, this plane comprises only a
single asset:

• Protobuf messages. These are the messages exchanged
between the controller and switch, serialized using Protocol
Buffers.

Data Plane. The data plane is concerned with the actual forward-
ing of data (packets) and shares (some) asset types with the control
plane.

• gRPC. This is similar to the gRPC asset on the controller,
with the difference that if the switch gRPC is not available it
is only the switch that cannot be controlled anymore, while
if the controller gRPC is not available, the whole network
becomes uncontrollable.

• P4Runtime.proto. The P4Runtime protocol specification
that defines the RPC methods and messages that can be used
between controller and switch. Similar to the file present on
the controller.

• Parser/de-parser. These are defined in the P4 program as a
deterministic finite automaton (DFA) using states and tran-
sitions.

• Flow tables. These are the tables used to define exactly how
the packets are forwarded and processed.

Compiler. The compiler is a key asset on the P4 platform: this is
what enables the rapid development of applications that can change
major aspects of a network. However, as always, programmabil-
ity also comes with many potential risks, requiring good (security
aware) programming practices. For our purposes, we consider dif-
ferent parts of the compiler as separate assets.

• Front-end compiler. This is a target-independent and stan-
dard part of the compiler that deals with the semantics
checks, and that can be combined with a target-specific
back-end to create a complete P4 compiler. We here take the
front-end compiler to include various optimization passes,
performed before the generated Intermediate Representation
(IR) is sent to the back-end compiler.

• Converter (P4-14 to P4-16). This part of the compiler en-
ables backward compatibility with the P4-14 version of the
P4 language. It parses the P4-14 into version 1 of the Inter-
mediate Language before it is converted to the Intermediate
Representation accepted by the front-end.

Table 1: STRIDE analysis

Threat
Property
violated Definition Example

Spoofing Authentication Impersonating something
or someone else

Pretends to be another switch
in the network
Pretends to be the controller
Pretends to be the network
controller administrator

Tampering Integrity Modifying data or code
Intercept and modify
protobuf messages
Take control of gRPC server
and modify the protobuf
messages

Repudiation Non-repudiation Claiming to have not
performed an action

A switch that does not follow
the controller instructions
A controller claiming that
a switch has not connected to it

Information
Disclosure Confidentiality Exposing information to

someone not authorized
to see it

Read device tables:
controller flows,
switch tables
Read protobuf messages

Denial of
Service Availability Deny or degrade

service to users

Crashing the P4Runtime
gRPC service
Flooding the switch-
controller channel
Modify and invalidate
protobuf messages
Intercept and deny arrival
of the packets to the intended
device

Elevation
of
privilege

Authorization Gain capabilities without
proper authorization

A switch changing
information in the controller
Configure a switch and
decide how the traffic is handled

• Back-end compiler. This is the main target-specific com-
ponent of the compiler, usually developed by the vendor of
the network components.

While it is possible to go deeper and identify more specific assets,
we conclude our survey of the P4 assets here: for an initial mapping
of major (potential) security vulnerabilities, we have found that the
above lists provide a good starting point.

3.2 STRIDE Analysis and Attack Surface
In the following we present a STRIDE analysis of the P4 platform,
based on the assets identified in the previous section. STRIDE is a
well-known model for categorising (potential) IT-security threats
and a useful tool for structuring threat-analysis of IT systems. The
name is a mnemonic derived from the threat categories comprising
the model: Spoofing, Tampering, Repudiation, Information disclosure,
Denial-of-service, and Elevation of privilege. The threat categories
cover most, if not all, the “classic” threats/attacks that have been
oberseved and reported in the literature.

Since STRIDE analysis is fairly standard and well-known, we
will not discuss it in further detail here. We illustrate the general
methodology by briefly discussing an excerpt of the STRIDE analy-
sis for the P4Runtime component (see Table 1 for an overview).

Spoofing. A potential spoofing attack would be an attacker (suc-
cessfully) masquerading as a (different) switch in the network. This
would allow the attacker to elicit information from the controller,
such as de-/parser configuration, pipeline configuration, forwarding
table entries, and how table-miss flows are handled.

Tampering. If an attacker canmodify, i.e., tamperwith, protobuf
messages, it can violate confidentiality, integrity, and availability
properties of the network. An attacker that can take control of
the switch gRPC or the controller gRPC, can modify the sent and

P4Fuzz: Compiler Fuzzer ICDCN ’21, January 5–8, 2021, Nara, Japan

received protobuf messages, thus controlling the switch or the
entire network.

Repudiation. In a repudiation attack, an attacker can make the
switch refuse configurations from a controller and claim they were
not received, thus making the switch uncontrollable. An attacker
can make the controller refuse connections from switches that try
to connect to it and claim that no connections were instantiated, ren-
dering the switch unable to handle traffic. The availability principle
is therefore violated.

Information disclosure. An attacker with a presence on the
network may be able to pick up information that is either sent in the
clear, such as unencrypted protobuf messages, messages picked up
directly from the control plane, or even exploiting specific timing
properties for an advanced timing-attack on the controller or the
switches.

Denial-of-service. A denial-of-service attack may crash the
gRPC service, making the communication between the switch and
the controller unavailable, potentially wrecking havoc in the net-
work.

Elevation of privilege. As part of an elevation of privilege at-
tack, an attacker can write malicious applications, and based on the
controller configuration, allow the application to read, modify or
deny data and services. It may also modify the forwarding tables.

Here, the attack surface is composed of the following resources:
(1) the data in the system and messages exchanged, (2) the methods
for processing applications, e.g., request/response methods, (3) the
communication channels, e.g., HTTP, TCP.

For example, an attacker that has access to the switch configu-
ration can craft protobuf messages to decide upon how the parser,
deparser, pipeline and flow table entries look like. In terms of re-
sources, the entry point is gRPC while the data is represented by
the Protobuf messages sent. The methods that can be used are the
ones defined in the ‘.proto’ file and the communication channel is
the gRPC. An attacker that has access to the SDN controller ma-
chine can try to access the administration panel. As an example,
ONOS controller provides a graphical interface for administration
on port 8181 with default credentials onos/rocks. In this case, the
entry point is the ONOS login interface while the data is repre-
sented by the username/password combination. The method used
is a POST request and the communication channel is HTTP.

4 THREAT MODEL
Motivated by our security analysis of the attack surface of pro-
grammable dataplanes, we consider a novel threat model and study
an adversary which exploits the compiler of a programmable dat-
aplane. The threat model is inspired by similar models arising in
other contexts requiring “trust in trust” [26].

Our attacker can come in different flavors. A first kind of attacker
may aim to introduce malicious code to the compiler directly, e.g.,
a backdoor. In large development teams, depending on the policy
how to accept push requests (by a company insider or member of
the open-source community), a “malicious” push to the back end
may be easily overlooked.

A second kind of attacker however may be more problematic:
an attacker may simply try to find bugs and subsequently take
advantage of them. For example, a simple calculation bug may be

P4 program P4C
front­end

BMv2
back­end

eBPF
back­end

NetFPGA
back­end

BMv2
switch

eBPF
filter

NetFPGA
device

Figure 3: Attack surface of P4 compiler.

exploited to produce wrong MAC addresses and hence to com-
promise ACLs or to forward traffic wrongly and, e.g., exfiltrate
information. Being able to crash or subvert a compiler may intro-
duce further vulnerabilities, especially in virtualized environments,
e.g., the recent attack to compromise clouds via the virtualized
dataplane [25]. This attack may require only very limited amounts
of resources and skills, e.g., a simple fuzzing approach may be suf-
ficient. The attack does generally also not require any privileged
access to software, hardware, or distribution channels.

In particular, the attacker can consider attacks both on the front
end compiler (for which finding bugs is harder but the impact of
the attack is larger as it affects all devices) and on the back end
compiler (where it may be easier to find mistakes as these compilers
are more specific and may also contain non-implemented parts).
See Fig. 3 for an illustration of the attack surface of the P4 compiler.

5 THE P4FUZZ COMPILER FUZZER
This section presents our compiler fuzzer, P4Fuzz, and discusses
some of the design and implementation challenges faced. Design-
ing a compiler fuzzer for P4 is a non-trivial task as the generated
P4 programs should be as general and as specific as possible: the
programs should be valid, and allow to explore a large spectrum of
the possible programs; but at the same time, also identify and focus
on the most critical and interesting programs where vulnerabilities
are likely. We discuss different challenges related to, e.g., generat-
ing semantically valid programs, tailoring the fuzzer for different
architectures, dealing with nested types and recursive statements,
testing programs behavior, or sorting faulty test cases based on
error relevance. We then present design choices and algorithms
accordingly.

5.1 Fuzzer Design
The P4Fuzz fuzzer is designed as a framework comprising separate
components, including the actual fuzzer, a test case generator, a
packet handler, as well as a taming engine (which is not specific to
the fuzzer). Our fuzzer is a so-called smart, black-box, generation-
based fuzzer [21]. In other words, our fuzzer knows and takes
advantage of the structure of input to the compiler, i.e., P4 pro-
grams; it does not have any knowledge of the P4 compiler’s inner
workings, e.g., through static and/or symbolic analysis; and the
fuzzer generates input (P4 programs) from scratch. Fig. 4 shows an
overview of the tool and the associated activity flow.

The “smart” fuzzer approach was taken, since the alternative,
generating input strings randomly and feeding them to the P4 com-
piler, would rarely yield a valid program and would thus mainly
be fuzzing the P4 compiler’s parser. Even though the black-box

ICDCN ’21, January 5–8, 2021, Nara, Japan A.Agape, M.C.Dănceanu, R.R.Hansen, S.Schmid

Write

Read

program.p4Test Case
Generator

Test Case
Tester

Compile

Error

Success

program.json

Bug
DB

Read

Packet
Generator

Packet
Tester

Produce

packet-out

Send

Packet-out
Comparison

Compare

No difference

Difference

Tamer

Read

Write

List of Bugs

prog.json

packet-in

Figure 4: Flow of P4Fuzz tool.

technique most likely covers a smaller part of the targeted com-
pilers code, we chose this approach due to it requiring less effort
and no specialised setup or specialised configuration for the user.
Furthermore, information about a particular P4 compiler or tar-
get platform may be added and exploited at a later stage. Using a
generation based approach for the fuzzer, rather than a mutation
based one, is also due to the fact that mutating a valid program
using one or more letters at a time would most likely throw syntax
errors as unexpected tokens and invalid keywords are produced.
Using mutation on known-valid keywords, instead of individual
characters, would likely still generate (too many) programs with
syntax errors and it would require more time and effort. Thus, a
generation based fuzzer is more likely to be able to generate tests
for later stages of the compiler

5.2 P4Fuzz Components and Activity Flow
The first step of the fuzzing process starts with the Test Case Gen-
erator module, which randomly generates P4 programs. After a
few P4 programs have been generated, the Test Case Tester can
begin to select and process the generated test programs; to speed
up execution, these two modules are running in parallel. The Test
Case Tester reads a (previously generated) P4 program, compiles
it, and checks the compiler output for errors and warnings. De-
tails about programs that give rise to compilation errors are saved
into a Database of Bugs. The result of a successfully compiled P4

program, in the form of a program.json file, is saved and tested
for run-time errors. In order to do so, the JSON file is deployed
to the switch together with specially crafted packets. The Packet
Generator (here we use the p4pktgen tool) crafts packets based on
the target program.json file deployed on the switch. The Packet
Tester module then reads each of these packets as packet-in and
outputs the packet-out. In the final stage of the fuzzer, the Packet-
out Comparison module checks if there are any differences between
the packet-outs of distinct switches, i.e., Simple Switch or eBPF. If
there were any differences between distinct architectures for the
same P4 program and the same packet-in, the test case is marked
as a possible bug and added to the database. Otherwise the process
ends for that test case, and another one is selected from the test case
pool. The Tamer module reads bugs saved to the database, sorts
them using a distance function such that the most interesting and
‘unique’ ones are ranked higher, and prints them out to the user.

5.3 Design Challenges and Solutions
In the following we discuss some of the specific design challenges
and corresponding solutions in more detail.

Generating Syntactically Valid P4 Programs.Obviously, the
test programs have to be syntactically correct in order for the com-
piler to accept them. This challenge was addressed in the P4Fuzz
design by systematically translating the grammar available in the
specifications of the P4 language [22] into rules for generating
nodes that can be used in an abstract syntax tree. Each node is then
responsible for emitting code according to the P4 grammar rules
during the code generation process.

In order to enable users to adapt and specialise P4Fuzz to spe-
cific needs, it is possible to change the probability with which a
particular production rule (from the grammar) is selected, i.e., not
all the available productions have the same chance of being chosen.
This allows for tweaking the fuzzer to generate specific types of
programs more often and by changing the probabilities, the user
can change the focus of the fuzzer on different components of the
P4 language.

Finally, since the number of generated cases per unit of time
is an important aspect of a fuzzer, multiple instances of the test
case generator can run in parallel as the processes do not interfere,
thus enabling the use of multiple cores available on the machine.
Fig. 5 illustrates this aspect by showing how two generators save
different test cases using different test case numbers.

Generating Semantically Valid P4 Programs. Test programs
must also be semantically valid, which is much harder to enforce
than syntactical validity: some (semantic) rules are rather complex
and may not be well documented (if at all). A further challenge is
the dependency between semantic rules and the context of each
instruction generated by the fuzzer, e.g., a variable must be declared
before it is referenced. Hence, a P4 compiler fuzzer must be able to
track the context of the programwhile generating it and enforce the
semantic rules accordingly in order to generate valid P4 programs.

For P4Fuzz, since there is no formalization of the semantics of
P4 available, we first extracted the semantic rules for each of the
supported grammar rules, by reading through the P4 language
specification [22] and implementing these rules as filters. Filters in
P4Fuzz are a way of specifying requirements that have to be met

P4Fuzz: Compiler Fuzzer ICDCN ’21, January 5–8, 2021, Nara, Japan

0000001234.p4 0000001235.p4 0000001236.p4 0000001237.p4 ...

Generator 1 Generator 2

generates

generates

generates
generates

Figure 5: The Test Case Generator module can run as multiple processes each generating a different test case

in order for a production to be selected or not. As an example, the
type nesting rules described in the language specifications, disal-
low other headers or structs to be used inside header declarations.
Enforcing this semantic rule is achieved through a filter that does
not allow a production for a header or struct to be selected when a
header is declared.

Additionally, at all points during the program generation, P4Fuzz
tracks the available user defined types as well as the available vari-
ables, their types and if they have been initialized or not. This
tracking is implemented by recording the variable and data type
declarations in a stack of scopes emulating the run-time stack. The
information tracked during program generation can be extended to
also include non-functional and/or high-level semantic properties,
e.g., unreachable code and self-contraditory/meaningless condition-
als, to verify that the compiler handles such cases correctly.

Testing Behavior of P4 Programs. In order to find errors in
the compiled P4 programs, the fuzzer must be able to test the com-
piled programs (or compare them to the output of a different com-
piler). Verifying the correctness of randomly generated programs
is challenging because a fuzzer has no means of deciding which
behavior is intended and which is a mistake. Furthermore, the P4
language is relatively young and few advanced tools for analyz-
ing/testing P4 programs have been developed yet. In P4Fuzz, testing
the generated P4 programs behavior is done using differential test-
ing, a technique in which the test case (a P4 program in this case) is
compiled using multiple compilers and/or back-ends. If the output
of the different compilers on the same source code is different, the
program is marked as potentially buggy.

Sorting Faulty Test Cases based on Error Relevance.When
testing a P4 compiler on randomly generated test programs, the
fuzzer finds many potential errors, requiring further manual test
and analysis which can be very time consuming. In order to facilitate
this task, the fuzzer should rank the potential errors based on their
novelty and importance (relative to the potential errors found); this
is also called taming the fuzzer output [5].

Taming can greatly improve the efficiency of the bug discovery
process as it can help users select the most interesting cases first. In
P4Fuzz we tackle this problem by grouping the errors that are very
similar (trigger the same bug) and thus creating clusters for each
type of error. In this way, the person that manually investigates the
interesting test cases can cover more error types with less effort.
We discuss taming in more detail below.

Making itWorkAcross Different Architectures. The P4 lan-
guage is target independent which means that P4 programs can

be compiled and run on many different appliances, each of them
having different architectures, in a modular way. Thus, the P4 com-
piler fuzzer must also be target independent and generate only P4
programs that can be compiled for specific back ends, i.e., architec-
tures.

The solution chosen in P4Fuzz is to have different code generator
wrappers based on the target specified (e.g. BMv2 or eBPF). These
wrappers include the different code skeletons, mandatory includes,
headers and controls, together with the limitations of the target for
which it generates the code.

Handling Recursion in the P4 Syntax. The P4 language al-
lows data types and expressions to be nested, giving rise to recur-
sion in the grammar underlying the P4 syntax. Consequently, such
recursion must be controlled and correctly handled when generat-
ing random P4 programs. In P4Fuzz we address this challenge by
keeping track of the current depth of the recursion for each specific
rule implementation and increase it when the same production rule
is used. In case the new depth level exceeds a specific maximum,
the production rule responsible for this is no longer selected.

5.4 Taming
Once the fuzzing phase is over and all the potential bugs have been
saved to the bug database, it is left to inspect all the individual (po-
tential) bug reports and check whether there is a genuine bug, or if
it is a false positive. Inspecting hundreds or thousands of reports
produced by randomly generated test cases can be tedious work
and may produce unreliable results, especially if the same bug is
reported several times [5]. To alleviate this problem, P4Fuzz uses
the concept of taming: taming consists of ordering the (potential)
bugs reported in the earlier stages, such that the (relatively most)
diverse and interesting test cases are ranked higher [5]. In this
way the compiler developer can easily identify a larger number of
bugs without spending time on duplicates. Inspired by [5] we try
to find an approximate solution to the taming problem using two
approaches: (1) Furthest point first (FPF) sorting using Levenshtein
distance between each pair of errors; (2) Using k-medoids cluster-
ing based on a distance function which measures the number of
different tokens/words between the two error messages.

Below we describe these approaches in more detail, including
the challenges and outcomes for each approach.

Another recommendation seen in previous work, is to reduce the
programs that produce errors, thus minimizing the source code by
deleting unused statements. Such tools exist for C and JavaScript

ICDCN ’21, January 5–8, 2021, Nara, Japan A.Agape, M.C.Dănceanu, R.R.Hansen, S.Schmid

but not for P4 and we leave it for future work to develop such a
tool.

5.4.1 FPF on Levenshtein distance. The Levenshtein distance2 is
commonly used to describe how different two given strings are
by comparing their characters. This is one of the distance func-
tions suggested by prior work and the one that produced successful
results in previous evaluations, although it is still not fully under-
stood [5].

Based on our results, we were able to identify two main prob-
lems with this approach. Firstly, the Levenshtein distance is not
suitable for calculating the distance between compiler outputs, es-
pecially when lines of code or variable names are included in the
error text, since the Levenshtein distance is based on characters
and is unable to differentiate between variable names and error
description. We conjecture that it may be possible to overcome this
problem by adapting the Levenshtein distance to work on tokens
(formed by the compiler output) instead of characters. Secondly,
the time complexity of the algorithm,O(len(strinд1) · len(strinд2)),
is too high, making it impossible to run the algorithm on all the
test cases discovered. To compare only two test cases that have
over 1000 characters, the algorithm has to execute over one million
operations.

5.4.2 Token-Based Distance for k-medoids. Inspired by [5] and the
FPF on Levenshtein distance, we defined a distance function based
on tokenized error messages; the pseudo-code is shown in Listing 1.
1 int tokens_distance(s1, s2)
2 {
3 int init_dist , dist;
4

5 s1_tokens [] = s1.tokenize(' ')
6 s2_tokens [] = s2.tokenize(' ')
7

8 init_dist = length(s1_tokens + s2_tokens)
9 dist = length(s1_tokens + s2_tokens)
10

11 for iterator i in s1_tokens {
12 for iterator j in s2_tokens {
13 if j == i {
14 dist = dist - 2
15 j = s2_tokens.remove(j)
16 break
17 } else { j++ }
18 }
19 }
20 return (dist / init_dist) * 100
21 }

Listing 1: Token-based distance function
Firstly, the test cases were split into tokens based on the space

character (each word became a token). The initial_distance and
distance are set to the sum of the two strings. Then, for each token
in the first string, we checked if it exists in the second string. If it
does, we delete the token from the second string and decrease the
dist by 2. Finally, the distance between two strings is stored in the
dist variable.

While this approach has a similar complexity as the Levenshtein
distance (the number of tokens is, in the worst case, the same as the
number of characters in a string, i.e., when all words in the string
contain only one character), in practice it is faster. Another advan-
tage is that it handles better the cases where the compiler output
2https://en.wikipedia.org/wiki/Levenshtein_distance (accessed 5 December 2019).

contains large parts of randomly generated code, since long variable
names for example are considered as only one token regardless of
the length (in comparison with Levenshtein that considers each
character separately).

6 PERFORMANCE EVALUATION
We evaluate P4Fuzz in three stages. First, in this section, we evaluate
the performance. In the next two sections, we will report on the
new compiler bugs we have found using the tool, and report on our
experiments with a NetFPGA board. The following experiments
were conducted using the latest version of the tool on a data set
of 10k’s test cases. The environment used for running P4Fuzz was
a virtual machine installed on one of the physical rack servers at
our university (Intel Xeon E5420 @ 2.50GHz).

In the following we analyze and discuss performance of the
fuzzers’ components.

Generating Test Cases. Test case generation is one of the key
aspects of P4Fuzz. The performance of the fuzzer is directly affected
by the speed at which it can produce programs. In Fig. 6, the average
time required by the test case generator module to produce a single
program is represented on the vertical axis while the size in terms
of tokens of the generated case is shown on the horizontal axis.
It can be seen that while the generation time increases with the
number of tokens used, the growth rate is linear.

Testing the Programs. Fig. 7 shows how the tester module
scales in relation to the number of tokens the program uses. While
the time required for testing a case greatly depends on the tasks
achieved by the program, it can be seen that the total number of
tokens used, plays an important role: the more tokens used, the
more time is required for the tester to check the program. The figure
indicates that testing programs larger than 14k–15k tokens is not
advisable as the time required for the process increases drastically.

CrashingTestCasesRate. In Fig. 9 the results of an experiment
for determining the distribution of the number of generated cases
based on the number of tokens are shown (represented by the
red bars). The figure also shows the rate at which the programs
crash the compiler (blue bars). Analyzing them in relation to the
generated test cases, a crash rate of nearly 50% can be determined.
This happens as P4Fuzz has a high chance of randomly generating
declaration of nested data types and variables which seems to not
be implemented as intended in the P4C compiler.

Taming.While taming is an expensive process, it can be seen
from Fig. 8 that it gives better results when compared to analyzing
the potential bugs in a random order. Because of the clustering of
errors based on their similarity in terms of word occurrences, for
the first few number of test cases analyzed, we get the same number
of distinct errors as the theoretical best. Overall it seems that the
clustering helps improving the process of analyzing potential bugs
by increasing the number of distinct errors analyzed using fewer
test cases.

7 BUGS FOUND
Using P4Fuzz, we successfully found four new and distinct bugs
within the P4C compiler. Out of these four bugs, two (Bugs #1291
and #1296) were fixed on the official repository, one of them
(Bug #562) is known but not fixed, and one of them (Bug #1325) is

https://en.wikipedia.org/wiki/Levenshtein_distance

P4Fuzz: Compiler Fuzzer ICDCN ’21, January 5–8, 2021, Nara, Japan

0-
1k

1k
-2

k
2k

-3
k

3k
-4

k
4k

-5
k

5k
-6

k
6k

-7
k

7k
-8

k
8k

-9
k

9k
-1

k
10

k-
11

k
11

k-
12

k
12

k-
13

k
13

k-
14

k
14

k-
15

k
15

k-
16

k
16

k-
17

k
17

k-
18

k

#tokens

0.0

0.2

0.4

0.6

0.8

1.0

1.2

av
g.

 ti
m

e
(s

)

Figure 6: Average generation time for test cases based on
number of tokens used

0-
1k

1k
-2

k

2k
-3

k

3k
-4

k

4k
-5

k

5k
-6

k

6k
-7

k

7k
-8

k

8k
-9

k

9k
-1

k

10
k-

11
k

11
k-

12
k

12
k-

13
k

13
k-

14
k

14
k-

15
k

15
k-

16
k

16
k-

17
k

17
k-

18
k

#tokens

0

1

2

3

4

5

6

7

av
g.

 ti
m

e
(s

)

Figure 7: Average compilation time for a test cases based on
number of tokens used

pending. The following sections present descriptions of the bugs
alongside ways of reproducing them.

Bug #1296: Specializing Extern Objects. Issue #12963 shows
that declaring specialized extern objects by specializing them on
the same extern object type triggers a compiler bug as shown in
the following example:
1 register <register <bit <32>>>(1) test;

We have tried compiling the above snippet for the BMv2 target
which leads to a compilation error. This is a BMv2 limitation. The
following shows the output of the compiler when a P4 program
triggering the explained bug is used:
1 In file: p4c/ir/visitor.cpp:54
2 Compiler Bug: IR loop detected

The bug occurred 770 times within 4920 possible bugs saved in the
database. Issue #1296 was tagged as a bug and solved in the official
P4C repository.

Bug #1291: Varbit Declaration in Structs. The P4 specifica-
tion states that varbits are allowed in a struct container type [22,
§7.2.7]:
1 struct metadata_t { varbit <8> test; }

3https://github.com/p4lang/p4c/issues/1296

0 5 10 15 20 25 30
#test cases analyzed

0

5

10

15

20

25

30

#d
ist

in
ct

 e
rro

rs
 se

en

Theoretic best
Random order
Taming

Figure 8: Tamed vs. random ordering distinct errors found
per number of cases analyzed

0-
1k

1k
-2

k
2k

-3
k

3k
-4

k
4k

-5
k

5k
-6

k
6k

-7
k

7k
-8

k
8k

-9
k

9k
-1

k
10

k-
11

k
11

k-
12

k
12

k-
13

k
13

k-
14

k
14

k-
15

k
15

k-
16

k
16

k-
17

k
17

k-
18

k

#tokens

0

200

400

600

800

1000

#t
es

t c
as

es

Crashing test cases
Total test cases generated

Figure 9: Distribution of test cases in relation to the number
of tokens used

Issue #12914 shows that declaring varbit types inside structs and
compiling for the BMv2 target leads to compilation error:
1 Compiler Bug: issue.p4(8): varbit <8>: Unhandled type

↪→ for @name(" userMetadata.test") varbit <8> test
2 varbit <8> test;
3 ^
4 issue.p4(8)
5 varbit <8> test;
6 ^^^^

The bug occurred 195 times within 4920 possible bugs saved in the
database. Issue #1291 was tagged as bug and solved in the official
P4C repository.

Bug #1325: Error Type in Nested Struct The P4 specification
states that both structs and errors are allowed in struct container
types [22, §7.2.7]:
1 struct test_struct { error test_error; }
2 struct local_metadata_t { test_struct test; };

However, compiling it for the BMv2 target leads to a compilation
error, registered as Issue #13255. The bug occurred 1019 times
within 4920 possible bugs saved in the database. Issue #1325 was
tagged as bug in the official P4C repository.
4https://github.com/p4lang/p4c/issues/1291
5https://github.com/p4lang/p4c/issues/1325

https://github.com/p4lang/p4c/issues/1296
https://github.com/p4lang/p4c/issues/1291
https://github.com/p4lang/p4c/issues/1325

ICDCN ’21, January 5–8, 2021, Nara, Japan A.Agape, M.C.Dănceanu, R.R.Hansen, S.Schmid

Bug #562: Nested StructsAccording to the P4 language specifi-
cation struct types are allowed in struct container types [22, §7.2.7]:
1 struct alt_t { bit <1> valid; bit <7> port; };
2 struct row_t { alt_t alt0; alt_t alt1; };
3 struct parsed_packet_t {};
4 struct local_metadata_t { row_t row; };

However, this leads to a compilation error when compiling for the
BMv2 target . The error was registered as Issue #5626. The bug
occurred 617 times within 4920 possible bugs saved in the database.
Issue #562 was tagged as bug in the official P4C repository.

8 NETFPGA EXPERIMENTS
In addition to the BMv2 target, we have also experimented with
a NetFPGA SUME Board. Using P4Fuzz on the NetFPGA-SUME
compiler (the P4 to SDNet translator) we have discovered some
limitations of the compiler: tables are not allowed to have empty
key lists, empty headers and structs are not allowed, and the error
and the varbit types cannot be used in structs. While all these
limitations are explicitly verified by the compiler, there are still
cases in which the p4c-sdnet tool reports errors as compiler bugs.
One such case is when the select transition for a parser state is
empty:
1 state start{
2 transition select(user_metadata.test){ }
3 }

Which yields the following compiler output:
1 terminate called after throwing an instance of 'Util::

↪→ CompilerBug '
2 what(): In file: /scratch/p4c_sdnet/build/p4c/

↪→ extensions/sdnet/analysis/typeMap.cpp:7
3 Compiler Bug: /scratch/p4c_sdnet/build/p4c/

↪→ extensions/sdnet/analysis/typeMap.cpp:7: Null type

Another case is represented by the external objects specialization
on the same external object type:
1 extern test_extern <T> {
2 test_extern ();
3 void read(out T result);
4 void write(in T value);
5 }
6 test_extern <test_extern <bit <32>>>() test;

9 CONCLUSION
We initiated the study of security issues related to the P4 compiler,
arguably a fundamental aspect: the P4 Runtime API is likely a
common component of both present and future SDN solutions. Our
paper hence complements related work focusing on the program’s
expected behavior or the program’s execution paths.

REFERENCES
[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic foundations
for networks. In ACM SIGPLAN Notices, Vol. 49. ACM, 113–126.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[3] Mihai Budiu. 2019. Programming networks with P4. In VMware Research Blog.

6https://github.com/p4lang/p4c/issues/562

[4] Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kostic, and Jennifer Rexford.
2012. A NICE way to test OpenFlow applications. In Proc. 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI).

[5] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-KeenWong, Xiaoli Z. Fern, Eric
Eide, and John Regehr. 2013. Taming compiler fuzzers. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2013). 197–208. https://doi.org/10.1145/2462156.2462173

[6] Tooska Dargahi, Alberto Caponi, Moreno Ambrosin, Giuseppe Bianchi, and
Mauro Conti. 2017. A survey on the security of stateful SDN data planes. IEEE
Communications Surveys & Tutorials 19, 3 (2017), 1701–1725.

[7] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. 2015.
SPHINX: Detecting Security Attacks in Software-Defined Networks. In Proc.
Annual Network & Distributed System Security Symposium (NDSS), Vol. 15. 8–11.

[8] Lucas Freire, Miguel C. Neves, Lucas Leal, Kirill Levchenko, Alberto E. Schaeffer
Filho, and Marinho P. Barcellos. 2018. Uncovering Bugs in P4 Programs with
Assertion-based Verification. In Proceedings of the Symposium on SDN Research
(SOSR 2018). 4:1–4:7. https://doi.org/10.1145/3185467.3185499

[9] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. 2015. Poisoning Network
Visibility in Software-Defined Networks: New Attacks and Countermeasures.. In
Proc. Annual Network & Distributed System Security Symposium (NDSS), Vol. 15.
8–11.

[10] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,
and Lawrence J Wobker. 2015. In-band network telemetry via programmable
dataplanes. In Proc. ACM SIGCOMM.

[11] Rowan Kloti, Vasileios Kotronis, and Paul Smith. 2013. Openflow: A security
analysis. In Network Protocols (ICNP), 2013 21st IEEE International Conference on.
IEEE, 1–6.

[12] Diego Kreutz, Fernando Ramos, and Paulo Verissimo. 2013. Towards secure
and dependable software-defined networks. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking. ACM, 55–60.

[13] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter Athanas.
2018. p4pktgen: Automated Test Case Generation for P4 Programs. In Proceedings
of the Symposium on SDN Research (SOSR 2018). 5:1–5:7. https://doi.org/10.1145/
3185467.3185497

[14] Diana Andreea Popescu, Gianni Antichi, and Andrew W Moore. 2017. Enabling
fast hierarchical heavy hitter detection using programmable data planes. In Proc.
Symposium on SDN Research (SOSR). ACM, 191–192.

[15] Fabian Ruffy, Tao Wang, and Anirudh Sivaraman. 2020. Gauntlet: Finding Bugs
in Compilers for Programmable Packet Processing. In USENIX OSDI.

[16] Sandra Scott-Hayward, Gemma O’Callaghan, and Sakir Sezer. 2013. SDN security:
A survey. In Future Networks and Services (SDN4FNS), 2013 IEEE SDN For. IEEE,
1–7.

[17] Bhargava Shastry, Markus Leutner, Tobias Fiebig, Kashyap Thimmaraju, Fabian
Yamaguchi, Konrad Rieck, Jean-Pierre Seifert Stefan Schmid, and Anja Feldmann.
2017. Static Program Analysis as a Fuzzing Aid. In Proc. 20th International
Symposium on Research in Attacks, Intrusions and Defenses (RAID).

[18] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. 2013. Avant-
guard: Scalable and vigilant switch flow management in software-defined net-
works. In Proc. ACM SIGSAC Conference on Computer & Communications Security
(CCS). 413–424.

[19] Seung Won Shin, Phillip Porras, Vinod Yegneswara, Martin Fong, Guofei Gu, and
Mabry Tyson. 2013. Fresco: Modular composable security services for software-
defined networks. In Proc. 20th Annual Network & Distributed System Security
Symposium (NDSS).

[20] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait Dixit,
andMihai Budiu. 2015. Dc. p4: Programming the forwarding plane of a data-center
switch. In Proc. ACM SIGCOMM Symposium on Software Defined Networking
Research (SOSR). ACM.

[21] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley.

[22] The P4 Language Consortium. 2017. P416 Language Specification. Published
online (Version 1.0.0). https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html Last
accessed: 3 August 2018.

[23] The P4 Language Consortium. 2018. P4 Language and Related Specifications.
https://p4.org/p4-spec/. Accessed: 2018-05-29.

[24] K. Thimmaraju, L. Schiff, and S. Schmid. 2017. Outsmarting Network Security
with SDN Teleportation. In Proc. IEEE European Symposium on Security and
Privacy (EuroSP). 563–578.

[25] Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-
Pierre Seifert, Anja Feldmann, and Stefan Schmid. 2018. Taking Control of
SDN-based Cloud Systems via the Data Plane. In Proc. ACM Symposium on SDN
Research (SOSR).

[26] Ken Thompson. 1984. Reflections on trusting trust. Commun. ACM 27, 8 (1984),
761–763.

[27] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and un-
derstanding bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2011).
283–294. https://doi.org/10.1145/1993498.1993532

https://github.com/p4lang/p4c/issues/562
https://doi.org/10.1145/2462156.2462173
https://doi.org/10.1145/3185467.3185499
https://doi.org/10.1145/3185467.3185497
https://doi.org/10.1145/3185467.3185497
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Background
	3 Analysis of Security Challenges
	3.1 P4 Assets
	3.2 STRIDE Analysis and Attack Surface

	4 Threat Model
	5 The P4Fuzz Compiler Fuzzer
	5.1 Fuzzer Design
	5.2 P4Fuzz Components and Activity Flow
	5.3 Design Challenges and Solutions
	5.4 Taming

	6 Performance Evaluation
	7 Bugs Found
	8 NetFPGA Experiments
	9 Conclusion
	References

