See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322272731

Real-Time Forensics Through Endpoint Visibility

Chapter in Lecture Notes of the Institute for Computer Sciences - January 2018

DOI: 10.1007/978-3-319-73697-6_2

CITATION
1

5 authors, including:

Peter Kieseberg
; Fachhochschule Sankt Pélten
80 PUBLICATIONS 695 CITATIONS

SEE PROFILE

READS
588

Sebastian Schrittwieser
~ Fachhochschule Sankt Pélten
78 PUBLICATIONS 927 CITATIONS

SEE PROFILE

Edgar Weippl
SBA Research
328 PUBLICATIONS 3,322 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poect Mobile Phone Radio Network Security View project

poject Theoretical Language Security View project

All content following this page was uploaded by Peter Kieseberg on 08 January 2018.

The user has requested enhancement of the downloaded file.

ResearchGate

https://www.researchgate.net/publication/322272731_Real-Time_Forensics_Through_Endpoint_Visibility?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/322272731_Real-Time_Forensics_Through_Endpoint_Visibility?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mobile-Phone-Radio-Network-Security?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Theoretical-Language-Security?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Kieseberg?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Kieseberg?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fachhochschule_Sankt_Poelten?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Kieseberg?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian_Schrittwieser2?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian_Schrittwieser2?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fachhochschule_Sankt_Poelten?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian_Schrittwieser2?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edgar_Weippl?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edgar_Weippl?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/SBA_Research?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edgar_Weippl?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Kieseberg?enrichId=rgreq-fc754ce84b8d5c5fbe4b36fd1f5cce05-XXX&enrichSource=Y292ZXJQYWdlOzMyMjI3MjczMTtBUzo1ODA0OTUwMzc0MzU5MDRAMTUxNTQxMjIxMDE0MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1

Real-time Forensics through Endpoint
Visibility

Peter Kieseberg!, Sebastian Neuner!, Sebastian Schrittwieser?, Martin
Schmiedecker!, and Edgar Weippl*

L SBA Research, Vienna, Austria,
2 Josef Ressel Center for Unified Threat Intelligence on Targeted Attacks, St.
Polten University of Applied Sciences, Austria,

Summary. In the course of the last years, there has been an established forensic
process in place known by every investigator and researcher. This traditional pro-
cess is regarded to produce valid evidence when it comes to court trials and, more
importantly, it specifies on a very precise level how to acquire a suspects machine
and handle the data within. However, when new technologies come into play, certain
constraints appear: Having an incident in a network containing thousands of ma-
chines, like a global corporate network, there is no such thing as shutting down and
sending an investigation team. Moreover, the question appears: Is this an isolated
incident, or are there any other clients affected?

In order to cover such questions, this paper compares three tools aiming at solving
them by providing real-time forensics capabilities. These tools are meant to be de-
ployed on a large scale to deliver information at any time, of any client all over the
network. In addition to a feature comparison, we deployed these tools within a lab
environment to evaluate their effectiveness after a malware attack, using malware
with pre-selected features in order to allow for a more precise and fair comparison.

Key words: digital forensics, real-time forensics, forensic process, endpoint visibil-
ity

1.1 Introduction

Through several years of accumulated practical experience and academic re-
search, forensic investigators were able to establish a standardized and well-
known routine for digital investigations [10, 3]. This is especially important,
since relying on a common ground is critical for forensic investigations that
have to back a legal trial, in order to provide soundness to claims of both sides,
the defendant as well as the prosecutor (for different reasons obviously). How-
ever, there are forensic investigations that do not have the convenient features
of physical access, sufficient investigation time or close to unlimited storage
capacity. In times of fast growing storage capacities and even commodity hard-

2 Kieseberg, Neuner, Schrittwieser, Schmiedecker, Weippl

ware bringing more than two terabytes to the end-user as a USB stick, the
well-established forensic process has to be re-invented. A first step to this
new process has been shown by Neuner et al., who opted for a whitelisting
approach that allows to exclude already known files from the acquisition pro-
cess [18]. However, this still relies on the assumption that the computers which
have to be investigated are physically accessible and are already (or at least
can be) shut down.

Large companies such as Google, Facebook and Mozilla are challenged with
the downsides of those standardized approaches. Like many other companies,
they experienced several incidents [2], however they suffer from the problem
of scales, having to investigate on thousands and thousands of computers.
Relying on the established forensic approach and turning every computer off,
making a 1:1 hard drive copy and so forth, is not only unfeasible in reality, but
would cost millions of Dollars every hour [15]. Thus the three mentioned com-
panies are developing solutions called real-time forensic tools, namely Google’s
GRR Rapid Response (GRR) [16, 8], Facebooks osquery [12] and Mozillas
InvestiGator (MIG) [17]. In this paper we compare these three tools with
respect to their feature set and capabilities. Furthermore, we evaluate their
effectiveness in a scenario where a presumable administrator detected multi-
ple infections on different machines. Main questions answered include whether
it is possible to detect the infections if the malware features are known and
whether it is possible to detect every infected machine. More precisely, the
contributions of our work are as follows:

e We survey the current state-of-the-art forensic approach with respect to
real-time forensics.

e We compare the three real-time forensic tools regarding their features and
applicability.

e We evaluate their effectiveness for a successful attack with a known mal-
ware.

The rest of the paper is structured as follows: Section 1.2 provides the
needed background information to this work and also offers insights into the
related work. Section 1.3 provides an overview on the three selected real-
time forensic tools, but also discusses alternatives in the open-source sector
as well as other commercial tools. Section 1.4 describes the methodology and
the evaluation details of our work. This section furthermore describes the lab
setup used for the evaluation as well as the selected malware and its features.
Section 1.5 outlines the results of the evaluation. Section 1.6 discusses the
limitations of our approach and future work in the direction of live foren-
sics. Finally, Section 1.7 summarizes and concludes our paper on real-time
forensics.

1 Real-time Forensics through Endpoint Visibility 3

1.2 Background and Related Work

Forensics in a traditional sense is a standardized process - standardized in
academic work [4] and by the National Institute of Standards and Technol-
ogy (NIST) for law enforcement organizations such as the U.S. Department
of Justice [19]. This process ensures that the investigator is carrying out re-
producible steps in order to acquire a suspects data. Figure 1.1 [20, 21] shows
a typical illustration of the process.

[Acquisition]—P[Identification]—b[Evaluation]—b[Admission]

Fig. 1.1. Flow of a traditional forensic process.

However, the process requires the suspect to have its data stored on a
manageable number of devices, preferable only possessing low storage capaci-
ties. As shown in related work [10], storage is a very limiting factor during the
acquiring process, since several copies have to be made for each device. These
copies include the actual working copy for the investigator, a backup copy in
case the working copy is tampered and, in some cases, a copy directly sent
to the client (e.g. the court). Having all these copies means a high recover-
ability against data loss, however, this also means that the investigator needs
huge amounts of storage capacities and enough computing power to process
the data for investigative tasks. This problem was already predicted before
in 2010 by Garfinkel [10] and since then discussed in academic work. One
suggestion in 2016 by Neuner et al. [18] is the utilization of file whitelisting
of known files to reduce both, the required capacity and the required process
power. Additionally there is not only academic work describing the traditional
forensic process, but also suggestions by the NIST [13]. These suggestions for
acquiring data include a graceful shutdown, once the volatile memory (e.g.,
RAM) is acquired.

Considering a typical suspect having one computer, several hard disks and a
mobile phone, this traditional forensic process works well in practice. But con-
sidering modern storage techniques, like distributed storage (cloud storage),
the standardized process mentioned above will not work in every detail [11].
Considering large companies such as Google, Facebook and Mozilla having an
incident within their infrastructure of tens of thousands of clients, shutting
down every (probably) affected computer will not work without causing huge
costs to the infrastructure provider. Therefore companies like those three de-
veloped frameworks, called real-time forensic tools which do not require shut-
ting down the client, but are able to copy important data over the network to
a centralized station for further investigation. Considering an infected client,
these real-time forensic tools are able to scan all clients in range for infection
details to find other infected clients, with some of those frameworks being able

4 Kieseberg, Neuner, Schrittwieser, Schmiedecker, Weippl

Table 1.1. Capabilities of real-time forensic tools

‘ ‘osquery ‘ MIG ‘ GRR

Read access on files X v v

File interaction Client write access x x| x
File timelining v x| 7

Host statistics (e.g. uptime) 4 |/

Endpoint statistics Process listing v rana
Connected users v v |/

Users v v v

Network statistics Connected machines (IP) v v/
Connected machines (MAC) v | V|7

Windows registry v X v

Endpoint monitoring Linux packages 2Rnans:
Memory inspection (userland memory) v | /|7

Windows 4 v v

Agent compatibility h’Iing(l)}{SX ; é §
Embedded Devices (e.g. switches) X V| X

Digital evidence acquisition AFF4 X X v

to directly access the client and prevent further spreading of the malware, e.g.
by disabling certain network interfaces. On the one hand, this approach is
definitely considered tampering with the data on the client, however, on the
other hand this approach is fast and does not affect the clients (or the net-
works) up-time. Certain frameworks (e.g. Googles GRR) are able to produce
AFF4 images of the clients, which could be considered as a starting point for
a forensic standard targeting live environments using real-time forensic tools.
Nevertheless, it should not be unmentioned that carrying out real-time foren-
sics is at no point compliant with any standardized forensic process as it is
currently demanded by court.

1.3 Real-Time Forensic Tools

In contrast to traditional tools as outlined in Section 1.2 real-time forensic
tools do not work upon the standardized forensic process. To tackle huge
amounts of data in real-time, without turning off the suspected computer,
several tools have been developed by various companies [23]. In this section
we provide insights into the three tools selected for evaluation, including an
illustration of their capabilities with table 1.1 providing a compact overview.

1.3.1 osquery

Osquery was first released by Facebook in October 2014 as a simple way for
extracting properties from a life system that can be helpful in a forensic inves-
tigation. It currently targets Linux, Ubuntu, CentOS, FreeBSD and OSX and
was very recently extended to the Windows world [22]. The main idea behind
osquery lies in providing an abstraction layer between the analyst and the op-
erating system internals, allowing querying of information like changes in the
file system, loaded kernel modules, information on processes and users, from

1 Real-time Forensics through Endpoint Visibility 5

Fig. 1.2. A query schedule for osquery.

a database-like structure. For this, all information is abstracted as so-called
"tables” that follow the same syntax as SQLite tables and can be queried
using SQL-commands.

Basically, there exist two ways of invoking osquery: Using an interactive shell
called osqueryi, or configuring the osqueryd daemon. The osqueryi shell is
completely stand-alone and typically used for prototyping, as well as ad-hoc
analysis of the system. The osqueryd daemon on the other hand is used for
structured and regular analysis of key features of the system, e.g. the list of
running processes or changes in the file system. It is primarily configured by a
scheduler, where defined queries are executed regularly. The daemon provides
means for aggregation of these results over time and generates logs, thus can
be used to easily show changes on the operating system level.

The main configuration work is done using so-called query schedules, SQL-
style definitions of the data to be retrieved, including an interval definition
for the recurring execution of the retrieval. Several queries can be packed
together in so-called packs that allow for more fine-grained options on the
logging, as well as the use of predefined packs for specific cases, including
specific malware. Figure 1.2 shows a simple query schedule for retrieving all
files opened by processes. The interval was set to 10 seconds, i.e. the daemon
checks for these variable every ten seconds, events that take place in between
will not be recorded and are lost for the analysis. Contrary to e.g. GRR, os-
query is meant to be executed permanently to monitor changes on the fleeting
aspects of the operating system, it is not capable of actually analyzing the
actual content of files.

1.3.2 GRR

The Google GRR Rapid Response (GRR) was first announced by Cohen et.
al. in 2011 and intended to handle Google’s internal infrastructure regarding
remote live forensics [5]. Basically, GRR is a Python agent that is installed
on the clients to be managed. The GRR front-end servers, that are under
the control of a system administrator (sysadmin), receive the messages sent
by the GRR agents. This sysadmin initiates a so-called "flow” via the front-
end server on the agents. This message contains code that is executed on the
agents, which are requested to return the required information to the front-end
server for aggregation and evaluation. The concept of "hunts” on the other
hand describes massive amounts of flows, targeting a huge number of agents.

6 Kieseberg, Neuner, Schrittwieser, Schmiedecker, Weippl

0,0
O
e —
Investigators D
API Scheduler
PostGres
(—
RabpitMQ
Agent Publicinternet R
o~ [ESIR o
L= el

Fig. 1.3. Architecture of the Mozilla InvestiGator>.

Most of the ”basic” capabilities are built into GRR, such as file interac-
tions, live memory analysis and endpoint monitoring. Strong points of GRR
are on the one hand the possibility to manage the agent live by using an
IPython shell that is capable to run on all major operating systems (Win-
dows, Linux, OSX). On the other hand, GRR offers the possibility to extract
forensic evidences using the open-source file format Advanced Forensics File
Format 4 (AFF4) [6].

1.3.3 MIG

To tackle problems like accidental private key pushes to github in a large en-
vironment (such as every computer and every server owned by Mozilla) Julien
Vehent proposed Mozillas own real-time forensic tool, the Mozilla InvestiGa-
tor (MIG) [17], in 2015. MIG is written in GO and compiled into a statically
linked binary for easy sharing and easy deployment. Although the binary has
to be installed as a root service, activated MIG modules are locked down in
terms of requested privileges. For secure communication between the clients
on which a MIG agent is installed and the MIG master, Rabbit MQ is used to
exchange PGP signed JSON messages. The underlying architecture is shown
in Figure 1.3.

As soon as the agents are finished working on the tasks requested by the
master, the results are sent back to the investigators and stored in a post-
greSQL database. Table 1.1 outlines capabilities of MIG not mentioned here.
The developers of MIG, besides various other features, managed to deploy
MIG agents on rather restricted embedded systems like switches. This, on
the one hand, adds a large amount of additional systems to be managed and
analyzed, but on the other hand creates the possibility to monitor and protect
these kinds of systems.

3 Image source: http://mig.mozilla.org/doc/.files/mig_workflow.gif. Ac-
cessed: 13.09.2016

1 Real-time Forensics through Endpoint Visibility 7

. @ osquery
GRR
- MG

Control Panel

'O

‘ LAB Malware

Fig. 1.4. The lab setup used for evaluating the real-time forensic tools.

1.3.4 Commercial Solutions

Besides open-source real-time forensic tools there are also commercial tools
available. This includes Mandiant’s MIR, Encase Enterprise, as well as the
real-time forensic tool of F-Response. These frameworks could not be evalu-
ated due to the limited availability of the software, e.g. demo versions, how-
ever, even if a demo would be available for all of these commercial frameworks,
they are typically limited and therefore cannot be compared to fully fledged
open-source solutions.

1.4 Methodology

1.4.1 Lab Setup

Figure 1.4 depicts the setup of the lab environment used for the evaluation
of the real-time forensic tools. As a first step (1), the control panel prepares
the malware that is subsequently sent to the virtual machines. The malware
can be chosen based on a range of pre-classified features (see Section 1.4.3 for
details on the selection for our work). Step (2) initializes the VMs for a first
use.

In our case this includes the installation of the operating system Windows
7 Service Pack 1 (64 bit) for GRR and Windows 10 Pro (64 bit) for MIG
and osquery, as well as an agent corresponding to all three real-time forensic
tools we are evaluating. In step (2) the malware is loaded onto the machines,
enabling certain types of malware to infect the virtual machine at boot time
or at time of the start of the operating system, respectively. Step (3) is bi-
directional: The real-time forensic tools are polling for data, which results in
data sent to the infected virtual machines. The way the data is sent (methods,
protocols used) depends on the communication techniques of each real-time
forensic tool. As soon as the data is available for each tool it is evaluated and
made available for the investigator in step (4).

8 Kieseberg, Neuner, Schrittwieser, Schmiedecker, Weippl
1.4.2 Malware Sample Selection

Based on the methodology described in Section 1.4, the malware used for
evaluation was selected on the following feature set:

Feature (F1), Process spawning: Malware is often running as processes in
the background in order to carry out their malicious activities. However,
the names of those processes are often either publicly known or easy to
spot [14].

Feature (F2), Persistence: Certain kinds of malware persists themselves
on the system, either somewhere on the filesystem but also e.g. in the
registry. Persistence ensures the malware staying on the system after a re-
boot, as well as the possibility to restart the malware process after manual
termination [1].

Feature (F3), Network connection: Processes that start outgoing, as well
as accept incoming connections without any user interaction, are often
malware [24]. Outgoing connections can indicate data that is being exfil-
trated or the establishing of a connection to a botnet server (Command
and Control server) [9]. Incoming connections can indicate patching of the
malware or dropping additional payload on the attacked system [7].

Therefore, the following samples of malware have been selected based on

the feature list above: Sample (S1) containing the banking trojan retefe, a
malware that installs a root CA on the infected machine and starts to in-
tercept e-banking connections, sample (S2) containing the Locky ransomware
that encrypts files on the user’s hard disk for asking for ransom for the de-
cryption key, as well as sample (S3) containing the Win32. Viking worm.
Feature F'1 is fulfilled by all of the three samples S1, S2 and S3. Each of them
spawns several processes, some running in the background in order to carry
out the malicious behavior. These processes include notoriously dangerous
executables like ”powershell.exe”, ”certutil.exe” and ”tor.exe”. All malware
samples persist themselves on the system, more precisely the file system, ful-
filling feature F2. Finally, feature F'3 is also fulfilled by all three samples to a
varying degree: While the banking trojan does open several connections, the
Win32.Viking worm works much more stealthy.
Sample S2, the Locky ransomware, was also chose, because it possesses a spe-
cialty: Contrary to other malware like ebanking trojans, ransomware stays
hidden only for a specific time, until enough user files (or even the whole disk,
depending on the actual malware) have been encrypted. Then the malware
actually informs the user in order to make him/her pay the ransom. Thus, the
detection capabilities evaluated in our scenarios are evaluated with respect to
the ”dormant” ransomware, i.e. the ransomware before or during the encryp-
tion phase, since its presence afterwards, in the ransom phase, is detected
trivially.

1 Real-time Forensics through Endpoint Visibility 9
1.4.3 Evaluation

The goal of the evaluation was to study the behavior and detection possibili-
ties of the three live forensic tool-kits under real-life conditions. To this end we
selected three malware examples and tested them on a system. Furthermore,
we had a look on the capabilities of the different tool-kits and extrapolated
their typical applicability in real-life scenarios.

For the evaluation, we infected a running system, with each malware sepa-
rately, in order to get a good comparison of the results. While this evaluation
yields good results for the detection of malware with known or at least ex-
pected feature, it does yield the problem that many artifacts are quite typi-
cal for the malware in question. Thus, we concentrated on utilizing the arti-
facts for detection that are more uncommon, like changes to system routines,
changes to specific keys in the registry, or spawning of suspicious processes.

1.5 Results

In this section we provide a comparison of the analyzed tools with respect to
our research scenario and outline major differences, as well as shortcomings
based on the three malware samples selected before.

1.5.1 osquery

Osquery mainly targets the monitoring of operating system internals, i.e. it is a
constant monitor of the system state and does not target the reconstruction of
deleted files. Regarding the banking trojan retefe, this helps detection in case
of continuous monitoring through the osqueryd daemon. Here, the following
artifacts could be found that identified this malware. It has to be noted though
that the malware does generate many more artifacts, we reduced our analysis
to those issues that possess high significance. This also implies that we did
not concentrate on artifacts that can be the result of arbitrary other programs
running on the respective machine like memory usage or checking for needed
third party software:

e For file interaction, osquery is capable to detect the changes done to the
file system on a pure metadata level. The malware generates and changes
several files in the AppData directories for Microsoft Office and Tor, using
file names like ”Microsoft.Win32.Task Scheduler.dll”, as well as the TOR-
AppData.

e On the endpoint statistics level, it created various process, the most no-
torious including instances of ”powershell.exe”, ”certutil.exe” (for adding
the root CA) and "tor.exe”.

e Regarding the network level, it generates various connections to the out-
side world, which can be detected by constant querying of the respective
interfaces using osquery.

10

Kieseberg, Neuner, Schrittwieser, Schmiedecker, Weippl

On the endpoint monitoring level, there is a change happening to the
Windows registry, deleting and recreating a specific key ”HStartupltem”
for MS Office and creating several other keys. Furthermore, a new root
CA is installed, also resulting in the respective changes in the registry.
Altogether, the process changes the registry which can be detected by
osquery.

For the Locky ransomware, we detected the following artifacts that indicate
an infection with malicious software:

On the file level, it generates an executable in the system32 directory of
Windows, as well as a file containing decryption instructions. Furthermore,
as soon as the ransomware process is started, in starts accessing and up-
dating files and changing their names to the ”.locky” suffix.

On the endpoint statistics level, it generates some processes, with ”cmd.exe’
being the most notable.

Regarding the network level it does some DNS-lookups and downloads ex-
ecutable code during the infection. This of course is only visible in osquery
in case the malicious code is not already downloaded before. Furthermore,
it opens a connection to the well-known Locky distribution site ” greenelle-
box.com”. In addition, it uses a known web browser user agent for HTTP
communication, which can be filtered using osquery.

On the endpoint monitoring level, while of course activity was shown that
can be attributed to the infection, there was nothing outstanding recorded
that enabled us to identify the infection with Locky with a high certainty,
while, of course, the randomly generated key in the registry was visible
and could be a starting point for further investigations.

)

Regarding the Win32.Viking worm, we detected the following artifacts that
indicate an infection with malicious software:

On the file level, it generates the dll-file ” FastUserSwitchingCompatibil-
ity.dll” in the system32-directory, as well as deletes a file in this directory.
Furthermore, it generates a randomly named file in the root directory
(typically ”c:”).

While only spawning a few processes, these include several instances of
"reg.exe” for modifying the registry, as well as a (changed) instance of
Internet Explorer.

On the network level, this malware is invisible to osquery, as no direct
network connections are opened, but the (modified) Internet Explorer is
used for hiding the communication.

On the endpoint monitoring level, the malware makes changes to the reg-
istry by adding a new key and creating a Windows Service pointing to the
executable ”FastUserSwitchingCompatibility.dll”.

1 Real-time Forensics through Endpoint Visibility 11
1.5.2 GRR

The main benefit of GRR is its capability to check actual file content and
search for strings that can be attributed to known malware samples. Further-
more, it still allows for file timelining and looking for changed files in the
overall OS structure. This also holds true for the analysis of running pro-
cesses. Still, the typical idea of GRR, in contrast to osquery, does not lie in
the permanent observation and monitoring of the system looking for changes
that might hint at an infection, but more on analyzing a system suspected
for an infection already having taken place. Regarding our first sample, the
banking trojan retefe, the following artifacts can be detected:

e Regarding changes to the file system, GRR is capable to detect the changed
files in the AppData directories for Microsoft Office and Tor. Furthermore,
the docx-document used for infection contains several deviations to typ-
ical docx-files like irregular field values in the summary information. It
also contains a stream with embedded javascript code. This is especially
valuable, as it helps to reveal the actual source of the infection.

e GRR is capable of detecting the processes spawned by the malware, still,
since GRR is typically used as ad-hoc tool in the course of an investiga-
tion and not as constant system monitoring, it might miss most of these
processes.

e The same holds true for the networking level. Since a banking trojan is
meant to be active regularly in order to intercept the e-banking connec-
tions, GRR can be used for detection.

e The same holds true for the connections on the network level, especially
since relevant information on the connection parameters can be extracted
from the infected file, thus giving a valuable hint on what to look for.

e Finally, GRR is perfectly capable on extracting the changes that happened
to the registry, the recreated "HStartupltem” key, as well as the root CAs.

For the Locky ransomware, the capabilities to check the actual file content
are especially valuable. Furthermore, the following artifacts were be used for
detecting this infection:

e GRR is capable of detecting the files generated by the malware, especially
the executable in the system32 directory of Windows. Furthermore, since
the timeline of the files is accessible by GRR, arbitrarily changed files
become visible. In addition, the file system can be checked for files that
should be readable (e.g. Office files), but only contain gibberish, hinting at
encrypted data. Furthermore, the statistics also reveal the suffix changes.
In addition, specific URLs can be found in the documents, as well as a
dropped file, where the content does not match the file extension.

e While the encryption is taking place, GRR is capable of detecting the re-
spective processes, especially running an executable with a randomly gen-
erated name from the local temporary directory (e.g. ”b7uG0vk9gdqsBcebZ.exe”).

12 Kieseberg, Neuner, Schrittwieser, Schmiedecker, Weippl

e Locky contacts the distribution site ”greenellebox.com” which can be de-
tected using GRR during the connection. Furthermore, GRR could detect
the known web browser user agent used for HT'TP, in case Locky commu-
nicates during the investigation, still, the ransomware is typically limiting
itself to small amounts of communication.

e GRR is also capable to see the randomly generated key in the registry, still,
we found it rather hard to detect Locky solely by this artifact, especially
in the presence of the much more distinctive artifacts on the file level.

Also with respect to the Win32.Viking worm, the capability to search for the
content inside files helped a lot:

e The generated dll-file in the systems32-directory can be detected easily.
Furthermore, it generates an executable with a random name in the root
directory ”C:” that contains search strings for anti-malware evasion.

e GRR was capable of detecting the spawning of the "reg.exe” command for
editing the registry, if this is done during the investigation.

e While in theory GRR should be capable to see the network channel opened
by using Internet Explorer, we were not able to detect this in our example
environment using GRR.

e GRR is perfectly capable to detect the changes to the registry by adding
a new key and creating a Windows Service pointing to the executable
”FastUserSwitchingCompatibility.dll”.

1.5.3 MIG

The MIG framework proposed by Mozilla, like GRR, is used in ad-hoc inves-
tigations and not for permanent monitoring. Furthermore, like GRR, it is also
capable to provide read access to the actual content of files. Still, since the
main goal was to tackle the problem of accidental pushes of information, it
does not allow for file timelining, somewhat limiting the detection capabilities
compared to GRR. Thus, in this section, we will mainly outline the differences
to GRR.

With respect to the retefe banking trojan, the following artifacts could be
observed in the lab environment:

e While it is possible to analyze the actual contents of the files, the detection
of actually changed files is harder due to missing file timelining. Still, the
detection is possible, especially when routinely looking for the ill-formatted
docx-files.

e One major drawback for the detection, is the incapability to access the
Windows registry, as the tool misses the recreated ”HStartupltem” key, as
well as the root CAs. This information is especially valuable, as it is (i) far
more specific for this malware, (ii) typically not the effect of an user error
(like badly formatted docx-files could be) and (iii) very simple to spot.

1 Real-time Forensics through Endpoint Visibility 13

Still, even though the Windows registry could not be accesses, MIG is capa-
ble to detect the malware based on the other characteristics. For the Locky
ransomware, the picture looks almost the same:

e Having no file timelining seems a bit problematic for getting the best
picture on the changes taking place in the overall file system, still, we were
able to detect the malware,

e Again, having access to the randomly named keys in the registry would
add to the analysis.

For the Win32.Viking worm, the following artifacts were especially useful:

e Since the filename that is generated is known, and the malware generates
an executable holding search strings for anti-malware evasion, we were able
to detect it using MIG.

e Again, accessing the Windows registry would have helped a lot finding the
Windows Service created by the malware.

It must be noted though that MIG is the only product of the three evaluated
approaches that can be used for embedded devices, thus possesses a feature
that must be taken into account as especially interesting in other real-life
scenarios.

1.6 Limitations and Future Work

In terms of limitations of our evaluation, there is clearly the limited number
of deployed clients. This accompanies one of our targets for future work: For
follow-up work we plan to contact companies such as Google, Facebook and
Mozilla to share their insights after several months (or even years) of deploy-
ment and execution of those real-time forensics tools. This would provide data
from real-world deployments rather than from a lab environment, allowing to
answer research questions like statistics on the typical time between detec-
tion and cleanup of a certain incident, or on the most commonly experienced
incidents, and so on. However, the lab environment is indispensable without
having access to the company data.

In case we do not get access to the requested data, a fallback plan is to imi-
tate a large network by deploying thousands of cloud instances, running the
real-time forensic tools. This would also provide insights into the long-term
applicability of the evaluated tools. Additionally, this would bring shed light
onto the effectiveness of the tools, e.g. in terms of time: How long does it take
from detection until cleanup of a given incident?

Among further future work planned, we also intend to deploy more open
source real-time forensics tools (or at least freeware tools) on the cloud in-
stances mentioned. This would extend the insights on different frameworks,
but would raise the problem of increasingly unmaintained frameworks.

14 Kieseberg, Neuner, Schrittwieser, Schmiedecker, Weippl
1.7 Conclusions

In conclusion, all the tools reviewed in this work were able to detect the
samples, still the artifacts most probably used seem to differ. In the selected
examples, especially MIG’s incapability to check the Windows registry was
noted, as this would offer a lot of additional capabilities. Still, it must be
noted that MIG is capable of dealing with embedded systems, which is an
additional benefit worth noting. From the point of view of usage, the use of
osquery differs quite a lot from GRR and MIG: While GRR and MIG are
made to be used during an investigation, i.e. at a specific point of time after
e.g. an infection was suspected, osquery, while offering this capability too, is
typically configured to automatically monitor the system based on different
attributes and artifacts that are prepared to be queried like tables. Still, on the
other hand, it does not offer the user the possibility to check actual data on
the file system, especially reconstructing deleted files and checking for search
strings inside suspicious files.

In conclusion, we would recommend to use a mixed approach by having the
osquery daemon permanently monitoring a selection of artifacts, especially the
process list, changes to the file system and changes to the Windows registry,
as well as using either MIG or GRR for getting into the issue of file checking
in case new and suspicious file generation or changes are detected by the
monitoring. For choosing between GRR and MIG, this mainly depends on the
system at hand. In case of a Windows system, GRR outperforms MIG due to
its capabilities of file timelining and accessing the Windows registry. On the
other hand, in case of a more complex system structure including embedded
systems or low-end hardware, MIG is simply capable to generate a much more
complete picture, as information from these sources can be incorporated into
the analysis.

Acknowledgements

The financial support by the Austrian Federal Ministry of Science, Research
and Economy and the National Foundation for Research, Technology and
Development is gratefully acknowledged.

References

1. Syed Nasir Alsagoff. Malware self protection mechanism. In 2008 International
Symposium on Information Technology, volume 3, pages 1-8, 2008.

2. Eric Auchard. Major security breaches found in google and yahoo email services.
Accessed: 13.09.2016.

3. B. Carrier. File system forensic analysis. Addison-Wesley Professional, 2005.

4. Eoghan Casey. Digital evidence and computer crime: Forensic science, comput-
ers, and the internet. Academic press, 2011.

10.

11.

12.
13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.
24.

1 Real-time Forensics through Endpoint Visibility 15

MI Cohen, Darren Bilby, and Germano Caronni. Distributed forensics and
incident response in the enterprise. digital investigation, 8:5101-S110, 2011.
Michael Cohen, Simson Garfinkel, and Bradley Schatz. Extending the advanced
forensic format to accommodate multiple data sources, logical evidence, arbi-
trary information and forensic workflow. digital investigation, 6:S57-S68, 2009.
Paolo Milani Comparetti, Guido Salvaneschi, Engin Kirda, Clemens Kolbitsch,
Christopher Kruegel, and Stefano Zanero. Identifying dormant functionality in
malware programs. In IEEE Symposium on Security and Privacy. IEEE, 2010.
Flavio Cruz, Andreas Moser, and Michael Cohen. A scalable file based data
store for forensic analysis. Digital Investigation, 12:5S90-S101, 2015.

David Dittrich and Sven Dietrich. Command and control structures in malware.
Useniz magazine, 32(6), 2007.

Simson L Garfinkel. Digital forensics research: The next 10 years. digital inves-
tigation, 7:564-S73, 2010.

Hong Guo, Bo Jin, and Ting Shang. Forensic investigations in cloud environ-
ments. In Computer Science and Information Processing (CSIP), 2012 Inter-
national Conference on, pages 248-251. IEEE, 2012.

Facebook Inc. osquery performant endpoint visibility. Accessed: 13.09.2016.
Karen Kent, Suzanne Chevalier, Tim Grance, and Hung Dang. Guide to in-
tegrating forensic techniques into incident response. NIST Special Publication,
2006.

Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin
Kirda, Xiao-yong Zhou, and XiaoFeng Wang. Effective and efficient malware
detection at the end host. In USENIX security symposium, pages 351-366, 2009.
Polly Mosendz. Lets calculate how much money facebook just lost during todays
outage. Accessed: 13.09.2016.

Andreas Moser and Michael I Cohen. Hunting in the enterprise: Forensic triage
and incident response. Digital Investigation, 10(2):89-98, 2013.

Mozilla. Mig: Mozilla investigator. Accessed: 13.09.2016.

Sebastian Neuner, Martin Schmiedecker, and Edgar Weippl. Effectiveness of file-
based deduplication in digital forensics. Security and Communication Networks,
2016.

National Institute of Standards, Technology (NIST), and United States of Amer-
ica. Forensic examination of digital evidence: A guide for law enforcement. 2004.
Mark Pollitt. Computer forensics: An approach to evidence in cyberspace. In
Proceedings of the National Information Systems Security Conference, volume 2,
pages 487-491, 1995.

Mark M Pollitt. An ad hoc review of digital forensic models. In Systematic
Approaches to Digital Forensic Engineering, 2007. SADFE 2007. Second Inter-
national Workshop on, pages 43-54. IEEE, 2007.

Ty Sereyvathana. Osquery: Cross-platform, lightweight, and performant host
visibility. In 7th Annual Open Source Digital Forensics Conference (OSDFCon),
2016.

Meir Wahnon. awesome-incident-response: all-one-tools. Accessed: 13.09.2016.
Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: capturing system-wide information flow for malware detection and
analysis. In Proceedings of the 14th ACM conference on Computer and commu-
nications security, pages 116-127. ACM, 2007.

https://www.researchgate.net/publication/322272731

