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Abstract—Distributed applications generate a significant
amount of network traffic. By collocating frequently commu-
nicating nodes (e.g., virtual machines) on the same clusters (e.g.,
server or rack), we can reduce the network load and improve
application performance. However, the communication pattern of
different applications is often unknown a priori and may change
over time, hence it needs to be learned in an online manner. This
paper revisits the online balanced partitioning problem that asks
for an algorithm that strikes an optimal tradeoff between the
benefits of collocation (i.e., lower network load) and its costs (i.e.,
migrations). Our first contribution is a significantly improved
deterministic lower bound of Ω(k · `) on the competitive ratio,
where ` is the number of clusters and k is the cluster size, even for
a scenario in which the communication pattern is static and can
be perfectly partitioned; we also provide an asymptotically tight
upper bound of O(k·`) for this scenario. For k = 3, we contribute
an asymptotically tight upper bound of Θ(`) for the general
model in which the communication pattern can change arbitrarily
over time. We improve the result for k = 2 by providing a strictly
6-competitive upper bound for the general model.

I. INTRODUCTION

The popularity of data-centric, distributed applications has
led to an explosive growth of network traffic, especially in data
centers [1, 2]. The performance of these distributed applica-
tions often critically depends on the underlying network [3],
and efficient operation of these networks is important. At the
same time, distributed systems are often highly virtualized
today, and provide interesting new opportunities for resource
optimization. In particular, it has become possible to operate
data centers in a more demand-aware manner: by dynamically
migrating nodes (e.g., virtual machines) which communicate
frequently topologically closer to each other, network traffic
can be reduced significantly. However, migrations entail over-
head and should be used moderately.

This paper studies the algorithmic problem underlying such
demand-aware optimizations, aiming to strike a balance be-
tween the benefits of migrations (e.g., reduced network load)
and their costs. In particular, we are interested in an online
variant of the problem: since communication patterns can
change over time, an online algorithm needs to react dynam-
ically to new traffic patterns, and migrate nodes accordingly.
Ideally, this algorithm should perform close to an optimal
offline algorithm, without requiring any information about
future traffic demands.

This problem is known as the online balanced graph repar-
titioning problem and was introduced by Avin et al. [4, 5] at
DISC 2016. A special variant of the general problem has later

been studied by Henzinger et al. [6] at SIGMETRICS 2019.
We refer to the latter as the learning model.

A. Model

We study two models in this paper: the general partitioning
model, and its subproblem, the learning model. In both mod-
els, we assume that communication patterns are not known
to our algorithms at the beginning. We measure the quality
of presented algorithmic solutions by competitive analysis [7],
which is well-suited for problems that are online by their
nature. In the competitive analysis, the goal is to optimize
the competitive ratio of a given online algorithm: the ratio of
the online algorithm’s cost to the cost of an optimal offline
algorithm that knows the entire input sequence in advance.
General partitioning model. In the online balanced graph
partitioning problem, we are given a set V of n nodes (e.g.,
virtual machines or processes), initially arbitrarily partitioned
into ` clusters (e.g., servers or entire racks), each of size k. The
nodes interact using a sequence of pairwise communication
requests σ = (u1, v1), (u2, v2), (u3, v3), . . ., where a pair
(ut, vt) indicates that nodes ut and vt exchange a certain
amount of data. Nodes in C ⊂ V are collocated if they reside
in the same cluster.

An algorithm serves a communication request between two
nodes either locally at cost 0 if they are collocated, or remotely
at cost 1 if they are located in different clusters. We refer to
these two types of requests as internal and external requests,
respectively. We may refer to external requests as inter-cluster
requests or inter-cluster edges interchangeably. Before serving
a request, an online algorithm may perform a repartition, i.e., it
may move (“migrate”) some nodes into clusters different from
their current clusters, while respecting the capacity of every
cluster. Afterwards, the algorithm serves the request. The cost
of migrating a node from one cluster to another is α ∈ Z+. For
any algorithm ALG, its cost, denoted by ALG(σ), is the total
cost of communications and the cost of migrations performed
by ALG while serving the sequence σ.
Learning model. We further study a learning variant of the
online balanced graph partitioning where the communication
pattern is static: the communication graph admits a perfect
partition in which no inter-cluster request ever occurs. More-
over, an optimal offline algorithm moves to this partition
before serving the sequence, and it stays there permanently.
This is a special case of the general problem where a pair



of nodes either never communicate or they communicate
infinitely many times.

Any algorithm must eventually collocate pairs of communi-
cating nodes, as otherwise, it is not competitive. The objective
is to learn the communication graph while serving all requests
without performing too many node migrations. In the learning
model, for simplicity, we assume that the migration cost is
α = 1 (our bounds hold for any α > 1 as well).

The learning variant was considered first in [8] for only two
clusters, and it was considered later with many clusters and
resource augmentation in [6].

B. Related Work

The works closest to ours are by Avin et al. at DISC 2016
(on the general partitioning model) [4, 5], and by Henzinger
et al. (on the learning model) [6] at SIGMETRICS 2019 and
SODA 2021 [9]. Recently, a polynomial-time online algorithm
achieving the same competitive ratio as in [4, 5] has been
proposed by Forner et al. [10]. However, the focus of these
papers is primarily on models with resource augmentation:
the online algorithm can use slightly larger clusters than
the offline algorithm (that is, allocations do not have to be
perfectly balanced). Avin et al. actually showed that their
lower bound Ω(k) holds even in a scenario with significant
resource augmentation, and they provided an algorithm with
the competitive ratio O(k log k) using the (2 + ε)-augmented
cluster capacity. Their ratio is independent of `, which is
impossible without significant resource augmentation.

In contrast, we study the non-augmented setting, where the
nodes need to be perfectly balanced among the clusters. This
assumption is not only more realistic but also significantly
more challenging, as it is related to hard problems such as
integer partitioning [11]. In terms of results without augmen-
tation, so far, it is only known that there exists an O(k2 · `2)-
competitive algorithm [5]; the best known lower bound is
significantly lower, namely Ω(k). For k = 2, Avin et al. [5]
presented a 7-competitive algorithm with a substantial (Ω(`2))
additive constant.

The problem has also been studied in a weaker model
where the adversary can only sample requests from a fixed
distribution [8].

The static offline version of the partitioning problem is
known as the `-balanced graph partitioning problem, where
the entire communication graph is known in advance, and the
task is to partition n nodes into ` clusters of capacity n/` each,
minimizing the number of inter-cluster edges, The problem
is NP-complete, and cannot even be approximated within
any finite factor unless P=NP [12]. The static variant where
` = 2 corresponds to the minimum bisection problem, which
is already NP-hard [13], and the currently best approximation
ratio is O(log n) [14, 15, 16, 17, 18, 19].

Our problem is further related to some classic online
problems. In particular, it is related to online paging [20, 21,
22, 23], sometimes also referred to as online caching, where
requests for data items (nodes) arrive over time and need
to be served from a cache of finite capacity, and where the

number of cache misses must be minimized. Classic problem
variants usually boil down to finding a smart eviction strategy,
such as Least Recently Used (LRU) [20]. In our setting,
requests can be served remotely (i.e., without fetching the
corresponding nodes to a single physical machine). In this
light, our model is more reminiscent of caching models with
bypassing [24, 25, 26]. A major difference between these
problems is that in the caching problems, each request involves
a single element of the universe, while in our model both end-
points of a communication request are subject to optimization.
In this light, we can see our model as a “symmetric” version
of online paging.

Graph partitioning problems are fundamental in computer
science, and arise in many different contexts [27, 28].

C. Our Contributions

This paper presents several new results on the online graph
partitioning problem without augmentation. For the learning
model, we present a lower bound of Ω(k ·`) on the competitive
ratio of any online deterministic online algorithm (that holds
also in the general partitioning model). The best known
lower bound so far was Ω(k) [4, 5] that holds only in the
general partitioning model. We complement this result with
an asymptotically optimal, O(k · `)-competitive algorithm for
the learning model.

For the general partitioning model, we design an asymp-
totically optimal, Θ(`)-competitive algorithm for k = 3,
improving the best known upper bound so far O(`2) [5]. We
further present a strictly 6-competitive algorithm for k = 2
that improves upon the previous 7-competitive algorithm with
O(α`2) additive constant.

All algorithms in this paper have a strict competitive ratio
(i.e., without an additive term). Table I provides an overview
of our contributions compared to prior work.

Variant Lower bound Upper bound

k = 2 3 [5] 6 (§III-B)

k = 3 Ω(`) (§II-A) O(`) (§III-A)

k > 3 Ω(k · `) (§II-A) O(k2 · `2) [5]

Learning model Ω(k · `) (§II-A) O(k · `) (§II-B)

TABLE I: Overview of known results and our contributions. The table
summarizes the results for the general partitioning model, except for the last
row that summarizes the results for the learning model for arbitrary k and `.

Algorithmic techniques. The variant for general k is still un-
resolved, hence it is vital to summarize algorithmic techniques
used in this paper. A straightforward analysis of the algorithm
from Section III-A results in the bound O(`2), and the analysis
must be improved in two places. One must bound the cost of
each of O(`) reconfigurations per phase by a constant, and
show that the optimal offline algorithm must pay a significant
cost for inter-cluster requests. We bound the cost of the latter
by estimating the capabilities of the optimal offline algorithm
to prepare for an incoming sequence of requests. Furthermore,
in the analysis of the algorithm from Section III-B, we propose
a novel charging scheme for edges that share a vertex.



II. THE LEARNING MODEL

In this section, we consider the learning variant of online
balanced graph partitioning problem. For this setting, we show
a surprisingly high lower bound of Ω(k · `) for k ≥ 3.
The lower bound holds also in the general partitioning model
(studied in Section III). At the end of this section, we discuss
an asymptotically optimal upper bound for the learning variant.

A. Lower Bound

We provide a lower bound Ω(k · `) for the competitive ratio
of any deterministic online algorithm for the learning problem.
Later, we elaborate on how to efficiently transform it to a lower
bound for the general partitioning problem. The lower bound
requires k ≥ 3. In contrast, for k = 2 the learning problem
is trivial: immediate collocation of communicating pairs is 1-
competitive. In contrast, the general partitioning problem for
k = 2 is non-trivial (see Section III-B).

Throughout this paper, we often refer to groups of com-
municating nodes. We use this concept slightly differently in
the lower bound than the upper bounds. In our algorithms, we
group nodes with a communication history into components.
In this section, we group nodes that may ever communicate,
into ground sets.

A ground set is a subset of nodes that are collocated in the
same cluster under a given perfect partition unknown to algo-
rithms. If an algorithm keeps a ground set split at any point,
we (as adversary) issue as many requests as it takes between
non-collocated parts of the ground set until the algorithm
collocates them. Observe that under such input construction
every algorithm is forced to maintain a perfect partition of
ground sets, otherwise it is not competitive. Henceforth, we
assume every deterministic algorithm collocates the endpoints
of every request as soon as it arrives.

With each new inter-cluster request a part of some ground
set is revealed. The algorithm recovers the whole ground
set and eventually the (hidden) perfect partition gradually by
unifying and collocating separated parts on each inter-cluster
request. We say that a ground set is a singleton if it contains
exactly one node, which we refer to as an isolated node.

We start by constructing a ground set called B of size k−1
on an arbitrarily chosen cluster. In any balanced partition, the
ground set of size k−1 must be collocated with some isolated
node. We issue requests between this isolated node and some
node that was collocated with it in the initial partition but
currently separated, forcing the algorithm to collocate the two
nodes which means collocating the ground set B with another
isolated node. By issuing requests in this manner repeatedly,
almost every node gets collocated with B. We generate the
sequence in a way that it admits a perfect partition and
the optimal offline algorithm OPT reaches this partition by
performing only two node exchanges (”swaps”).

Theorem 1. The competitive ratio of any deterministic online
algorithm for the learning model of Online Balanced Graph
Partitioning is at least (k−2)(`−1)/2−2 for any k ≥ 3 and
` ≥ 2.

Proof: Fix any online algorithm ALG. For a subset of
nodes C that are collocated in the initial partition, let I(C)
denote the cluster where C resides initially. We refer to I(C)
as the cluster of origin when C is clear from the context.
Initially, all nodes are isolated, i.e., each node is in a singleton
ground set. First, we choose a cluster arbitrarily and create
a ground set B of k − 1 nodes in this cluster. Each cluster
hosts exactly k nodes, and in any feasible partition, a single
isolated node must be collocated with B. At any time, we
refer to the isolated node currently collocated with B as the
pivot node. Let x0 denote the first pivot node.

Then, we join the pivot node to a larger ground set to force
its eviction. Precisely, we create a ground set {x0, y0}, where
y0 is an arbitrary isolated node. Since ALG does not have
{x0, y0} collocated, we issue an external request to this pair
so that ALG collocates it. ALG cannot collocate {x0, y0}
with B (as B’s size is k − 1), hence it collocates them in
a different cluster. In order to preserve a feasible partition of
nodes after collocating {x0, y0}, ALG must replace x0 with
another isolated node that becomes the new pivot.

We proceed in similar steps by joining the current pivot node
to a ground set of the same origin residing in a different cluster.
Consider the step i, when the isolated node xi is collocated
with B. We issue a request between xi and some node in Ci,
where Ci is the largest ground set s.t. I(Ci) = I(xi), Ci 6=
{x0, y0}. Then ALG must collocate the new ground set {xi}∪
Ci in one cluster. Any feasible partition replaces xi with some
isolated node xi+1, as the new ground set {xi} ∪Ci may not
be ever split. We terminate the process once the number of
remaining isolated nodes is less than `+3. At each step i, the
number of isolated nodes decreases either by one or by two if
Ci is a singleton. Therefore, once the process terminates, in
any case at least `+ 1 isolated nodes are left.

Next, we argue that a feasible partition exists when the
process terminates. This implies that a feasible partition exists
after any earlier step as well. Since there are at least ` + 1
isolated nodes left, there must be two isolated nodes x∗ and
y∗, with the same cluster of origin, i.e., I({x∗}) = I({y∗}).
Consider the partition P ∗ obtained from the initial partition
after swapping x0 and y0 with x∗ and y∗ (respectively). In this
partition, the ground set {x0, y0} is collocated in the cluster
I({x∗, y∗}). Note that after the first request {x0, y0}, we issue
requests only between nodes that have the same cluster of
origin and all these nodes are collocated in P ∗. Therefore all
ground sets constructed so far are collocated in P ∗, and it is
a feasible partition.

Consider nodes x∗ and y∗ and the partition P ∗ obtained
previously. OPT moves to P ∗ by performing only two node
swaps. Precisely, OPT collocates {x0, y0} by swapping them
with x∗ and y∗. No ground set is split in P ∗ and OPT pays
only for the two swaps.

ALG performs at least one swap at each step i, and some
ground set grows. Consider any ground set C∗ 6= B after
the termination. This ground set has grown exactly |C∗| − 1
times until the termination. Let S be the set of all ground sets
after the process terminates. Thus, S includes ground sets B,



{x0, y0}, and (up to) `+ 2 singleton ground sets. Among the
remaining ground sets in S, no two ground sets have the same
origin. Otherwise, the smaller ground set is either a singleton,
which contradicts the bound `+2 on the number of singletons,
or we have joined nodes to it at some step, contradicting our
choice of the largest Ci at step i. Hence, there are at most `−1
such ground sets, one per possible cluster of origin, excluding
the cluster containing B. Therefore, |S| ≤ 1 + 1 + (`+ 2) +
(` − 1) = 2` + 3. Note that among all non-singleton ground
sets in S , only B does not grow during the process. Thus, the
total number of times that a ground set in S has grown is∑
C∗∈S

(|C∗| − 1)− (k − 1) =
∑
C∗∈S

|C∗| −
∑
C∗∈S

1− (k − 1)

≥ k`− (2`+ 3)− (k − 1) = (k − 2)(`− 1)− 4,

which bounds the number of swaps performed by ALG. The
competitive ratio is then ALG/OPT ≥ ((k−2)(`−1)−4)/2.

Lower bound for the general problem. For a lower bound
Ω(k · `) for the general partitioning problem, we continue to
issue requests to split nodes of a ground set until the algorithm
collocates them. Note that the ground sets constructed in our
lower bound can be perfectly partitioned into the clusters.
Hence, the optimal algorithm moves to a perfect partition at
the beginning (where requests incur the cost 0), and its cost
is bounded. This means that the algorithm must eventually
collocate all nodes of a ground set to be competitive. We reveal
the next ground set only after the collocation, hence we can
repeat the analysis of the algorithm for the learning problem.
Finally, we note that the construction is oblivious to the choice
of the reconfiguration cost α: we compare the number of node
exchanges of ALG and OPT.

Resource augmentation. The majority of work on the online
balanced partitioning problem so far [4, 5, 6] focuses on the
scenario with resource augmentation, where the clusters of an
online algorithm are larger than the clusters of the optimal
offline algorithm that we compare the performance to. We can
adjust our construction to show a lower bound of Ω(`) for
a setting with resource augmentation.

Consider a partitioning problem with resource augmentation
1+1/3−ε. Fix k divisible by 3, and construct 3 ground sets of
size k/3 in each cluster. Note that no more than 3 such ground
sets fit in one cluster. Then, apply the construction from the
lower bound for k = 3, using these ground sets in the way we
used individual nodes. The cost of any algorithm (including
OPT) scales up by k/3, and the lower bound Ω(`) holds.

Finally, we note the possibility of improvement. The al-
gorithm CREP [5] requires (2 + ε)-augmentation to guaran-
tee the competitive ratio independent of `. In contrast, our
construction shows that the linear term ` is inevitable if the
augmentation is smaller than 1 + 1/3.

B. Upper Bound

We present an asymptotically optimal algorithm for the
learning problem. The algorithm collocates a pair as soon as

they communicate and it never separates them. In order to pre-
serve collocated pairs, we employ the concept of components,
introduced by Avin et al. [4, 5].

We maintain subsets of frequently communicating nodes
as components. Initially, each node constitutes a single-node
component which we refer to as a singleton component, and
the node in such component is an isolated node. We define
larger components in terms of smaller components. Concretely,
given a (sub)sequence of requests, two components C1 and C2

merge into one component as soon as for some pair of nodes
v1 ∈ C1 and v2 ∈ C2, the frequency of requests {v1, v2}
reaches a certain threshold through the sequence. We keep all
nodes of a component always collocated in the same cluster,
i.e., when we move a node, we move the whole component that
contains it. A partition that has every component collocated is
a component respecting partition.

In addition, we maintain a balanced partition of our com-
ponents as long as such partition exists, a reminiscent of
partitioning given integers into sets of equal sum [13], which is
an NP-hard problem. In contrast, our partition is time-varying:
two components are merged into one component once they
communicate, and we adjust the partition accordingly.

The algorithm in this section and the algorithm for k = 3
(cf. Section III-A) are modified versions of the algorithm DET
from [5]. The difference is in the choice of partition after
a component merge. In DET, the partition was arbitrary. In
the algorithm for the learning model, we choose a component
respecting partition closest to the initial partition. In the
algorithm from Section III-A, we choose the partition closest
to the current partition (a repartition of minimum cost). Since
the component sizes are in O(n), computing a component
respecting partition for ` = 2 is feasible in polynomial time
using dynamic programming [8], but is strongly NP-hard for
` > 2 [29]. However, we assume unlimited computational
power and focus on competitiveness instead.
Perfect Partition Learner algorithm. Now we describe the
algorithm PPL. On each inter-cluster request {u, v}, PPL
creates new components by merging the two components
that contain nodes u and v. In order to collocate nodes of
the new component, PPL moves to a component respecting
partition that minimizes the distance to the initial partition
PI . The scheme of the algorithm can be found in the appendix
(Algorithm 1).

Fix the initial partition PI := {I1, . . . , I`} and OPT’s final
partition PF := {F1, . . . , F`}. The distance of a partition P =
{C1, . . . , C`} from the initial partition, defined as ∆(P ) :=∑`

j=1 |Cj \Ij |, is the number of nodes in P that do not reside
in their initial cluster. In other words, at least ∆(P ) node
migrations are required in order to reach the partition P from
PI , and thus OPT ≥ ∆(PF ).

PPL never moves to a partition that is more than ∆∗ :=
∆(PF ) migrations away from PI . This invariant latter ensures
us that PPL does not pay too much while recovering PF . We
emphasize that a repartitioning by PPL replaces the current
partition P with a perfect partition closest to PI . This way
PPL never moves to a partition beyond the distance ∆∗.



Property 1. Let P be any partition chosen by PPL at any
time. Then, ∆(P ) ≤ ∆∗.

Lemma 1. The cost of each repartitioning by PPL is 2 ·OPT.

Proof: Let Pi denote the partition of PPL immediately
after serving σi. Consider the repartitioning that transforms
Pt−1 to Pt upon the request σt. Let M ⊂ V denote the set
of nodes that migrate during this process. Let M− and M+

denote the subset of nodes that, respectively, enter or leave
their initial cluster during the repartitioning. Then, M = M+∪
M−. Since at least |M−| nodes are not in their initial cluster
before the repartitioning (i.e., in Pt−1), the distance before the
repartitioning is ∆(Pt−1) ≥ |M−|. Analogously, the distance
afterward is ∆(Pt) ≥ |M+|. Thus, |M | ≤ ∆(Pt−1) + ∆(Pt).
By Property 1, ∆(Pt−1) ≤ ∆∗ and ∆(Pt) ≤ ∆∗. Since ∆∗ ≤
OPT, we obtain |M | ≤ 2 · OPT.

Theorem 2. PPL reaches the final partition PF and it is
(2 · (k − 1) · `)-competitive.

Proof: On each inter-cluster request, the algorithm enu-
merates all component respecting `-way partitions of compo-
nents that are in the same (closest) distance to PI . That is, once
it reaches a partition P at distance ∆∗ = ∆(P ), it does not
move to a partition P ′,∆(P ′) > ∆∗, before it enumerates all
partitions at distance ∆∗. Therefore, PPL eventually reaches
the partition PF at distance ∆∗ = OPT. With each distinct
request, the size of some component increases by one. For
any cluster Fi ∈ PF , we have

∑
C∈Fi

|C| = k. A component
C ∈ Fi, initially begins as an isolated node and it grows by
gaining |C|−1 more nodes. Hence, the total number of times
a component in Fi grows is

∑
C∈Fi

(|C| − 1) ≤ k− 1. There-
fore, there are at most (k−1)·` distinct requests for which PPL
performs a repartitioning and PPL performs at most (k−1) ·`
repartitions. By Lemma 1, each repartitioning costs at most
2 · OPT. The total cost is thus at most 2 · OPT · (k − 1) · `,
which implies the competitive ratio.

III. GENERAL PARTITIONING MODEL

Now we discuss the general online model where the request
sequence can be arbitrary. In Section III-A, we show an
O(k · `)-competitive algorithm for k = 3 using the classic
rent-or-buy approach [30]. Prior to this section, we showed
a lower bound of Ω(k · `) that holds for the general model (cf.
Section II-A), hence the result from this section is asymptoti-
cally optimal. Furthermore, in Section III-B, we show a strictly
6-competitive algorithm for k = 2.

A. Optimal Algorithm for Clusters of Size 3
The algorithm analyzed in this section is a modified version

of the algorithm DET proposed by Avin et al. [5], which for
k = 3 is O(`2)-competitive. In our algorithm, we choose
the closest partition after a component merge instead of an
arbitrary one. This allows to bound the cost of repartition by
a constant (Lemma 2).

This modification alone is insufficient to obtain O(`)-
competitive algorithm, and the analysis must be further im-
proved. In particular, pairs of nodes that did not reach the

collocation threshold α (called external requests) incur the cost
O(`2) for the algorithm in each phase. The novel part of the
analysis lower-bounds the cost of OPT on external requests
while considering its savings from migrations and possibly
different configuration at the beginning of the phase. This way,
we show that OPT paid a significant portion of the algorithm’s
cost on external requests.

Component-based algorithm. The algorithm ALG3 partitions
nodes into components, and initially, each node is isolated
(belongs to its own component). For each pair of nodes {x, y},
ALG3 maintains a counter C{x,y} and increments it on every
external request between x and y. Once C{x,y} = α, ALG3

merges the components of u and v, and moves to the closest
component respecting partitioning. If no such partitioning
exists, ALG3 resets all components to singleton components,
resets all counters to 0, and ends the phase.

Theorem 3. ALG3 is 60`-competitive for k = 3.

Before bounding the competitive ratio of ALG3, we upper-
bound the cost of a single repartition of ALG3. In our analysis,
we distinguish among three types of clusters: C1, C2 and C3.
In a cluster of type Ci, the size of the largest component
contained in this cluster is i.

Lemma 2. In a single repartition of nodes (after a merge of
components), ALG3 exchanges at most two pairs of nodes.

Proof: If no component respecting partition exists after
the merge of components, then ALG3 resets all components,
ends the phase, and performs no repartition. It suffices to show
that the merged component has size at least 4 to conclude that
ALG3 incurs no cost.

Consider a request between u and v that triggered the
repartition and let U and V be their respective clusters. The
request triggered the repartition, hence it was external and
U 6= V . We consider cases based on the types of clusters U
and V .

If either U or V is of type C1, then this cluster can fit the
merged component, and the repartition is local within U and
V , for the cost of at most 2 swaps. If either U or V is of
type C3, a component of size 3 participates in a merge, and
we have a component of size at least 4, and ALG3 ends the
phase with no repartition.

It remains to consider the case where both U and V are of
type C2. If (u, v) both belong to components of size 2, then
the merged component has size 4, and ALG3 incurs no cost.
Otherwise, if one of u, v belongs to a component of size 2, then
it suffices to exchange components of size 1 between U and
V . Finally, if u and v belong to components of size 1, then we
must place them in a cluster different from U and V . Note that
if C1-type cluster does not exist, then no component respecting
partitioning exists. Otherwise, ALG3 performs two swaps —
it exchanges the nodes u and v with any two nodes of any
cluster of type C1.

In each case, we showed that a component respecting
partition is reachable in at most two swaps.



Proof of Theorem 3: Fix a completed phase, and consider
the state of ALG3’s counters at the end of it (before the reset).
We consider the incomplete phase later in this proof.

ALG3 is component respecting, hence it never increases any
counter above α. We say that the pair (u, v) is saturated if
the counter’s value is α, and unsaturated otherwise (saturation
of a pair leads to a merge action). By σ we denote the
input sequence that arrived during the phase. In our analysis,
we focus on the requests that were external to ALG3 at the
moment of their arrival; these are the only requests that incur
a cost for ALG3. We denote these external requests by σcost.
We partition the sequence σcost into subsequences σI and
σE . The sequence σI (inter-component requests) denotes the
requests from σcost issued to pairs that belong to the same
component of ALG3 at the end of the phase. The sequence
σE (extra-component requests) denotes the requests from σcost
that do not appear in σI .

Let ALG3(M) denote the cost of migrations performed
by ALG3 in this phase. During the phase, ALG3 performs
at most 2` component merge operations — exceeding this
number would mean that a component of size 4 exists, and
the phase should have ended already. We bound the cost
of each repartition after a merge by Lemma 2, obtaining
ALG3(M) ≤ 8α · `.

We bound ALG3(σI) by summing the intra-component
counters of each cluster at the end of the phase. The sum
of intra-component counters in a cluster of type C3 is at
most 3α − 1: two pairs of nodes from the component are
saturated and its counter is α each, and the counter of the
third, unsaturated pair is at most α− 1. The sum of counters
inside C1 is 0, and inside C2 it is α. Summing over all `
clusters gives us ALG3(σI) ≤ (3α− 1) · ` ≤ 3α · `.

Furthermore, ALG3 paid for all requests from σE , and thus
ALG3(σE) = |σE |. In total, the cost of ALG3 is at most
ALG3(σI) + ALG3(σE) + ALG3(M) ≤ 11α · `+ |σE | during
this phase.

Now we lower-bound the cost of the optimal offline solu-
tion. To this end, we fix any optimal offline algorithm OPT.
By OPT(σI) and OPT(σE) we denote the cost of OPT on
requests from sequences σI and σE , respectively. Note that
these costs are defined with respect to components of ALG3

in this phase. By OPT(M) we denote the cost of migrations
performed by OPT in this phase.

The cost of OPT is lower-bounded by the cost of serving
σI and the cost of serving σE . While serving these requests,
OPT may perform migrations, and we account for them in
both parts: we separately bound OPT by OPT(σI)+OPT(M)
and OPT(σE)+OPT(M). Combining those bounds and using
the relation between the maximum and the average, we obtain
the bound

OPT ≥ max{OPT(σI) + OPT(M),OPT(σE) + OPT(M)}
≥ (OPT(σI) + OPT(M))/2 + (OPT(σE) + OPT(M))/2.

First, we show OPT(M) + OPT(σI) ≥ α. Assume that
OPT’s partition is fixed throughout the phase (as otherwise

OPT pays α for a migration). The phase ended when the
components of ALG3 could not be partitioned without splitting
them. Hence, for every possible partition of OPT, there exists
a non-collocated saturated pair, and OPT paid for α requests
that saturated the pair.

Next, we bound OPT(σE) + OPT(M). The sequence σE
accounts only for unsaturated edges, thus there are at most
α − 1 requests to each pair in σE . OPT may have at most
3` pairs of nodes collocated in its clusters, and thus avoid
paying for 3` · (α−1) requests from σE . Hence, at least χ :=
|σE |−3` · (α−1) requests from σE are external requests with
respect to OPT’s configuration at the beginning of the phase.
Faced with these requests, OPT may serve them remotely or
perform migrations to decrease its cost. By swapping a pair
of nodes (u, v), OPT collocates u with two nodes u′, u′′, and
v with two nodes v′, v′′. This may allow serving requests
between (u, u′), (u, u′′), (v, v′) and (v, v′′) for free afterward.
Hence, by performing a single swap that costs 2α, OPT may
avoid paying the remote serving costs for at most 4(α − 1)
requests from σE . The total cost of OPT is then at least

OPT(σE) + OPT(M) ≥ χ · 2α

4(α− 1)
≥ |σE |

2
− 2α · `.

Finally, to bound the competitive ratio, we transform the
above inequality in the following way: |σE | ≤ 2(OPT(σE) +
OPT(M)) + 4α · `. For succinctness, let ξ := OPT(σE) +
OPT(M). Combining the bounds on the cost of ALG3 and
OPT during each finished phase, the competitive ratio is

ALG3(σ)

OPT(σ)
≤ 11α · `+ |σE |

α/2 + ξ/2
≤ 30α · `+ 4 · ξ

α+ ξ
≤ 30`.

It remains to consider the last, unfinished phase. First,
consider the case where the unfinished phase is also the first
one. Then, we cannot charge OPT due to the inability to
partition the components. Instead, we use the fact that ALG3

and OPT started with the same initial partition. If the input
finished before the first α external requests, then ALG3 is 1-
competitive. If at least α external requests were issued, then
OPT either paid α for serving them remotely or paid α for
a migration. Charging this cost to OPT serves the purpose
of charging α at the end of a finished phase, and thus we
can repeat the analysis of a finished phase. Second, consider
the case, where there are at least two phases, then we split
the cost α charged in the penultimate phase into the last
two phases, and we repeat the analysis of a finished phase.
This way, the competitive ratio increases at most twofold in
comparison to a finished phase, and the competitive ratio is
ALG3(σ)/OPT(σ) ≤ 60`.

Distributed implementation. While we have described the
algorithm globally so far, we note that it allows for effi-
cient distributed implementations. The algorithm performs two
types of operations that require communication with other
clusters: a component merge, and a broadcast of the end of
the phase. We say that a cluster containing 3 isolated nodes
is fresh. A merge of two components may require finding
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Fig. 1: Dashed lines represent requests. An arrow from node x to node y
indicates that x replaces y. OPT collocates 4 pairs from the left partition,
performing 4 migrations, resulting in the right partition.

a fresh cluster (for details see the proof of Lemma 2). In
the following, we show how to efficiently find a fresh cluster
in a distributed manner. To this end, we organize the clusters
into an arbitrary rooted balanced binary tree, and we broadcast
the root to each cluster. Each cluster maintains the counter of
fresh clusters in its subtree. To find a fresh cluster, we traverse
an arbitrary path of non-zero counters from the root. Upon
encountering a fresh cluster, we end the traversal and decrease
the counters on the followed path by 1. Summarizing, ending
the phase requires a single broadcast, and merging components
has O(log `) communication complexity.

B. Improved Algorithm for Online Rematching

In this section, we present RM, an algorithm for clusters
of capacity k = 2. We interpret a pair of nodes collocated
in one cluster as a “matched” pair. Hence, the problem is
an online variant of the maximal matching problem where
a matched pair can separate in order to “rematch” with two
other nodes. Rematching is necessary for maximizing intra-
cluster communications, which is equivalent to minimizing
inter-cluster communications. This is known as the online
rematching problem and a non-strict 7-competitive algorithm
is already given by [5], in which the ratio comes with an
additive factor O(α`2). We do not only improve upon their
competitive ratio, but also show that our ratio holds strictly
(i.e., with no additive factor). Our algorithm is slightly simpler
than the one in [5], while our analysis is significantly simpler
and more concise, thanks to the charging scheme we devise
here.
Algorithm ReMatch. The algorithm ReMatch (RM) main-
tains a counter C{x,y} for each pair of nodes {x, y} and
increments it on every remote request between x and y. Once
C{x,y} = λ, it resets the counter C{x,y} := 0 and collocates
the two nodes by swapping one of them, say x, with the node
collocated with y.

Theorem 4. For λ = α, the algorithm RM is strictly 6-
competitive.

The charging scheme. We charge both OPT and RM when-
ever RM collocates a pair.RM collocates a pair always with
a swap (that costs 2α), while OPT may save some costs by
collocating multiple pairs at once. Thus it pays the price of
only one migration per pair (see Figure 1). For this reason,
whenever OPT collocates a pair, we charge it only the cost
α of moving a single node to the other cluster (in contrast to
the cost 2α incurred by RM).

Rt

Rt′

tt′t′′ σ{u,w} σ{u,v}t′′

Fig. 2: Illustration of the timeline used in the proof of Theorem 4. Requests
in Rt are only to {u,w} and {u, v}, which arrive during the interval (t′′, t].
Similarly, request in Rt′ are to {u,w} and some other pair, irrelevant to the
analysis. Hence, requests to {u,w} are included in at most two such sets,
which are Rt′ and Rt. This is because their intervals overlap on (t′′, t′],
shown with red thick line.

Consider two pairs that share the same node, i.e. intersecting
pairs, and the set of requests that cause (first) collocations of
these pairs. This set contains at least one request to each pair
and OPT must pay a non-zero cost over requests in this set
because trivially it cannot have both pairs collocated at the
same time. However, we can charge this cost to OPT only
the first time RM collocates a pair, and not at any consequent
time when RM collocates it a second time. Otherwise, OPT is
possibly charged for the same cost repeatedly. For this reason,
we charge OPT a cost inflicted by a pair if and only if OPT
incurs that cost after the last time RM separates the pair.

Proof of Theorem 4: Fix an input sequence of requests
σ := {σ1, . . . , σm}. Assume that RM collocates a pair {u, v}
at time t. The value of C{u,v} at t, denoted Ct

{u,v}, reaches
λ immediately before RM resets the counter. For any interval
[t1, t2], by σ{x,y}[t1, t2] we denote the set of all requests to
a pair {x, y} that arrive during [t1, t2]. We may use σ{x,y}
whenever the interval [t1, t2] is clear from the context.

If t is not the first time that RM collocates {u, v} then
let 0 < t′ < t be the latest time when RM separates
{u, v} in order to collocate some intersecting pair {x, y} 6=
{u, v}, {x, y}∩{u, v} 6= ∅, e.g., {x, y} = {u,w}. Else, t is the
first time that RM collocates {u, v} and let t′ := 0. Similarly,
if t′ > 0 is not the first time that RM collocates {u,w} then
let 0 < t′′ < t′ be the latest time before t′ when RM separates
{u,w}. Else, t′ is the first time that RM collocates {u,w} and
we let t′′ = 0.

First, we bound costs incurred by RM for requests that lead
to the collocation of {u, v} at time t ∈ T , where T := {i ∈
[1,m] | ∃{x, y} : Ci

{x,y} = λ} is the set of times when RM
performs a collocation. By definitions of t and t′, the overall
cost of requests in σ{u,v} incurred by RM, i.e., the total cost
of remote serving and the moving cost is λ + 2α. Next, we
bound costs incurred by RM for requests that do not lead to
collocations until the end of the sequence at t = m. Assume
{u, v} is not collocated at t = m and 0 < Cm

{u,v} < λ,
which means RM pays Cm

{u,v} for requests in σ{u,v}(t
′,m].

Then the overall cost of RM is RM(σ) =
∑

t∈T (λ + 2α) +∑
{u,v} C

m
{u,v}.

Next, we bound costs incurred by OPT for requests that
trigger collocation of {u, v} at t ∈ T . If t is the first time that
RM collocates {u, v}, then OPT pays λ for serving requests
in σ{u,v}[0, t] (remotely), or α for collocating the pair and
serving (some of) the requests with cost zero. Therefore in



this case, OPT(σ{u,v}(0, t]) ≥ min {λ, α}. Otherwise, it is
not the first collocation and consider times t′ and t′′ as defined
previously, and let Rt := σ{u,w}(t

′′, t′] ∪ σ{u,v}(t′, t]. We
define Rt′ for the collocation at t′ analogously (see Figure 2).
Then, OPT(Rt) = OPT(σ{u,w}) + OPT(σ{u,v}). If OPT
has both pairs separated during their respective intervals, then
obviously it pays 2λ during those intervals. Note that OPT
cannot have both pairs collocated at the same time. Let us
assume OPT has one of the pairs, e.g. {u, v}, collocated
already prior its respective interval, (t′, t], and keeps it so
during the interval. Then it pays zero while serving σ{u,v}.
Hence, it must pay α for collocating the other pair, in this
case {u,w}, or (resp., and) it pays (resp., up to) λ for serving
(resp., some of) requests in σ{u,w}. Therefore in any case,
OPT(Rt) ≥ min {λ, α} = α.

It remains to bound the cost incurred by OPT due to
requests to {u, v} that do not lead to its collocation until the
end of the sequence at t = m. We bound the cost analogously
to the case where RM collocates {u, v}. If {u, v} is not
collocated in the initial matching and RM never collocates it,
then Cm

{u,v} = |σ{u,v}[1,m]|. OPT pays OPT(σ{u,v}[1,m]) ≥
min {α,Cm

{u,v}}, for collocating this pair or (and) paying for
(resp. some of) requests in σ{u,v}[1,m]. Else, either {u, v} is
collocated in the initial matching or RM collocates it at some
point. Then there exists an intersecting pair {u,w} that is
collocated by RM at t′ < m, separating {u, v}. We define
times t′′ < t′ < m analogously to the former case. Let
R∗{u,v} := σ{u,w}(t

′′, t′]∪σ{u,v}(t′,m]. Then, OPT must pay
for collocating at least one pair or (and) serving requests to the
other pair remotely. Thus, OPT(R∗{u,v}) ≥ min {Cm

{u,v}, α}.
Next, we sum up all costs incurred by OPT. By definitions

of Rt and R∗{u,v}, we have either Rt′ ∩Rt = σ{u,w} or Rt′ ∩
R∗{u,v} = σ{u,w}. This means, OPT(σ{u,w}) is counted at
most twice in each of the expressions OPT(Rt′) + OPT(Rt)
and OPT(Rt′) + OPT(R∗{u,v}). Hence, for all collocations
performed by RM, and for final requests at t = m, OPT pays
at least 1

2 (
∑

t∈T OPT(Rt)+
∑
{u,v} OPT(R∗{u,v})). Then, the

total cost to OPT is

OPT(σ) =
1

2

(∑
t∈T

OPT(Rt) +
∑
{u,v}

OPT(R∗{u,v})
)

≥ 1

2

(∑
t∈T

α+
∑
{u,v}

Cm
{u,v}

)
,

and RM(σ)/OPT(σ) ≤

2
(∑

t∈T
3α+

∑
{u,v}

Cm
{u,v}

)/(∑
t∈T

α+
∑
{u,v}

Cm
{u,v}

)
≤ 6.

IV. DISCUSSION AND FUTURE WORK

This paper revisited the online graph partitioning problem
and presented several tight bounds for the important model
where capacities cannot be exceeded, both for a general
partitioning model and for a special learning model.

While our bounds are tight, there are several interesting
avenues for future research. In particular, we have so far
focused on deterministic algorithms, and it would be inter-
esting to study the power of randomization in this context. On
the practical side, it would also be interesting to study our
algorithms empirically under realistic workloads.

Our algorithms allow for efficient distributed implementa-
tions. The algorithm PPL from Section II-B can be distributed
similarly to the approach in [6]. The algorithm for k = 2
from Section III-B performs only local communication for
each request: counters are kept on the clusters and updated
locally, and each migration is local within two clusters that
reached the collocation threshold λ. Furthermore, we proposed
an efficient distributed implementation of the algorithm for
k = 3 in Section III-A.
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APPENDIX

Algorithm 1 Perfect Partition Learner (PPL)
For each node v create a singleton component Cv = {v}
and add it to C.
for each request σt = {u, v}, 1 ≤ t ≤ N do

Let C1 3 u and C2 3 v be the components containing u
and v, respectively.
if C1 6= C2 then

Merge C1 and C2 into one component C ′ and C =
(C \ {C1, C2}) ∪ {C ′}.
if C1 and C2 are not collocated then

Move to a partition closest to PI and respecting all
components in C.

end if
end if

end for


