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Abstract
This paper provides an algorithmic framework for obtaining fast distributed algorithms for a highly-
dynamic setting, in which arbitrarily many edge changes may occur in each round. Our algorithm
significantly improves upon prior work in its combination of (1) having an O(1) amortized time
complexity, (2) using only O(log n)-bit messages, (3) not posing any restrictions on the dynamic
behavior of the environment, (4) being deterministic, (5) having strong guarantees for intermediate
solutions, and (6) being applicable for a wide family of tasks.

The tasks for which we deduce such an algorithm are maximal matching, (degree + 1)-coloring,
2-approximation for minimum weight vertex cover, and maximal independent set (which is the
most subtle case). For some of these tasks, node insertions can also be among the allowed topology
changes, and for some of them also abrupt node deletions.
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1 Introduction

We present a family of deterministic distributed algorithms that rapidly fix solutions for
fundamental tasks even in a highly-dynamic environment. Specifically, we provide algorithms
for maximal matching, (degree + 1)-coloring, 2-approximation for the minimum weighted
vertex cover (2-MWVC), and maximal independent set (MIS). We further show that for
some of these tasks, fast fixing is also possible with node insertions and deletions. Here, we
consider the severe case of abrupt deletions, where a deleted node does not have a chance to
inform its neighbors about its upcoming departure from the system.
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2 Fast Deterministic Algorithms for Highly-Dynamic Networks

Our algorithms enjoy the combination of (1) having an O(1) amortized time complexity,
(2) using only O(logn)-bit messages, (3) not posing any restrictions on the dynamic behavior
of the environment and in particular not requiring topology changes to be spaced in time, (4)
being deterministic, (5) having strong guarantees for intermediate solutions, and (6) being
applicable for a wide family of tasks. In recent years, there has been much progress on
distributed dynamic algorithms, achieving different combinations of the above promises. Our
algorithms significantly improve upon all prior work by that they guarantee the combination
of all the above properties. We elaborate upon – and compare to – prior work in Section 1.4.

We stress that as opposed to centralized dynamic data structures, not posing any
restrictions on the dynamic behavior of the environment is vital in the distributed setting, as
the input graph is the communication graph itself. More concretely, in centralized dynamic
data structures when multiple topology changes occur, we can simply handle them one by
one. However, in our setting, nodes cannot communicate over a deleted edge, and so we
cannot sequentially apply an independent update algorithm for each topology change — an
edge deletion affects the communication already when it happens, not only when it is handled.

1.1 Motivation
Each of the aforementioned problems is a locally-checkable labeling (LCL) problem. The
notion of an LCL is a celebrated concept in distributed computing, first defined by Naor and
Stockmeyer [34] in order to capture tasks in which nodes can efficiently detect inconsistencies,
motivated by the unstable nature of distributed systems. Since the publication of this
pioneering work, the complexity of solving tasks that can be described as LCLs has been
extensively studied in the distributed setting. We ask the following question, paraphrased in
correspondence with the title of [34]:

Question: What can be fixed locally?

We begin by recalling the definition of LCLs of [34], restricting our attention to LCLs with
radius r = 1. A centered star is a pair (H, s) where H is a star graph and s is its center. An
LCL L is a tuple (Σ,Γ, C), where Σ is a set of input labels, Γ is a set of output labels, and
C is a set of locally consistent labelings. Each element of C is a centered star, with a label
in Σ× Γ for each of its nodes.1

A labeling λ : V → Σ × Γ is called L-legal for a graph G = (V,E), if for every v ∈ V ,
there exists a centered star (H, s) in C with a label-pair at each node, which is consistent
with λ in the following sense: there exists a mapping π that maps the star centered at v
in G into (H, s), with π(v) = s, such that for every node w in the star centered at v, the
label-pair given by λ is the same as the label-pair of the node π(w) in (H, s).

As explained in [34], the set C defines allowed labels for neighborhoods, as opposed to
defining a set of forbidden ones. If the LCL has no inputs, then one can simply choose a
default input label, i.e., |Σ| = 1. An algorithm that solves the problem defined by an LCL L
is an algorithm whose output on a graph G is an L-legal labeling.

Not all LCLs are easily fixable: The following variant of the sinkless orientation prob-
lem [15] is an example of an LCL problem that is not easily fixable. Each node has a label
that corresponds to an orientation of its edges, such that labels at endpoints of an edge are

1 In the work of Naor and Stockmeyer [34] the set of labels Σ has a fixed size, while here we omit this
limitation in order to give more power to the labelings. However, algorithmically, we always keep the
size of messages small even when labels are large, by sending only pieces of them.
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consistent, and such that there is no node of degree greater than 1 that is a sink, i.e., has no
outgoing edge. It is easy to verify that every graph has a valid labeling2, and that this is an
LCL. To see that this LCL cannot be fixed within an amortized complexity of O(1), consider
a graph on n nodes that evolves dynamically, creating two paths of roughly n/2 nodes each.
Each path must be oriented consistently with a single sink in one of its endpoints. Inserting
an edge between the sinks of the two paths forces the orientation of all of the edges in one of
the sub-paths to flip, which takes Ω(n) rounds. Deleting this edge induces again two paths
with a single sink each, and repeating the process of inserting an edge between the new sinks
and deleting it causes a linear number of rounds that can be attributed to only two topology
changes, which implies an amortized time of Ω(n). This holds even if topology changes do
not happen concurrently, and even if the messages can be of arbitrarily large size.

1.2 The challenges
For any LCL problem we address, we assume that the system begins with a globally correct
labeling, and thus what an algorithm needs to do as a consequence of topology changes is
to have the affected nodes update their labels. Naturally, for some problems, the update
procedure may also require that a node updates the labels of its neighbors (more precisely,
this is accomplished via sending messages to its neighbors requiring them to update their
labels). For example, in a solution for maximal matching this might occur when an edge
that is in the matching is deleted, and its endpoints need to be match themselves to other
neighbors. At a first glance, this may sound as a simple and straightforward approach for
fixing matchings and problems of local flavor. However, this approach turns out to be far
from trivial, and below we describe multiple key challenges that we must overcome in order
to implement it successfully.

(1) Defining fixing and amortized complexity: We need to define what fixing the
solution means. We aim for our algorithm to work in a very harsh setting, in which it
might be the case that there are so many topology changes that we never actually obtain a
globally correct labeling, but still we maintain strong guarantees for intermediate labelings.
Notice that this is in stark contrast to centralized dynamic data structures, which can always
consider globally correct solutions since topology changes may be handled one-at-a-time
because they only affect the input and not the computation itself. This is also the case for
the majority of previous distributed algorithms: they are designed under the assumption that
topology changes are spaced well enough in time so that it is possible to obtain a globally
correct solution before the next topology change happens.

(2) Coping with concurrent fixing with a timestamp mechanism: Because we might
need a node to change the labels of its neighbors and not only its own label in order to fix
the solution, we make sure that concurrent fixing always happens for nodes that are not
too close, and other nodes wait even if their labeled stars are not yet correct (e.g., to avoid
two nodes u, v, trying to get matched to the same node w concurrently). To this end, our
method is to assign a timestamp to each node involved in a change, and fix a node only if its
timestamp is a local minimum in some short-radius neighborhood, thus avoiding conflicting
concurrent fixes. We call such a node active.

2 If G is a tree, choose an arbitrary root and orient the edges away from the root. Otherwise, choose a
cycle in G and orient its edges cyclically, then imagine contracting its nodes into a single super-node
and orient edges towards this super-node along some spanning tree, and orient other edges arbitrarily.
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(3) Detecting and aborting conflicting timestamps: Such a timestamp mechanism
alone is still insufficient: the uncontrolled number of topology changes may, for example,
suddenly connect two nodes that were previously far enough so that they could become active
simultaneously, but after concluding that they can both become active, an edge insertion
now makes them part of the same short-radius neighborhood. We carefully take care of such
cases where our timestamps have been cheated by the topology changes, by detecting such
occurrences and aborting the fixing, without harming the amortized complexity guarantees.

(4) Bounding the size of timestamps to cope with message size restrictions: Fi-
nally, the restriction on the size of messages forbids unbounded timestamps, despite an
unbounded number of rounds (e.g., times). To resolve this issue, we utilize ideas from the
literature on shared memory algorithms, e.g., [3], for deterministically hashing the timestamps
into a small bounded domain so that the nodes can afford sending a hashed timestamp in a
single small message, and we do so in a way that preserves the total order over timestamps.

1.3 Our contributions
Our main contribution is thus deterministic dynamic distributed fixing algorithms for
several fundamental problems. Our algorithms share a common approach, and only minor
modifications that are specific to each labeling are required. In some cases we can also handle
a node insertion/deletion, which is a-priori possibly harder to deal with, because it may
affect more nodes while in the amortized analysis we count it as a single topology change.

The following theorem summarizes the end-results, which hold in a model with an
unbounded number of topology changes that may occur concurrently, and when only a
logarithmic number of bits can be sent in a message.

I Theorem 1. There is a deterministic dynamic distributed fixing algorithm for (degree+1)-
coloring and for a 2-approximation of a minimum weight vertex cover, which handles
edge insertions/deletions and node insertions in O(1) amortized rounds.

There are deterministic dynamic distributed fixing algorithms for maximal matching,
(∆ + 1)-coloring (where ∆ is the maximum node degree) and MIS, which handle edge/node
insertions/deletions in O(1) amortized rounds.

Sections 3 and 4 show our algorithm for maximal matching and (degree+ 1)-coloring,
respectively. This is developed and modified in Section 5, to present our 2-MWVC algorithm.
We mention that the labeling for the solution of 2-MWVC that we maintain is not the naïve
one that only indicates which nodes are in the cover, but rather contains information about
dual variables that correspond to edge weights, and allow the fast fixing.

Section 6 gives our algorithm for MIS. In the MIS case, the restriction of message size
imposes an additional, huge difficulty. The reason is that if an MIS node v needs to leave
the MIS because an edge is inserted between v and some other MIS node u, then all other
neighbors of v who were previously not in the MIS are now possibly not covered by an MIS
neighbor. Yet, they cannot all be moved into the MIS, as they may have an arbitrary topology
among them. With unbounded messages this can be handled using very large neighborhood
information but such an approach is ruled out by the the restriction of O(logn)-bit messages.

Nevertheless, we prove that with some modifications to our algorithmic approach, we
can also handle MIS without the need to inform nodes about entire neighborhoods. The
road we take here is that instead of fixing its neighborhood, a node tells its neighbors that
they should become active themselves in order to fix their labeled stars. On the surface, this
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would entail an unacceptable overhead for the amortized complexity that is proportional
to the degree of the node. The crux in our algorithm and analysis is in blaming previous
topology changes for such a situation — for every node u in the neighborhood of v which is
only dominated by v, there is a previous topology change (namely, an insertion of an edge
{u,w}, where w may or may not be v) for which we did not need to fix the label of w. This
potential function argument allows us to amortize the round complexity all the way down to
O(1), and the same technique is utilized to handle node insertions and deletions.

In Appendices B–E, we present a generalization of our algorithm, by defining a family
of graph labelings, in the flavor of the LCL definition, which can all be fixed in constant
amortized time. This generalization is inherently intricate, and is added in order to assist a
reader who may wonder about such a generalization, and to motivate our choice of presenting
one algorithm for maximal matching and several modifications of it for the other problems,
rather than a single unified algorithm.

1.4 Related work
The end results of our work provide fast fixing for fundamental graph problems, whose
static algorithmic complexity has been extensively studied in the distributed setting. A full
overview of the known results merits an entire survey paper on its own (see, e.g., [10,37]).
An additional line of beautiful work studies the landscape of distributed complexities of LCL
problems, and the fundamental question of using randomness (see, e.g., [5, 6, 16,19,20,25]).

For dynamic distributed computing, there is a rich history of research on the important
paradigm of self-stabilization (see, e.g., the book [22]) and in particular on symmetry breaking
(see, e.g., the survey [26]). Related notions of error confinement and fault-local mending
have been studied in [4,32,33]. Our model greatly differs from the above. There are many
additional models of dynamic distributed computation (e.g., [14,31]), which are very different
from the one we consider in this paper.

Some of the oldest works in similar models to ours are [24,28], who provide algorithms for
distance-related tasks. Constant-time algorithms were given in [30] for symmetry-breaking
problems assuming unlimited bandwidth and a single topology change at a time. The work
of [17], provides a randomized algorithm that uses small messages to fix an MIS in O(1)-
amortized update time for a non-adaptive oblivious adversary, still assuming a single change
at a time. The latter left as an open question the complexity of fixing an MIS in the sequential
dynamic setting. This was picked up in [1,2,23,27], giving the first non-trivial sequential MIS
algorithms, which were recently revised and improved [12, 21]. Specifically, the algorithm
of [2] achieves an O(min{∆,m3/4}) amortized message complexity and O(1)-amortized round
complexity and adjustment complexity (the number of vertices that change their output after
each update) for an adaptive non-oblivious adversary in the distributed setting. However,
they handle only a single change at a time, and sometimes need to know the number of
edges, which is global knowledge that our work avoids assuming. In fact, if one is happy
with restricting the algorithm to work only in a model with a single topology change at a
time, then sending timestamps is not required, so O(1)-bit messages suffice in our algorithm
for MIS, resembling what [2] obtains. [35] provides a neat log-starization technique, which
translates logarithmic static distributed algorithms into a dynamic setting such that their
amortized time complexity becomes O(log∗ n). This assumes a single change at a time and
large messages. [36] shows that maximal matching have O(1) amortized complexity, even
when counting messages and not only rounds, but assuming a single change at a time.

The (∆ + 1)-coloring algorithm of [11] also implies fixing in a self-stabilizing manner —
after the topology stops changing, only O(∆ + log∗ n) rounds are required in order to obtain
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a valid coloring, where ∆ bounds the degrees of all the nodes at all times.
Perhaps the setting most relevant to ours is the one studied in [7], who also address a

very similar highly-dynamic setting. They insightfully provide fast dynamic algorithms for a
wide family of tasks, which can be decomposed into packing and covering problems, in the
sense that a packing condition remains true when deleting edges and a covering condition
remains true when inserting edges. For example, MIS is such a problem, with independence
and domination being the packing and covering conditions, respectively. An innovative
contribution of their algorithms is providing guarantees also for intermediate states of the
algorithm, that is, guarantees that hold even while the system is in the fixing process. They
show that the packing property holds for the set of edges that are present throughout the
last T rounds, and that the covering property holds for the set of edges that are present
in either of the last T rounds, for T = O(logn). Moreover, their algorithms have correct
solutions if a constant neighborhood of a node does not change for a logarithmic number
of rounds. Our algorithm guarantees correctness of labeled stars for nodes for which any
topology change touching their neighborhood has already been handled. In comparison with
their worst-case guarantee of O(logn) rounds for a correct solution, our algorithm only gives
O(n) rounds in the worst case. However, our amortized complexity is O(1), our messages
are of logarithmic size, and our algorithm is deterministic, while the above is randomized
with messages that can be of polylogarithmic size.

In addition, a recent work [18] studies subgraph problems in the same model described in
our paper.

A different definition of local fixability is given in [13, Appendix A], suitable for sequential
dynamic data structures, which requires a node to be able to fix the solution by changing
only its own state. While this captures tasks such as coloring, and is helpful in the sequential
setting for avoiding the need to update the state of all neighbors of a node, in the distributed
setting we can settle for a less restrictive definition, as a single communication round suffices
for updating states of neighbors, if needed. Indeed, our algorithmic framework captures
a larger set of tasks: notably, we provide an algorithm for MIS, while [13] prove that it
does not fall into their definition. In addition, [13, Section 7] raise the question of fixing (in
the sequential setting) problems that are in P-SLOCAL3 [25]. Notably, this class contains
approximation tasks, and indeed for some approximation ratios we can apply our framework.
Indeed, our algorithm has the flavor of sequentially iterating over nodes and fixing the labels
in their neighborhood, with the additional power of the distributed setting that allows it
to work concurrently on nodes that are not too close. This also resembles the definition of
orderless local algorithms given in [29], although a formal definition for the case of fixing
does not seem to be simpler than our framework.

2 Model

We assume a synchronous network that starts as an empty graph on n nodes and evolves
into the graph Gi = (Vi, Ei) at the beginning of round i; in most of our algorithms, one
can alternatively assume any graph as the initial graph, as long as the nodes start with a
labeling that is globally consistent for the problem in hand. In some cases, we also allow
node insertion or deletion, and then n serves as a universal upper bound on the number

3 Roughly speaking, SLOCAL(t) is the class of problems that admit solutions by an algorithm that
iterates over all the nodes of the graph, and assigns a solution to each node based on the structure of
its t-neighborhood and solutions already assigned to nodes in this neighborhood. P-SLOCAL is the
class SLOCAL(polylog n).
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of nodes in the system. Each node is aware of its unique id, the edges it is a part of, its
weight if there is one, and of n. In addition, the nodes have a common notion of time, so the
execution is synchronous. New nodes do not know the global round number. (We mention
that in our algorithms it is sufficient for each node to know the round number modulo 15n,
and a new node can easily obtain this value from its neighbors, so we implicitly assume all
nodes have this knowledge.)

In each round, each node receives indications about the topology changes that occurred
to its incident edges. We stress that the indications are a posteriori, i.e., the nodes get them
only after the changes occur, and thus cannot prepare to them in advance (these are called
abrupt changes). After receiving the indications and performing local computation, each
node can send messages of O(logn) bits to each of its neighbors.

We work in a distributed setting where each node stores its own label. A distributed
fixing algorithm should update the labels of the nodes in a way that corrects the labeled
stars that become incorrect due to topology changes. Naturally, for a highly-dynamic setting,
we do not require a global consistent labeling in scenarios in which the system is undergoing
many topology changes.

We consider four classical graph problems. In the maximal matching problem, the nodes
have to mark a set of edges such that no two intersect, and such that no edge can be added to
the set without violating this condition. In minimum weight vertex cover (MWVC), the nodes
start with weights, and the goal is to choose a set of nodes that intersect all the edges, and
have the minimum weight among all such sets; we will be interested in the 2-approximation
variant of the problem, where the nodes choose a set of weight at most twice the minimum.
Finally, in the maximal independent set (MIS) problem, the nodes must mark a set of nodes
such that no two adjacent nodes are chosen, and such that no node can be added to the set.

The complexity of distributed fixing algorithms: When the labels of a star become
inconsistent due to changes, a distributed fixing algorithm will perform a fixing process,
which ends when the labels are consistent again, or when other changes occur in this star.
The worst-case round complexity of a distributed fixing algorithm is the maximum number
of rounds such a fixing process may take.

In our algorithms, it could be that it takes a while to fix some star, but we can argue
that this is because other stars are being fixed. We measure this progress with a definition
of the amortized round complexity.

When studying centralized algorithms for dynamic graphs, the amortized complexity
measure is typically defined by an accounting method, i.e., considering the time when the
fixing process ends, and dividing the number of computation steps taken so far by the number
of changes that occurred. The natural generalization of this definition to the distributed
setting could be to take a time when the graph labeling is globally correct, and divide the
number of rounds occurred so far by the number of changes the network had undergone.
The first and most eminent problem in such a definition is that it requires a time when the
global solution is correct, which is something that we cannot demand in a highly-dynamic
environment. The second problem with it is that the adversary can fool this complexity
measure, by doing nothing for some arbitrary number of rounds in which the graph is correct,
while the algorithm still gets charged for these rounds.

To overcome the above problems, we define the amortized round complexity as follows.
Starting from round 0, in which the labeling is consistent for all stars, we consider the
situation in each round i. We denote by incorrect(i) the number of rounds until round i in
which there exists at least one inconsistent star. These are the computation rounds for which
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we charge the algorithm. Notice that we do not count only communication rounds in order to
prevent an algorithm that cheats by doing nothing.4 We denote by changes(i) the number
of changes which occurred until round i. We say that an algorithm has an amortized round
complexity k if for every i with changes(i) > 0, we have incorrect(i)/ changes(i) ≤ k. This
definition captures the rate at which changes are handled, in a way that generalizes the
sequential definition.

Guarantees of our algorithm: Our algorithms have an O(1) amortized fixing time, and in
addition, they have additional desired progress properties. First, our algorithms guarantee a
worst-case complexity of O(n), which implies that repeated changes far from a given star
will not postpone it from being fixed for too long. Moreover, if a labeled star is consistent
and no topology change touches its neighborhood, then it remains consistent. Thus, our
algorithm has strong guarantees also for intermediate solutions.

3 An O(1) amortized dynamic algorithm for maximal matching

The solution to the maximal matching problem at any given time is determined according
to the labels of the nodes. A label of a node v can be either unmatched or matched-to-u,
indicating that v is unmatched, or is matched to u, respectively. Each node starts with the
label unmatched. Alternatively, one can assume any graph as the initial graph, as long as
the nodes start with a legal maximal matching solution. We prove the following.

I Theorem 2. There is a deterministic dynamic distributed fixing algorithm for maximal
matching which handles edge insertions/deletions in O(1) amortized rounds.

Proof. First, we assume that all nodes start with an initial globally consistent solution.

The setup: We denote γ = 5.
Let Fi be a set of edge changes (insertions/deletions) that occur in round i ≥ 0 (for

convenience, the first round is round 0). With each change in Fi, we associate two timestamps
such that a total order is induced over the timestamps as follows: for an edge e = {u, v} in
Fi, we associate the timestamp ts = (i, u, v) with node u, and the timestamp (i, v, u) with
node v. Since u and v start round i with an indication of e being in Fi, both can deduce their
timestamps at the beginning of round i. We say that a node v is the owner of the timestamps
that are associated with it. In each round, a node only stores the largest timestamp that it
owns, and omits the rest.

Notice that timestamps are of unbounded size, which renders them impossible to fit in
a single message. To overcome this issue we borrow a technique of [3], and we invoke a
deterministic hash function H over the timestamps, which reduces their size to O(logn)
bits, while retaining the total order over timestamps. The reason we can do this is that not
every two timestamps can exist in the system concurrently. To this end, we define h(i) = i

mod 3γn and H(ts) = (h(i), u, v) for a timestamp ts = (i, u, v), and we define an order ≺H
over hashed timestamps as the lexicographic order of the 3-tuple, induced by the following
order ≺h over values of h. We say that h(i) ≺h h(i′) if and only if one of the following holds:

0 ≤ h(i) < h(i′) ≤ 2γn, or

4 One could count also rounds in which the labeling is globally correct if the algorithm chooses to
communicate in these rounds. Our algorithm never communicates in such rounds, so such a definition
would not change our amortized complexity.
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γn ≤ h(i) < h(i′) ≤ 3γn, or

2γn ≤ h(i) < 3γn and 0 ≤ h(i′) < γn.

If two timestamps ts = (i, v, u), ts′ = (i′, v′, u′) are stored in two nodes v, v′ at two times
i, i′, respectively, it holds that ts < ts′ (by the standard lexicographic order) if and only if
H(ts) ≺H H(ts′). The reason that this holds despite the wrap-around of hashed timestamps
in the third bullet above, is the following property that we will later prove: for every two
such timestamps, it holds that i′− i ≤ γn. This implies h(i) ≺h h(i′) whenever i < i′ despite
the bounded range of the function h.

The algorithm: In the algorithm, time is chopped up into epochs, each consisting of
γ consecutive rounds, in a non-overlapping manner. That is, epoch j consists of rounds
i = γj, . . . , γ(j + 1)− 1. For every epoch j ≥ 0, we consider a set Dj ⊆ V of dirty nodes at
the beginning of each epoch, where initially no node is dirty (D0 = ∅). Some nodes in Dj

may become clean by the end of the epoch, so at the end of the epoch the set of dirty nodes
is denoted by D′j , and it holds that D′j ⊆ Dj . At the beginning of epoch j + 1, all nodes
that receive any indication of an edge in Fi in the previous epoch are added to the set of
dirty nodes, i.e., Dj+1 = D′j ∪ Ij , where Ij is the set of nodes that start round i with any
indication about Fi, for any γj ≤ i ≤ γ(j + 1)− 1.

Intuitively, the algorithm changes the labels so that the labels at the end of the epoch are
consistent with respect to the topology that was at the beginning of the epoch, unless they
are labels of dirty nodes or of neighbors of dirty nodes.

The algorithm works as follows. In epoch j = 0, the nodes do not send any messages, but
some of them enter I0 (if they receive indications of edges in Fi, for 0 ≤ i ≤ γ − 1).

Denote by N i
v the neighborhood of v in round i, denote by Liv the label of v at the

beginning of round i, before the communication takes place, and denote by L̂iv the label at
the end of the round. Unless stated otherwise, the node v sets L̂iv ← Liv and Li+1

v ← L̂iv.
Now, consider an epoch j > 0. On round γj every node v ∈ Dj may locally change its label
to indicate that it is unmatched, in case the edge between v and its previously matched
neighbor is deleted:

Lγjv =
{

matched-to-u, if L̂γj−1
v = matched-to-u and u ∈ Nγj

v

unmatched, otherwise
(1)

where L̂γj−1
v is the label that v has at the end of round γj − 1 = γ(j − 1) + 4, which, as we

describe below, may be different from its label Lγj−1
v at the beginning of the round.5 Then,

the node v sends Lγjv to its neighbors. These are the labels for the graph Gγj which the
fixing addresses.

5 We stress that one can describe our algorithm with labels that can only change at the beginning of a
round, but we find the exposition clearer this way.
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u

w v
We stress that the new labels Lγjv might not form consistent stars.

Instead, the nodes update Lγjv and send it to all neighbors in order
to maintain a common graph, with respect to which we show local
consistency. As an example, consider a triangle w, v, u, undergoing
the deletion of the edge {w, v} and of another edge connecting u
with some other node (see Figure on the right). Suppose that w
immediately tries to fix the labels in its star, according to the fact that the edge {w, v} does
not exist, while u is selected to fix its own star before v, without knowing of the deletion of
the edge {w, v}. Both nodes then simultaneously try to change the label of u, and it could
not be clear what u should do, and which neighborhood of u will be corrected.

We continue describing the algorithm. On rounds γj + 1 to γj + 3 the nodes propagate
the hashed timestamps owned by dirty nodes. That is, on round γj + 1, each node in Dj

broadcasts its hashed timestamp, and on the following two rounds all nodes broadcast the
smallest hashed timestamp that they see (with respect to the order ≺H). Every node v in
Dj which does not receive a hashed timestamp that is smaller than its own becomes active.

On the last round of the epoch, γj + 4, every active node v computes the following
candidate for a new label, denoting by Nγj

v = {u1, . . . , ud} the neighborhood it had at
round γj.

`v =


matched-to-ui, if Lγjv = matched-to-ui
unmatched, if Lγjv = unmatched and for every 1 ≤ i ≤ d, Lγjui 6= unmatched

matched-to-ui, if Lγjv = unmatched and 1 ≤ i ≤ d is the smallest index
for which Lγjui = unmatched

(2)

Notice that v has the required information to compute the above, even if additional
topology changes occur during the rounds in which timestamps are propagated. Yet, we
need to cope with the fact that topology changes may occur also throughout the current
epoch and, for example, make active nodes suddenly become too close. For this, we denote
by Tj ⊆ Ij the set of tainted nodes who received an indication of a topological change for at
least one of their edges during the epoch j.

Now, only an active node v which is not in Tj sets L̂γj+4
v ← `v and sends this new label to

each neighbor u. Otherwise, an active node v that is tainted (i.e., is in Tj) aborts and remains
dirty for the next epoch. Of course, if nodes u and v are neighbors at the beginning of an
epoch but not when v sends the computed label, then u does not receive this information.

Finally, every active node v /∈ Tj , if L̂γj+4
v = matched-to-u then u updates L̂γj+4

u =
matched-to-v (note that such u has the required information since it receives `v, as otherwise,
if by the time that `v is computed it holds that u and v are no longer neighbors, then v must
be tainted). At the end of round γj + 4 = γ(j + 1)− 1, node v becomes inactive (even if it
aborts) and is not included in D′j , i.e., we initialize D′j = Dj \ {v | v is active in epoch j} at
the beginning of epoch j. Note that if v is active but aborts then it is in Ij and thus in Dj+1.

Round complexity: We now prove that the algorithm has an amortized round complexity
of O(1), by proving incorrect(i) ≤ 2γ · changes(i) for all i. First, note that the algorithm
communicates in each round where the graph is incorrect, and these communication rounds
can be split into epochs, implying incorrect(i) ≤ γ · epochs(i), where epochs(i) denotes
the number of epochs of computation done by the algorithm until round i (if round i is the
middle of an epoch then it does not affect the asymptotic behavior, so we can safely ignore
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this partial epoch). On the other hand, the node with minimal timestamp at the beginning
of the j-th epoch becomes active during the epoch, and its timestamp is handled — even if
it becomes tainted by a change, the old timestamp is replaced by the new one. So, in each
epoch at least one timestamp disappears from the system. Now, since each topology change
creates at most two timestamps, we have that the number of timestamps created until round
i is at most 2 · changes(i), implying epochs(i) ≤ 2 · changes(i), and the claim follows.

Finally, we show that the timestamps can be represented by O(logn) bits. First, we claim
that for every two timestamps ts = (i, v, u) and ts′ = (i′, v′, u′) such that ts < ts′, that are
simultaneously owned by nodes at a given time, it holds that i′ − i ≤ γn. Assume otherwise,
and consider the first time when this condition is violated by a timestamp ts′, with respect
to a previous timestamps ts < ts′. This means that the owner v of ts does not become active
for more than n epochs. Since up to this point in time there were no violations, in each
epoch at least one timestamp was handled, and this was done in the desired ordered, i.e.,
all these labels where smaller than ts. So, v not becoming active for more than n epochs
can only happen if at round i there were more than n timestamps which were then not yet
handled, stored in various nodes. But there are at most n nodes and each one stores at most
one timestamp so the above is impossible. Since i′ − i ≤ γn, we have that H(ts) ≺H H(ts′),
because h(i) ≺h h(i′), as argued earlier.

Using the above we can also see that the worst case running time of our algorithm is
O(n). To see this, fix some node v with an inconsistent star which does not experience
topology changes touching its 1-hop neighborhood for (γ + 1)n rounds. This guarantees that
its timestamp does not change throughout these rounds, and after γn rounds its timestamp
must become a local minima. In the following epoch, if no changes occur within its 1-hop
neighborhood then its star becomes consistent, which matches the definition of having a
worst-case complexity of O(n). Further, once a node v successfully invokes a fixing of its
star, the star remains consistently labeled as long as no topology changes touch the 1-hop
neighborhood of v, thus we obtain strong guarantees for intermediate solutions.

Correctness: For correctness we claim the following invariant holds at the end of round
i = γj + 4 = γ(j + 1)− 1: For every two nodes u, v that are clean at the end of the epoch
and for which {u, v} is an edge in Gγj , it holds that (1) at least one of L̂γj+4

u and L̂γj+4
v is

not unmatched and (2) if L̂γj+4
u = matched-to-v then L̂γj+4

v = matched-to-u.
We prove the above by induction on the epochs. The base case holds trivially as during the

first epoch the labels do not change, and we assume that the nodes start with a legal maximal
matching for the initial graph. Now, assume the above invariants hold for epoch j − 1.

For every two nodes u, v that are clean at the end of the epoch and for which {u, v} is an
edge in Gγj , if their labels do not change during the epoch, then the invariant follows from
the induction hypothesis.

If only one of their labels changes, say that of v, then either v is active and not tainted
or there is a (single) neighbor w of v which is active and not tainted and makes v change its
label. In the former case, since the label `v of v changes compared to Lγjv , it does not remain
unmatched and does not remain matched-to-x for some node x. So the new label `v must
be matched-to-y, for some node y. Since the label of u does not change, we have that u 6= y,
and so if the label of u is not unmatched then it cannot be matched-to-v (as otherwise
Lγjv would be matched-to-u and so `v would also be matched-to-u, thus did not change).
In the latter case, if v changes its label because of the new label `w that is sent to it by a
neighbor w, then `w = matched-to-v and hence the new label of v is set to matched-to-w.

Finally, if both of their labels change, then without loss of generality v is active and not
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tainted and computes `v = matched-to-u, making u update its label to matched-to-v. The
crucial thing to notice here is that it cannot be the case that a node wv changes the label
of v and a different node wu changes the label of u at the same time, because this implies
that the distance between wv and wu is at most 3, in which case either at least one of them
aborts due to an edge insertion, or the edge {u, v} is inserted (maybe immediately after
being deleted), but then v and u are not clean.

Since the invariant holds, we conclude that whenever Dj = ∅, it holds that the labeling
is that of a maximal matching for Gγj . Further, what the invariant implies is that some
correctness condition holds even for intermediate rounds: at the end of every epoch j, the
entire subgraph induced by set of nodes that are clean and have all of their neighborhood
clean has labelings that are locally consistent. J

For node insertions and deletions, a direct application of the algorithm of Theorem 2
increases the amortized complexity if all neighbors of a changed node (inserted or deleted)
become dirty and O(∆) timestamps are associated with this topology change. However,
notice that when an edge is inserted, it suffices that only one of its endpoints becomes dirty in
the algorithm and gets matched to the other endpoint if needed. Hence, if a node is inserted,
it suffices that the inserted node becomes dirty, and we do not need all of its neighbors to
become so. An only slightly more subtle rule for deciding which nodes become dirty upon a
node deletion gives the following.

I Theorem 3. There is a deterministic dynamic distributed fixing algorithm for maximal
matching which handles edge/node insertions/deletions in O(1) amortized rounds.

Proof. We modify the algorithm of Theorem 2 as follows. Upon an insertion of a node v,
the node v becomes dirty. Upon a deletion of a node v with neighbors {u1, . . . , ud}, only the
node ui, for 1 ≤ i ≤ d, that is matched to v (if there exists such a node) becomes dirty.

The O(1) amortized round complexity remains, as every topology change induces at most
two new timestamps. Correctness still holds because it is not affected by a node insertion,
which can be viewed as multiple edge insertions (in terms of correctness, but without paying
this cost for the amortized time complexity), and it is not affected by a node deletion because
for any other node uj ∈ {u1, . . . , ud} such that j 6= i it holds that the deletion of v does not
influence its local consistency. J

4 An O(1) amortized dynamic algorithm for coloring

In the c-coloring problem, each node must choose a color in {1, . . . , c}, such that no two
adjacent nodes have the same color. In order to maintain a coloring in a dynamic graph, we
use the same approach used for maintaining a maximal matching in the proof of Theorem 2.
Naturally, we use different labels for indicating a valid coloring, and so we modify the way in
which they are updated during the algorithm. Yet, the overall structure of the algorithm
remains the same.

I Theorem 4. There is a deterministic dynamic distributed fixing algorithm for (degree+1)-
coloring, which handles edge insertions/deletions in O(1) amortized rounds.

Proof. We describe the modifications that we make in the algorithm for maintaining a
maximal matching from the proof of Theorem 2. For (degree + 1)-coloring, the label of
each node is its color. We use the same label notations Liv as in our algorithm for maximal
matching in the proof of Theorem 2, and we modify the way in which Lγj and ` are assigned
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new values in the assignments (1) and (2) of the algorithm, to correspond to a solution for
(degree+ 1)-coloring rather than for maximal matching.

The label Lγjv stays the same as in the previous round (i.e., remains equal to L̂γ(j−1)+4
v ),

unless the number of neighbors of v decreases in Nγj
v compared with Nγ(j−1)

v , in which case
Lγjv is assigned to be |Nγj

v |, where Nγj
v is the current star centered at v. Note that this gives

a color that is in the correct range, but this may not be a valid coloring, as two neighbors
may be assigned the same color if their neighborhoods have the same size.

For the assignment of `v for every active node v, we set `v to be the minimal color not in
{Lγju | u 6= v, u ∈ Nγj

v }. Notice that this means that the color of v is valid. If v is active
and not in Tj then v sets L̂γj+4

v = `v and sends `v to all of its neighbors. However, the
neighbors do not have to change their own labels as a result (as opposed to the maximal
matching algorithm, in which the label of v may indicate to a neighbor u that it is newly
matched to v, in which case u also updates its label L̂γj+4

u ).
This guarantees the correctness of the color of v w.r.t. its neighbors for every clean node

v for which all neighbors are clean . In particular, if all nodes are clean then the labels
induce a proper (degree+ 1)-coloring. J

The above algorithm directly applies also for node insertions, because, as in the maximal
matching case, when a node v is inserted it is sufficient to mark v as dirty rather than also
marking all of its neighbors. This holds since connecting the neighbors to v does not invalid
their colors, except maybe w.r.t. to color of v itself, which will be fixed once v becomes active.
Specifically, their degrees do not decrease, so all their colors are in the relevant palates.

I Corollary 5. There is a deterministic dynamic distributed fixing algorithm for (degree+1)-
coloring, which handles edge insertions/deletions and node insertions in O(1) amortized
rounds.

For node deletions, however, our algorithm incurs a large overhead, since the degrees of
all the neighbors of a deleted node are decreased, which might require all of them to update
their colors in the worst case. However, a slight relaxation into (∆ + 1)-coloring allows us to
handle node deletions, since in this case the removal of any edge does not invalid the color of
its endpoints, and thus no node needs to be marked as dirty upon node deletion.

I Theorem 6. There is a deterministic dynamic distributed fixing algorithm for (∆ + 1)-
coloring which handles edge/node insertions/deletions in O(1) amortized rounds.

5 An O(1) amortized dynamic algorithm for 2-MWVC

In unweighted graphs, taking the endpoints of a maximal matching immediately gives a
2-approximation of the minimum vertex cover, so our algorithm for maximal matching also
allows us to maintain a 2-approximate of minimum vertex cover in unweighted graphs. Clearly,
taking the endpoints of a maximal matching is insufficient for obtaining a 2-approximation
of the minimum weight vertex cover (henceforth, MWVC). Instead, we employ a primal-dual
approach: the nodes maintain an edge-weight function which represents the dual of the
MWVC problem, and the vertex cover will be composed of all nodes whose constraints are
tight. By dual-fitting, this gives a 2-approximation of the MWVC, as desired.

We start with defining the general framework. Let G = (V,w,E) be a weighted graph,
where w : V → R+ is a vertex-weight function. We define the dual weights by an edge-weight
function δ : E → R+. We say that δ is G-valid if for every v ∈ V ,

∑
e:v∈e δ(e) ≤ w(v), i.e.,

the sum of weights of edges that touch a vertex is at most the weight of that node in G.
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We define the set Sδ = {v ∈ V | w(v) ≤
∑
e:v∈e δ(e)} of nodes with tight constraints

(and when δ is G-valid, we can require w(v) =
∑
e:v∈e δ(e) instead). The following theorem

states that if δ is G-valid and Sδ is a vertex cover, then it is a 2-approximation for MWVC.
This theorem can be proved either using the primal-dual framework [9], or the local-ratio
technique [8], and we also give a simple proof of it in Appendix A.

I Theorem 7. Let OPT be the minimal weight of a vertex cover of G. If δ is a G-valid
function, then

∑
v∈Sδ w(v) ≤ 2OPT. In particular, if Sδ is a vertex cover then it is a

2-approximation for MWVC for G.

Using the above we continue to proving our main result. We use the same mechanism
as we used in our algorithm for maximal matching in the proof of Theorem 2, with slight
changes which we describe below.

I Lemma 8. There is a deterministic dynamic distributed fixing algorithm for 2-approximate
MWVC, which handles edge insertions/deletions in O(1) amortized rounds.

Proof. We assume here a graphG = (V,w,E) with node weight function w : V → {1, . . . ,W},
where W is polynomial in n.

We use the same label notations Liv for the label of node v in round i. Here the label of
every node v is an array of size n, where entries correspond to vertices in the graph. The
entry Liv[u] corresponds to the dual weight δ({u, v}) of the edge {u, v}, if this edge exists. We
call every such entry an edge excerpt of the label. The special case of entry Liv[v] corresponds
to the remaining weight of the node v, which is w(v)−

∑
e:v∈e δ(e) . We call this entry the

node excerpt of the label. Initially, for every node v the node excerpt is L0
v[v] = w(v) and all

edge excerpts are 0. We use the same approach as in our algorithm for maximal matching in
the proof of Theorem 2, and we modify the way in which Lγjv and `v are assigned new values
in the assignments (1) and (2) of the algorithm, to correspond to a solution for 2-MWVC
rather than for maximal matching.

Notice that now the labels are arrays, which results in large labels which cannot be sent
using O(logn) bits of communication. To overcome this, we modify the algorithm such that
a node v sends to each of its neighbors u only v’s node excerpt Liv[v], and the edge excerpt
of their common edge Liv[u].

This is the only change we make with respect to the communication of the algorithm.
Thus, it follows that the amortized running time remains O(1), and it only remains to
describe how we update Lγjv at the beginning of every epoch (the analogue to assignment (1)
in the proof of Theorem 2), and how we update `v at the end of each epoch (the analogue to
assignment (2) in the proof of Theorem 2).

Our desired properties from Lγjv are: (P1)
∑
u∈V L

γj
v [u] = w(v), and (P2) 0 ≤ Lγjv [v] ≤

w(v). That is, Lγjv [v] is indeed the remaining weight of v and it is non-negative, and does
not exceed its initial weight. We define Lγjv as follows. For every u 6∈ Nγj−1

v ⊕Nγj
v , u 6= v,

we set Lγjv [u] = L̂γj−1
v [u], that is, these excerpts do not change. For every u ∈ Nγj−1

v ⊕Nγj
v

we set Lγjv [u] = 0. Finally, we set Lγjv [v] = L̂γj−1
v +

∑
u∈Nγj−1

v \Nγjv L̂γj−1
v [u], which means

that the weight reductions over the removed edges are revoked. By a simple calculation,
these updates guarantee that properties (P1) and (P2) hold.

When computing `v, we require: (P3) either `v[v] = 0 or for all u ∈ Nγj
v it holds that

`u[u] = 0. For a labeling and a graph G, if these conditions hold for every v ∈ V at round i,
then it is immediate to see that the function δ : E → R+ defined by δ({u, v}) = Liv[u] = Liu[v]
is G-valid, and the set S = {v ∈ V | Liv[v] = 0} is a vertex cover, which by Theorem 7 implies
that S is a 2-approximation for MWVC.
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Therefore, we define the assignment to `v as follows (the analogue to assignment (2)
in the proof of Theorem 2). Denote the neighbors of v at the corresponding round as
Nγj
v = {u1, . . . , ud}. For every 1 ≤ k ≤ d, we set `v[uk] = Lγjv [uk] − tk, where tk =

min{Lγjuk [uk], Lγjv [v]−
∑

1≤p≤k−1 tp}. In addition, we set `v[v] = Lγjv [v]−
∑

1≤k≤d tk. Recall
that if v is active and not in Tj then v sets L̂γj+4

v to be `v, and sends `v[uk] to each uk. After
receiving `v[uk], each node uk sets L̂γj+4

uk
[v] = `v[uk], and then computes tk = `v[uk]−Lγjuk [uk]

and sets L̂γj+4
uk

[uk] = Lγjuk [uk] + tk. Simple calculations show that this guarantees that
property (P3) holds. J

For node insertions, we note that marking only the inserted node as dirty is sufficient,
assuming the nodes of an empty graph start with labels for which each node excerpt is w(v)
and all edge excerpts are 0. This is because when the inserted node becomes active and gets
fixed, it has a consistent star and sends updates to the relevant excerpts of neighboring nodes,
in a way that maintains consistent stars for both the inserted node and its neighborhood.
We thus have:

I Corollary 9. There is a deterministic dynamic distributed fixing algorithm for a 2-
approximation of a minimum weight vertex cover, which handles edge insertions/deletions
and node insertions in O(1) amortized rounds.

The question of handling node deletions for 2-MWVC remains open, as a direct marking
of all of its neighbors as dirty incurs an amortized overhead that is proportional to the
number of neighbors.

6 An O(1) amortized dynamic algorithm for MIS

One can use a similar approach in order to obtain an MIS algorithm. However, when a
node v needs to be removed from the MIS due to an edge insertion, a neighbor u of v may
need to join the MIS if none its other neighbors are in the MIS. One way to do this is to
mark all of the neighbors of v as dirty, but this violates the amortized time complexity as
a single topology change may incur too many dirty nodes. Another option is to have v’s
label include neighborhood information such that upon receiving this label, its neighbors
know which of them should be moved into the MIS. This would give a simple O(1) amortized
rounds algorithm for MIS, but only if messages are allowed to be large. Instead, we present a
labeling that does not contain all the neighborhood information and uses only small labels.

To handle the new subset of neighbors that needs to be added to the MIS in the
aforementioned example, our approach is to have the active node simply indicate to all of its
neighbors that they cannot remain clean and must check for themselves whether they need
to change their labels. Of course, such a single topology change may now incur a number of
dirty nodes that is the degree of this endpoint, which may be linear in n.

Yet, we make a crucial observation here: any node that becomes dirty in this manner, can
be blamed on a previous topology change in which only one node becomes dirty. This implies
a potential function for the budget of dirty nodes, to which we add 2 units for every topology
change, and charge either 0, 1, 2, or d (current node degree) units for each invocation of the
fixing function, in a manner that preserves the potential non-negative at all times. Note
that due to the potential function argument, here we must start with an empty graph for
the amortization to work, unlike previous problems, where we could start with any graph as
long as the nodes have labels that indicate a valid solution. Roughly speaking, we rely on
the fact that since all nodes that are in the graph start as MIS nodes because there are no
edges, then a node switches from being an MIS node to being a non-MIS node only upon an
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insertion of an edge between two MIS nodes, and the other endpoint of the inserted edge
safely remains in the MIS. Note that we impose the rule that an inserted node never makes
a node switch from being an MIS node to being a non-MIS node, since the inserted node
chooses to become an MIS node only if all of its neighbors are already non-MIS nodes.

I Theorem 10. There is a deterministic dynamic distributed fixing algorithm for MIS, which
handles edge/node insertions/deletions in O(1) amortized rounds.

Proof. We consider labels which are in {true, false} and maintain that the set of nodes
with the label true form an MIS. We start with an empty graph and all labels are true.
We first define the assignments of Liv and `v as in assignments (1) and (2) in the algorithm
for maximal matching in the proof of Theorem 2. Then, we explain how we modify the
algorithm further in order to avoid large messages with neighborhood information.

First, the label for Lγjv does not change from the previous round, i.e., assignment (1) is
Lγjv = L̂

γ(j−1)+4
v . For assignment (2) we set `v to be false if Lγjui = true for some ui ∈ Nγj

v

and otherwise we set `v to be true. If v is active and not in Tj then it sets L̂γj+4
v to be `v

and sends this label to all of its neighbors. Notice that this is insufficient for arguing that the
labels at the end of the epoch form an MIS if all nodes are clean, for the same reason as in
the tricky example above: if v leaves the MIS due to an edge insertion, its neighbors do not
have enough information to decide which of them joins the MIS. To overcome this challenge,
we consider an algorithm similar to the one of Theorem 2, with the following modifications.

(1) When an edge e = {v, u} is deleted, if the labels of both u and v are false then neither
of them becomes dirty, and if only one of them is false then only this node becomes
dirty.

(2) When an edge e = {v, u} is inserted, if at least one of the labels of u and v is false then
neither of them becomes dirty, and if both are true then only the node with smaller ID
becomes dirty.

(3) When a node v is inserted then only v becomes dirty.
(4) When a node v is deleted then a neighbor z becomes dirty only if its label is false and

it has no neighbor with a label true.

In order for a node v to indicate that new labels may be needed for its neighbors, we add
the following item:

(5) When an active node v changes its label to false, all of its neighbors marked false that
do not have a neighbor marked true become dirty.

As we prove in what follows, this allows the correct fixing process that we aim for, but
this has the cost of having too many nodes become dirty. However, the crucial point here is
that not all nodes that become dirty in items (4) and (5) will actually utilize their timestamp
— some will drop their timestamp before competing for becoming active, and hence we will
not need to account for fixing them. That is, we add the following item:

(6) When an active node v changes its label to true, all of its dirty neighbors become clean.

Correctness: The correctness follows the exact line of proof of the algorithm in Theorem 2,
with the modification that making some neighbors dirty in item (5) compensates for not
being able to assign them directly with good new labels. That is, at the end of the epoch,
we still have the following guarantee: if all nodes are clean, then their labels induce an MIS;
otherwise, for every two clean neighbors, either exactly one of them is in the MIS, or both
have a neighbor in the MIS.
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Amortized round complexity: The proof follows the same lines as the previous complexity
proofs, with the addition of a potential function argument. This is used to prove that the
cumulative number of epochs in which any node becomes active is at most twice the number
of topology changes. This proves our claim of an amortized O(1) round complexity.

First, as in the former algorithms, we note that incorrect(i) ≤ γ ·epochs(i), and at each
epoch at least one timestamp is handled. Thus, we only need to upper bound the number of
timestamps created by round i as a function of changes(i). However, here we need to be
much more careful and we can not simply account each change for two timestamps, as some
changes create much more timestamps than others.

Consider a node v that is deleted in round i as in item (4) (or v is active and marked
false as in item (5)), and a set Z = {z1, . . . , zk} of its neighbors that become dirty by
satisfying the condition in item (4) (or item (5)) above, ordered by their timestamps (i, v, zj)
for 1 ≤ j ≤ k, as induced by this topology change. For each 1 ≤ j ≤ k, if a node zj becomes
active due to this timestamp, then by item (6), starting from round i none of its neighbors
change their label to true. Consider the last round i′ before round i in which the label of zj
is true (i′ exists since this condition occurs initially when the graph is empty). We claim
that the topology change whose associated active node changed the label of zj to false in
round i′ + 1, is either an insertion of an edge {zj , u} that satisfies the condition of item (2)
with ID(zj) < ID(u), or an insertion of the node zj which connects it to at least one node
whose label is true. The reason for this is that these are the only topology changes which
cause zj to be assigned the label false.

Finally, notice that these topology changes both induce only a single dirty node (thus a
single active node and a single epoch), and therefore we can blame zj becoming active on
the corresponding topology change. This is an injective mapping, as any other node cannot
blame these changes (they are changes that made zj dirty), and zj itself may become active
again in the future due to satisfying the condition in item (4) (or item (5)) above only if its
label is changed to false again in between.

In other words, this blaming argument implies epochs(i) ≤ 2 · changes(i) here as well,
completing the proof. J

7 Discussion

This paper gives dynamic distributed algorithms for various fundamental tasks that have
a constant amortized round complexity despite working in a very harsh environment. We
believe that fixing some LCL tasks with radius r > 1 can be handled in a similar manner,
but we leave this for future work.

A particular open question is whether one can improve the worst-case round complexity
of our algorithm, perhaps to a logarithmic in n complexity, as in [7], without sacrificing its
amortized round complexity.
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A Proof of Theorem 7

Theorem 7 . [8, 9] Let OPT be the minimal weight of a vertex cover of G. If δ is a
G-valid function, then

∑
v∈Sδ w(v) ≤ 2OPT. In particular, if Sδ is a vertex cover then it is

a 2-approximation for MWVC for G.

Proof. For every v ∈ Sδ it holds that w(v) ≤
∑
e:v∈e δ(e). This gives:∑

v∈Sδ

w(v) ≤
∑
v∈Sδ

∑
e:v∈e

δ(e) ≤
∑
v∈V

∑
e:v∈e

δ(e) ≤ 2
∑
e∈E

δ(e).

It remains to prove that
∑
e∈E δ(e) ≤ OPT. To this end, let SOPT be a cover of minimal

weight, and associate each edge e ∈ E with its endpoint ve in SOPT (choose an arbitrary
endpoint if both are in SOPT). The weight w(v) of each v ∈ SOPT is at least

∑
e:ve=v δ(e),

because it is at least
∑
e:v∈e δ(e). Hence, OPT =

∑
v∈SOPT

w(v) ≥
∑
v∈SOPT

∑
e:ve=v δ(e) =∑

e∈E δ(e), as desired. J

B Generalization: The family of locally fixable labelings

To address the question of local fixability, we define a subclass of LCLs, which we call locally
fixable labelings (LFLs). Despite a deceiving first impression that such a definition may be
straightforward, our definition turns out to be highly non-trivial, as we discuss in Appendix C.
Our definition is entirely combinatorial, in the spirit of the definition of LCLs.

After defining LFLs, we present a simple, deterministic distributed template algorithm
that rapidly fixes LFLs with labels made of small pieces, a notion that will be made clear

http://arxiv.org/abs/1804.01823
http://arxiv.org/abs/1804.01823
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shortly. Specifically, we give an algorithm that uses only O(1) communication rounds when
amortized over the number of topology changes, works even in the highly-dynamic setting
where an unbounded number of network links may appear or be dropped adversarially in
every round of computation, and nodes can send messages of no more than O(logn) bits.

All the fundamental LCL tasks discussed in our paper, i.e., maximal matching, (degree+1)-
coloring, or 2-approximation for the minimum weighted vertex cover (2-MWVC), can be
described as LFLs with labels made of small pieces, which immediately implies the above fast
fixing algorithm applies to these tasks, giving an alternative proof for our main theorems.

We further show that for some tasks, fast fixing is also possible with node insertions and
deletions. Here, we consider the more severe case of abrupt deletions, where a deleted node
does not have a chance to inform its neighbors of its upcoming departure from the system.

B.1 LFLs and a fast dynamic fixing algorithm
The challenge in defining LFLs. The first property that an LFL definition needs to
have should pinpoint why the sinkless orientation example is unfixable in a fast manner.
Intuitively, in sinkless orientation, a local change may have a global impact on the labels of
many and far away nodes, while an LFL needs to be fixed locally. To rule out labelings with
this undesired property, the LFL definition requires the existence of a local fixing function.
Such a function should potentially receive as input a star centered at a node v, along with
its labeling which may be locally inconsistent, and produce fixed labels for v and possibly its
neighbors, such that local consistency holds for this star, and is maintained for all stars of
these nodes if they were previously so.

However, this is still insufficient. Imagine the task of fixing a maximal matching when an
edge is inserted to or deleted from the network graph. With a standard labeling that simply
indicates which edge is matched, the endpoints of the changed edge can fix the labels of
themselves and possibly their neighbors to produce a correct solution. Combinatorially, this
is the fixing function that we refer to above. Yet, already here, a first subtlety arises: The
endpoints cannot operate concurrently, because if a matching edge between them is deleted,
they might try to match themselves to a neighbor that is common to both.

For a general task that one wishes to fix, this motivates simply requiring that the nodes
that received indication of a topology change become active for fixing at different times.
But this still does not address our aim of coping with an unlimited number of concurrent
topology changes. The reason is that by the time that a node becomes active and fixes the
labels of its neighbors, we are no longer guaranteed that the old labels of this node and its
neighbors correspond to an earlier locally consistent labeling, because of multiple topology
changes that they may have undergone in the meanwhile. In other words, the old labels can
be anything, so our fixing function is not promised to produce a locally consistent output.

This motivates an LFL definition that incorporates a two-step fixing algorithm. For the
first step, at a high level, we define a function that prepares a node for fixing by changing
only its own label without the need for any communication. This produces a label that,
when given as input to the fixing function, allows the fixing function to guarantee a locally
consistent output. Then, the second fixing step is the applying the fixing function itself,
which may result in new labels for an active node and its neighbors. For the maximal
matching example, this intuitively can be seen as follows: when a node v has its matched
edge deleted from the graph, it first locally prepares itself by changing its label to indicate
that it is now unmatched and ready for being matched if possible. Then, even before v is
able to become active for fixing, if one of its neighbors u becomes active for fixing then u
can already get matched with v.
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The above discussion gives the main intuitions for the two functions that underlie our
LFL definition. To capture the properties that we need them to promise, we need several
definitions of when the labels of neighbors are correct for their edge, and when the view of
a node is in essence locally consistent. However, algorithmically, recall that we are limited
to sending small messages in our setting, and hence may not be able to send entire labels
for invoking the fixing function (this will become crucial when we show an LFL for fixing
a 2-approximation for the minimum weight vertex cover). Hence, our labels need to be
composed of small pieces such that the fixing function only requires a couple of pieces of
every label. We call these pieces excerpts and we thus need a stronger definition for views
that replaces local consistency, because a node is unable to receive the entire label of a
neighbor, but only a constant number of excerpts.

To summarize, an LFL will be defined as a tuple which, in addition to the input and
output label sets Σ and Γ, consists of a set that characterizes when the labels of neighbors
are correct for their edge and a set that characterizes when the label of a node is ready for
fixing (these two sets replace C as they induce local consistency), as well as two functions, one
for preparing towards fixing and one for fixing. The formal full-fledged definition of LFLs is
given in Appendix C. When all inputs and all excerpts are small, we call this a bounded LFL.

A fast dynamic fixing algorithm. In essence, because we might need a node to change
the labels of its neighbors after a topology change, we make sure that concurrent fixing
always happens for nodes that are not too close, and other nodes wait even if their labels
are not yet correct. To this end, our method is to assign a timestamp to each change in the
graph and fix a node that suffered from the change only if its timestamp is a local minimum
in some neighborhood, thus avoiding conflicting concurrent fixes. However, the restriction on
the size of messages forbids unbounded timestamps.

To resolve this issue, we utilize ideas from the literature on shared memory algorithms,
e.g., [3], for deterministically hashing the timestamps into a small bounded domain so that
the nodes can afford sending a hashed timestamp in a single small message, and we do so
in a way that preserves the total order over timestamps. But this alone is still insufficient,
because we need to cope with the uncontrolled number of topology changes, which may,
for example, suddenly connect two nodes that were previously far enough to become active
simultaneously, but can now interfere with each other. We carefully take care of such cases,
where our timestamps have been cheated by the topology changes.

Thus, our main algorithmic contribution lies in proving the following theorem, which holds
in a model with an unbounded number of topology changes that may occur concurrently, and
when only a logarithmic number of bits can be sent in a message. This theorem is proven in
Appendix D.

I Theorem 11. For every bounded LFL L, there is a deterministic dynamic distributed
fixing algorithm which handles edge insertions/deletions in O(1) amortized rounds.

While the definition of LFLs is unavoidably involved, our algorithm has the desired
property of being simple, which we consider to be a benefit.

Theorem 11 handles changes in edges, and a direct translation for handling node in-
sertions/deletions (along with their edges) incurs an undesired blow-up in the complexity.
However, we prove that for some LFLs the same approach can also handle node insertions
and deletions within the same complexity, because of additional properties that their LFLs
satisfy.
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C Locally-Fixable Labelings (LFLs)

The key observation of this paper is that we can pinpoint some LCLs that can be fixed fast.
The new concept of Locally-Fixable Labelings (LFLs) is the key to our approach, and is a
combinatorial definition in the spirit of LCLs. The definition of LFL is quite involved, so we
break it up into several parts. Here, we give a first glimpse into the structure of an LFL.

Locally-Fixable Labelings (LFLs), the main structure: An LFL L is a tuple
(Σ,Γ, E ,P,Φprepare,Φfix), where Σ is a set of input labels, Γ is a set of output labels,
and E ,P,Φprepare,Φfix are defined below.

We begin by imposing an inner structure for each output label in Γ, in a way which
captures the part of the label that addresses the node itself, and the parts that address each
possible edge incident on it. In what follows, a label typically refers to an output label, i.e.,
an element in Γ. Formally, we denote by V = [n] the set of all possible nodes. A label Lv of
a node v ∈ V is a vector indexed by the graph nodes, denoted Lv = (Lv1, . . . , Lvv, . . . , Lvn).
The entry Lvv is called the node excerpt, and holds information about the node v. Each
entry of the form Lvu, for u 6= v, is called an edge excerpt, and holds information about the
pair {v, u}. Naturally, for non-neighboring nodes, the content of their edge excerpts is quite
useless, and is therefore either chosen to be empty or to be some default value.

C.1 Consistency
We now focus on how to capture local consistency. Namely, we define the sets E and P,
which replace the set C in the definition of LCLs.

In essence, we want an LFL to be a type of LCL, and so we need that for each node, the
label of itself and its neighbors determine whether the labeling is locally consistent. However,
algorithmically, this requires that each node receives the labels of its neighbors, which in
general may be too large to fit in a single message. Instead, we require that for each node
v, local consistency of the labeling can be determined based only on its own label Lv, and
the node excerpts of its neighbors, namely {Luu | u ∈ Nv}. Algorithmically, when each node
excerpt fits in a single message, this information can be obtained by v in a single round.

We denote by X the set of all possible excerpts of labels in Γ, i.e., Γ ⊆ Xn. We denote
by Nv the set of possible centered stars of node v ∈ [n], and N =

⋃
v∈[n]Nv. An element

of Γ × Xd for any value of d ≥ 0 is called a view. For each v ∈ [n] and Nv ∈ Nv of size
d(v) + 1, we define below a set of views in Γ×Xd(v) which are called Nv-consistent views.
Intuitively, these are views whose excerpts correspond to a locally consistent labeling of Nv.
In a nutshell, Nv-consistent views are views for which all edge excerpts for edges touching v
comply with some correctness condition, and the label of v itself follows another correctness
rule. We derive the formal definition of Nv-consistent views through the two definitions: the
set E of edge-correct tuples and the set P of prepared labels (i.e., prepared to be fixed).

Defining P: For each v ∈ [n] and Nv ∈ Nv, an LFL determines a set P of centered stars
with labeled centers. Intuitively, these labels are prepared, in the sense that they can later
be fixed if needed. We call the label of the center v of each element in P an Nv-prepared
label. Note that, algorithmically, no communication is needed for a node v to check whether
its label Lv is Nv-prepared for its current neighborhood Nv, or to choose such a label.

Defining E: An LFL determines a set E , whose elements are unordered pairs of nodes {v, u}
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along with tuples (Lvv, Lvu, Luv, Luu) in X4, which we call edge-correct tuples. For each
{v, u}-correct tuple, it must hold that Lvu = Luv. We call this latter condition the reciprocity
property. Intuitively, an element in E corresponds to two labels that agree in their reciprocal
edge excerpts and satisfy some required consistency.

Nv-consistency: For each v ∈ [n] andNv ∈ Nv of size d(v)+1, a view (Lv, Lu1u1 , . . . , Lud(v)ud(v))
in Γ×Xd(v), for which Lv isNv-prepared and for every ui ∈ Nv the tuple (Lvv, Lvui , Luiv, Luiui)
is {v, ui}-correct is called an Nv-consistent view. We can now consider a set VC (which
stands for view consistency), which consists of all stars centered at each node v along with
a label for v, and a node excerpt and a {u, v} edge excerpt for each neighbor of v, such
that the obtained view is Nv-consistent. We do not include VC as a separate element in the
definition of LFLs because this set is completely determined by the sets P and E .

However, the set VC is useful for defining the analog to LFLs of an L-legal labeling. For
an LFL L, a labeling λ : V → Σ × Γ is called L-legal for a graph G = (V,E), if for every
v ∈ V , there exists in VC an element (H, s) with a label at the center and two excerpts at
each other node, and there exists a mapping π that maps the star centered at v in G into
(H, s) with π(v) = s, such that the label in λ of v is the same as the label of the node s in
(H, s), and the respective excerpts of each neighbor w of v are the same as those of π(w). If
input labels exist, then they have to correspond in the mapping as well.

Crucially, if a view is Nv-consistent, then it is Nv-consistent regardless of the content of
any other excerpts of the nodes ui ∈ Nv and any labels of other nodes. This implies that LFLs
are a subclass of LCLs. To prove this, given an LFL we simply define a set C which contains
each star Nv centered at v, with node labels such that the view (Lv, Lu1u1 , . . . , Ludud) is
Nv-consistent, where the nodes ui are the neighbors of v. Clearly, if a labeling is L-legal for
the LFL, then it is also legal for the obtained LCL, which completes the argument. Notice
that the other equivalence also holds: every LCL can be defined by replacing C with E and
P, by plugging every label used when defining C into all excerpts of a new label which is
then used for defining E and P accordingly. However, not every LCL is an LFL, because one
cannot always find functions Φprepare and Φfix as we require in what follows.

C.2 Preparedness (defining Φprepare)
Algorithmically, to fix consistency for a node v after a topology change, we will need v to fix
also the labels of its neighbors. The node v cannot guarantee consistency for a neighbor u if
it did not hold before the fix, but we still must make sure that a new label that is assigned
by v to a neighbor u is always prepared, even if it is not yet consistent with respect to the
labels of the neighbors of u (which is information that v does not have). That is, we need
that the labels of all nodes are always prepared, even if a topology change occurs. This
implies that even before any communication takes place for fixing a topology change, each
node can prepare its label for fixing (make it prepared).

The combinatorial definition we use to capture the above is the following. A function
Φprepare : [n]×N ×N ×Γ→ Γ is a preparing function if for each node v, if Nold

v , Nnew
v ∈ Nv

and Loldv is Nold
v -prepared, then Lnewv = Φprepare(v,Nold

v , Nnew
v , Loldv ) is Nnew

v -prepared, and
Loldvu = Lnewvu for every u 6∈ Nold

v ⊕Nnew
v .

Algorithmic intuition: The function Φprepare allows node v to change its own node excerpt
Loldvv , and any edge excerpt Loldvu of a node u that is also affected by the topology change. For
such a node u, this excerpt has to change in a consistent manner, so that u also changes the
excerpt Lolduv of its old label in a way that satisfies the reciprocity property in the definition
of an edge-correct tuple. For a node u /∈ Nold

v ⊕Nnew
v , the excerpt Luv is not allowed to be
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changed, as u is unaware of the topology change and we want this function to be applied by
v without communication, while preserving the reciprocity property on all edges.

C.3 Fixability (defining Φfix)
We are now ready for the most crucial definition, which is the one that shows that views are
enough for fixing consistency, given that they are of prepared labels. Algorithmically, when a
node v needs to fix its label for consistency, it is given its old label and the node excerpt Luu
of every neighbor u for a prepared Lu, and v computes a new label for itself and possibly
new node excerpts for its neighbors. Crucially, although v does not have information other
than the old node excerpts, the new node excerpts must not compromise the preparedness of
the labels from which they originate and they must not change edge-correctness for edges of
neighboring nodes. Hence, if before the fix of a node v it holds that the only incorrect edge
of its neighbor u is its edge with v, then the new excerpts that v assigns to u must make it
Nu-consistent for its neighborhood.

Combinatorially, we define the following. A function Φfix : [n]×N × Γ×Xd → Γ×Xd

is called a fixing function if whenever the following hold

v ∈ [n], Nnew
v ∈ Nv, d = |Nnew

v | and Nnew
v = {u1, . . . , ud},

Loldv is Nnew
v -prepared,

Gnew is a graph that is consistent with Nnew
v , with a labeling for its nodes such that for

each ui, its label Lui is Nui -prepared, where Nui is the neighborhood of ui in Gnew, and
the labels Loldv , Lu1 , . . . , Lud satisfy the reciprocity property for every pair {v, ui},

then, when denoting

(Lnewv , β1, . . . , βd) = Φfix(v,Nnew
v , Loldv , Lu1u1 , . . . , Ludud),

it holds that

(a) (preparedness) Lnewv is Nnew
v -prepared, and

(b) for every ui denoting by L′ui the label for which L′uiw = Luiw for every w ∈ [n] \ {ui, v},
L′uiui = βi and L′uiv = Lnewvui , it holds that for every 1 ≤ i ≤ d:
1. (edge-correctness) the tuple (Lnewvv , Lnewvui , L

′
uiv, L

′
uiui) is {v, ui}-correct,

2. (preparedness for neighbor) L′ui is Nui-prepared, and
3. (edge-correctness for neighbor) for every w ∈ Nui , if (Luiui , Luiw, Lwui , Lww) is {ui, w}-

correct, then (L′uiui , L
′
uiw, Lwui , Lww) is {ui, w}-correct, where Lw is the label of w in

the given labeling for Gnew.

Notice the crucial property that follows from the definition: The new view (Lnewv , L′u1u1
, . . . , L′udud)

is Nnew
v -consistent. This holds because item (a) in the definition is promised to hold, as well

as item (b1) for all neighbors ui ∈ Nnew
v .

C.4 The full LFL definition
We can now finally define locally fixable labelings, as follows.

Locally-Fixable Labelings (LFLs): An LFL L is a tuple (Σ,Γ, E ,P,Φprepare,Φfix),
where Σ is a set of input labels, Γ is a set of output labels, E is a set of edge-correct
tuples, P is a set of centered stars with prepared labels at their centers, the function
Φprepare is a preparing function and the function Φfix is a fixing function.
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D An O(1) amortized dynamic algorithm for edge insertions/deletions

Our main result is that an LFL can be fixed deterministically within a constant amortized
number of rounds. For bounded LFLs, i.e., when the excerpt sizes are bounded by O(logn)
bits, our algorithm also works with a bandwidth of O(logn) bits. Here, we present our
main algorithm, and in Appendix E.1 we prove that the same algorithm also works for node
insertions, given an additional property of the Φprepare function of the LFL, which is satisfied
in some of our examples.

D.1 Edge insertions/deletions
Theorem 11 . For every bounded LFL L, there is a deterministic dynamic distributed fixing
algorithm which handles edge insertions/deletions in O(1) amortized rounds.

Proof. First, we assume that all nodes start with initial labels that are globally consistent.

The setup: We denote γ = 5. Let Fi be a set of edge changes (insertions/deletions) that
occur in round i ≥ 0 (for convenience, the first round is round 0). With each change in
Fi, we associate two timestamps such that a total order is induced over the timestamps as
follows: for an edge e = {u, v} in Fi, we associate the timestamp ts = (i, u, v) with node u,
and the timestamp (i, v, u) with node v. Since u and v start round i with an indication of e
being in Fi, both can deduce their timestamps at the beginning of round i. We say that a
node v is the owner of the timestamps that are associated with it. In each round, a node
only stores the largest timestamp that it owns, and omits the rest.

Notice that timestamps are of unbounded size, which renders them impossible to fit in
a single message. To overcome this issue we borrow a technique of [3], and we invoke a
deterministic hash function H over the timestamps, which reduces their size to O(logn)
bits, while retaining the total order over timestamps. The reason we can do this is that not
every two timestamps can exist in the system concurrently. To this end, we define h(i) = i

mod 3γn and H(ts) = (h(i), u, v) for a timestamp ts = (i, u, v), and we define an order ≺H
over hashed timestamps as the lexicographic order of the 3-tuple, induced by the following
order ≺h over values of h. We say that h(i) ≺h h(i′) if and only if one of the following holds:

0 ≤ h(i) < h(i′) ≤ 2γn, or
γn ≤ h(i) < h(i′) ≤ 3γn, or
2γn ≤ h(i) < 3γn and 0 ≤ h(i′) < γn.

If two timestamps ts = (i, v, u), ts′ = (i′, v′, u′) are stored in two nodes v, v′ at two times i, i′,
respectively, it holds that ts < ts′ if and only if H(ts) ≺H H(ts′). The reason that this holds
despite the wrap-around of hashed timestamps in the third bullet above, is the following
property that we will later prove: for every two such timestamps, it holds that i′ − i ≤ γn.
This implies h(i) ≺h h(i′) whenever i < i′ despite the bounded range of the function h.

In the algorithm, the nodes chop up time into epochs, each consists of γ consecutive rounds,
in a non overlapping manner. That is, epoch j consists of rounds i = γj, . . . , γ(j + 1)− 1.

The algorithm: For every epoch j ≥ 0, we consider a set Dj ⊆ V of dirty nodes at the
beginning of each epoch, where initially no node is dirty (D0 = ∅). Some nodes in Dj may
become clean by the end of the epoch, so at the end of the epoch the set of dirty nodes
is denoted by D′j , and it holds that D′j ⊆ Dj . At the beginning of epoch j + 1, all nodes
that receive any indication of an edge in Fi in the previous epoch are added to the set of
dirty nodes, i.e., Dj+1 = D′j ∪ Ij , where Ij is the set of nodes that start round i with any
indication about Fi, for any γj ≤ i ≤ γ(j + 1)− 1.
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Intuitively, the algorithm changes the labels so that the labels at the end of the epoch are
consistent with respect to the topology that was at the beginning of the epoch, unless they
are labels of dirty nodes or of neighbors of dirty nodes.

The algorithm works as follows. In epoch j = 0, the nodes do not send any messages, but
some of them enter I0 (if they receive indications of edges in Fi, for 0 ≤ i ≤ γ − 1).

Denote by N i
v the neighborhood of v in round i, denote by Li the labeling at the beginning

of round i, before the communication takes place, and denote by L̂iv the labeling at the
end of the round. Unless stated otherwise, the node v sets L̂iv ← Liv and Li+1

v ← L̂iv.
Now, consider an epoch j > 0. On round γj every node v ∈ Dj locally applies Lγjv ←
Φprepare(v,Nγ(j−1)

v , Nγj
v , L̂γj−1

v ), where L̂γj−1
v is the label that v has at the end of round

γj − 1 = γ(j − 1) + 4, which, as we describe below, may be different from its label Lγj−1
v at

the beginning of the round.6 Then, the node v sends Lγjvv to its neighbors. These are the
labels for the graph Gγj which the fixing addresses, and this is how the algorithm leverages
the preparing function Φprepare — by bringing all the labels to the common ground of being
prepared for the neighborhoods in the same graph, Gγj .

On rounds γj + 1 to γj + 3 the nodes propagate the hashed timestamps owned by dirty
nodes. That is, on round γj + 1, each node in Dj broadcasts its hashed timestamp, and
on the following two rounds all nodes broadcast the smallest hashed timestamp that they
see (with respect to the order ≺H). Every node v in Dj which does not receive a hashed
timestamp that is smaller than its own becomes active.

On the last round of the epoch, γj+ 4, every active node v that has neighborhood Nγj
v =

{u1, . . . , ud} at round γj computes (`v, β1, . . . , βd) ← Φfix(v,Nγj
v , Lγjv , L

γj
u1u1

, . . . , Lγjudud).
Notice that v has the require information to compute the above, even if additional topology
changes occur during the rounds in which timestamps are propagated. Yet, we need to cope
with the fact that topology changes may occur also throughout the current epoch and, for
example, make active nodes suddenly become too close. For this, we denote by Tj ⊆ Ij the
set of tainted nodes who received an indication of a topological change for at least one of
their edges during the epoch j.

Now, only if v /∈ Tj is an active node, it sends each neighbor u the values `vu (the
corresponding excerpt of `v) and βu and becomes clean. Otherwise, an active node v that is
tainted (i.e., is in Tj) aborts and remains dirty for the next epoch. Of course, if two nodes
u and v are neighbors at the beginning of an epoch but not when v sends the computed
excerpts, then u does not receive this information.

Finally, every active node v /∈ Tj updates L̂γj+4
v ← `v and each neighbor u updates L̂γj+4

u

by setting L̂γj+4
uu ← βu and L̂γj+4

uv ← `vu, leaving other excerpts unchanged. At the end of
round γj + 4 = γ(j + 1)− 1, node v becomes inactive (even if it aborts) and is not included
in D′j , i.e., we initialize D′j = Dj \ {v | v is active in epoch j} at the beginning of epoch j.
Notice that if v is active but aborts then it will be in Ij and hence in Dj+1.
Analysis: In Appendix E, we prove that the amortized round complexity is O(1). In addition,
we prove that the following invariant holds at the end of round i = γj + 4 = γ(j + 1)− 1:

1. For every node v, its label L̂γj+4
v is Nγj

v -prepared;
2. For every two nodes u, v that are clean at the end of the epoch and for which {u, v} ∈ Gγj ,

it holds that the tuple (L̂γj+4
uu , L̂γj+4

uv , L̂γj+4
vu , L̂γj+4

vv ) is {u, v}-correct.

Since the invariants hold, we conclude that whenever Dj = ∅, it holds that for each edge

6 We stress that one can describe our algorithm with labels that can only change at the beginning of a
round, but we find the exposition clearer this way.
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e, the tuple associated with e is e-correct, and all views are consistent for their respective
neighborhoods in Gγj , which by the correctness property implies that the labeling is in L-legal.
Further, what the invariants imply is that some correctness holds even for intermediate
rounds: at the end of every epoch j, every tuple associated with an edge e that touches two
clean endpoints is e-correct, and the entire subgraph induced by nodes that are clean and
have all of their neighborhood clean has locally consistent labelings. J

E Analysis of the Algorithm of Appendix D

We provide here the missing details of the analysis of the algorithm (proof of Theorem 11).

Round complexity: We now prove that the algorithm has an amortized round complexity
of O(1). To this end, we show that any epoch j in which messages are sent can be blamed
on a different timestamp ts and that the node v that owns ts is either clean for the next
epoch (v 6∈ Dj+1) or is dirty because of a (new) change that occurs in one of its adjacent
edges during epoch j (v ∈ Ij).

First, we claim that for every two timestamps ts = (i, v, u) and ts′ = (i′, v′, u′) such that
ts < ts′, that are simultaneously owned by nodes at a given time, it holds that i′ − i ≤ γn.
Assume otherwise, and consider the first time when this condition is violated for some
timestamps ts < ts′. This means that the owner v of ts does not become active for more
than n epochs. Since in each epoch at least one timestamp is handled, v not becoming active
for more than n epochs can only happen if at round i there were more than n timestamps
which were then not yet handled, stored in various nodes. But there are at most n nodes
and each one stores at most one timestamps so the above is impossible. Since i′ − i ≤ γn,
we have that H(ts) ≺H H(ts′), because h(i) ≺h h(i′), as argued earlier.

Since the hashed timestamps are totally ordered by ≺H , we have that in each epoch j
there is at least one dirty node v that becomes active, namely the one with the minimal
timestamp. The node v is not in D′j and hence either is not in Dj+1 or is in Ij , as claimed.
Since every topology change results in two timestamps, we have that the number of rounds
required by the algorithm is 2γ = O(1), amortized over all changes.

Correctness: For correctness we claim the following invariant holds at the end of round
i = γj + 4 = γ(j + 1)− 1:

1. For every node v, its label L̂γj+4
v is Nγj

v -prepared;
2. For every two nodes u, v that are clean at the end of the epoch and for which {u, v} ∈ Gγj ,

it holds that the tuple (L̂γj+4
uu , L̂γj+4

uv , L̂γj+4
vu , L̂γj+4

vv ) is {u, v}-correct.

We prove the above by induction on the epochs. Clearly the base case holds trivially as
during the first epoch the labels do not change and we assume that the nodes start with an
L-legal labeling for the initial graph G0. Now, assume the above invariants hold for epoch
j − 1. We analyze what happens for each item.

1. We claim that at the end of the epoch, every node v has a Nγj
v -prepared label L̂γj+4

v . By
the induction hypothesis, L̂γ(j−1)+4

v is a Nγ(j−1)
v -prepared labeling for v. Since we apply

Φprepare with Loldv = L̂
γ(j−1)+4
v and Nold = N

γ(j−1)
v , preparedness holds by definition of

Φprepare for Lγjv . Now, if the label of v does not change further during the epoch, then
the invariant holds for it.
If the label of v changes because v is an active node that does not abort, then it applies
Φfix in order to obtain L̂γj+4

v , which is Nγj
v -prepared by item (a) in the definition of Φfix.
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Otherwise, we claim that the label of v can only be changed by a single one of its neighbors.
This is because if two of its neighbors, u1, u2 are active, then one of its edges to them
must be inserted during the epoch because we propagate the timestamp to distance 3,
which makes its endpoint abort. Since the label of v is changed by a single neighbor that
executes Φfix, the item (b2) in the definition of Φfix guarantees that the new label for v
is prepared with respect to its neighborhood in the respective graph, which is Gγj .

2. For every two nodes u, v that are clean at the end of the epoch and for which {u, v} ∈ Gγj ,
if their labels do not change during the epoch, then {u, v}-correctness of the respective
tuple follows from the induction hypothesis.
If only one of their labels changes, say that of v, then either v applies Φfix or there is a
(single) neighbor w of v which changes the label of v by applying Φfix. In the former case,
by item (b1) in the definition of Φfix it holds that the respective tuple of excerpts of the
labels of v and u is {u, v}-correct. In the latter, {u, v}-correctness is given by item (b3)
in the definition of Φfix.
Finally, if both of their labels change, then either without loss of generality v applies
Φfix to both labels, in which case item (b1) in the definition of Φfix promises that {u, v}-
correctness holds, or v and u have a joint neighbor w which applies Φfix and again
{u, v}-correctness holds, by item (b3). The crucial thing to notice here is that it cannot
be the case that a node wv changes the label of v and a different node wu changes the
label of u at the same time, because this implies that the distance between wv and wu is
at most 3, in which case either at least one of them aborts due to an edge insertion, or
the edge {u, v} is inserted (maybe immediately after being deleted), but then v and u
are not clean.

Since the invariants hold, we conclude that whenever Dj = ∅, it holds that for each edge
e, the tuple associated with e is e-correct, and all views are consistent for their respective
neighborhoods in Gγj , which by the correctness property implies that the labeling is in L-legal.
Further, what the invariants imply is that some correctness holds even for intermediate
rounds: at the end of every epoch j, every tuple associated with an edge e that touches two
clean endpoints is e-correct, and the entire subgraph induced by nodes that are clean and
have all of their neighborhood clean has locally consistent labelings.

E.1 Node insertions/deletions
For node insertions and deletions, the proof of Theorem 11 does not hold. Intuitively, this
is because we need all neighbors of a changed node (inserted or deleted) to become dirty,
which clearly increases the amortized complexity.

For the example of maximal matching, however, notice that when an edge is inserted, it
suffices that only one of its endpoints becomes dirty in the algorithm and fixes correctness for
the tuple associated with that edge. Hence, if a node is inserted, it suffices that the inserted
node becomes dirty, and we do not need all of its neighbors to become so. The property
of the LFL for maximal matching which makes this possible is a property of the preparing
function Φprepare, which makes it what we term as an insertion-closed preparing function.

Insertion-closed preparing functions: Formally, a preparing function Φprepare is called
insertion-closed if for each v ∈ [n], wheneverNold

v ⊆ Nnew
v it holds that Φprepare(v,Nold

v , Nnew
v , Loldv ) =

Loldv .
We claim that for every bounded LFL with an insertion-closed preparing function, our

approach also handles node insertions within O(1) amortized rounds.
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I Theorem 12. For every bounded LFL L with an insertion-closed preparing function, there
is a deterministic dynamic distributed fixing algorithm which handles edge insertions/deletions
and node insertions in O(1) amortized rounds.

Proof. When a node is inserted, it adopts an initial label that is Nv-prepared. The algorithm
is almost exactly the same as the main algorithm, with the only modification being that
a node v becomes dirty also in the case when it is an inserted node. The analysis of O(1)
amortized number of rounds remains the same, and so we only argue that the two claimed
correctness conditions hold at the end of round γj + 4 = γ(j + 1)− 1:

1. For every node v, its label L̂γj+4
v is Nγj

v -prepared;
2. For every two nodes u, v that are clean at the end of the epoch and for which {u, v} ∈ Gγj ,

it holds that the tuple (L̂γj+4
uu , L̂γj+4

uv , L̂γj+4
vu , L̂γj+4

vv ) is {u, v}-correct.

The proof is again by induction and below we only indicate the modifications required
compared with the proof of Theorem 11.

1. The proof for Nγj
v -preparedness remains the same.

2. For the proof of {u, v}-correctness to go through, we argue that {u, v}-correctness still
holds after the insertion of a node w that is a neighbor of at least one of u and v, even
before the dirty node w becomes active. This is because the insertion-closed preparing
function promises that the labels of u and v remain prepared after the insertion of w
without the need to change them, and hence the correctness of the respective tuple for
the edge {u, v} is maintained. J

At this point, a natural question is why does our algorithm not handle also node deletions.
The intuition for why this happens is as follows. By the definition of an insertion-closed
preparing function, for an edge insertion it suffices that only one endpoint of the edge invokes
Φfix. This is why we can extended the algorithm to also apply to node insertions, as the
inserted node is responsible for fixing the correctness of all of its edges. However, for an edge
deletion, it may be the case that both endpoints need to invoke Φfix (imagine the maximal
matching example, when a matching edge is removed from the graph, and so both endpoints
need to match themselves with new neighbors). Hence, while for an edge deletion this only
incurs a factor of 2 in the amortized complexity, when a node is deleted it may be that all of
its former neighbors need to invoke Φfix, which is too costly.

Despite that, one may observe that a notion of deletion-closed preparing functions could
be defined in a similar manner. However, we suspect that such a notion has a much more
limited applicability. Formally, we would like that for each v ∈ [n], whenever Nold

v ⊇ Nnew
v

it holds that Φprepare(v,Nold
v , Nnew

v , Loldv ) = Loldv . Note that as with the intuition about
maximal matchings, in LFLs whose preparing functions are either insertion-closed or deletion-
closed, it is sufficient that only one endpoint of an edge becomes dirty to fix the labeling and
ensure edge-correctness. We emphasize that crucially in such a scenario with deletion-closed
preparing functions there is no additional edge-correctness constraint to fix, and therefore
node deletions may be handled without communication! Since we observe this property only
in one example below, and as it seems to us more limiting, we chose not to study it further.

Nevertheless, for some problems, we can show that we can also handle node deletions
efficiently. This happens when we can bound the number of neighbors that need to invoke
Φfix after a node deletion (imagine the maximal matching example, where a deleted node
could have been matched to at most a single neighbor, and so at most one former neighbor
really needs to invoke Φfix). In the paper, we address node deletions where applicable.
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