
Semi-automatic Feedback for Improving
Architecture Conformance to Microservice Patterns

and Practices
Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas

Faculty of Computer Science, Research Group Software Architecture
University of Vienna

Vienna, Austria
firstname.lastname@univie.ac.at

Sebastian Geiger
Siemens Corporate Technology

Vienna, Austria
sebastian.a.geiger@siemens.com

Abstract—Microservices are one of the most recommended
architectural styles for distributed applications that support
independent development and deployment, enable rapid release,
and are highly scalable and polyglot. Many well-established
patterns and best practices have been documented in the lit-
erature. As there are many such guidances, they have numerous
interdependencies, and system designs must adhere to many other
architecture constraints, too, implementations do not always
conform to those guidances. In complex or large systems, it
can be hard and tedious to spot violations. Our work aims to
offer automated support for architecting during the continuous
evolution of microservice-based systems. More specifically we
aim to provide the foundations for an automated approach for
architecture reconstruction, assessing conformance to patterns
and practices specific for microservice architectures, and detect
possible violations. Based on this, we provide actionable options
to architects for improving architecture conformance as part
of a continuous feedback loop. That is, our goal is to support
architecting in the context of continuous delivery practices, where
architecture violations are continuously analyzed and fix options
are continuously suggested.

Index Terms—Microservices, patterns, best practices, continu-
ous architecture improvement, feedback loop

I. INTRODUCTION

Microservices are one of many service-based architecture
decomposition approaches (see e.g. [1], [2], [3], [4]). Mi-
croservices should not share their data with other services,
can be highly polyglot, and communicate via message-based
remote APIs in a loosely coupled fashion. This enables their
independent deployment in lightweight containers or other
virtualized environments, as well as the rapid evolution of
individual microservices independently of one another. These
features make microservices ideal for modern DevOps prac-
tices (see e.g. [5], [6]).

Many architectural patterns and other recommended “best
practices” for microservices have been published in the liter-
ature [3], [7], [8]. So far little attention has been paid to pro-
viding usable means to enforce these practices during the evo-
lution of microservice-based systems. This is problematic as
it is hard to handle conformance manually, especially in large
and/or complex microservice architectures. Best practices have

dependencies among each other, meaning that improvement
of one practice can lead to issues with another one. Many
other system architecture and implementation requirements
influence the architectures in ways that might lead to unwanted
or accidental violations of microservice best practices, too.
Finally, in the context of continuous delivery and DevOps
practices, it is to be expected that the architecture will change
rapidly and often without central coordination.

This study focuses on providing a set of actionable solutions
to violations of loose coupling related microservice best prac-
tices. In particular, we investigate three major Architectural
Design Decisions (ADD) related to microservice coupling:
Persistent Data Storage of Services related to data sharing via
shared data storage; Service Interconnections related to the
effects of intermediate system components, such as API gate-
ways, as well as of asynchronous integration; and Dependen-
cies through Shared Services related to direct, transitive, and
cyclic dependencies between individual microservices. These
decisions have been modeled based on an empirical study of
existing best practices and patterns used by practitioners from
our prior work [9]

To address the outlined challenges, we propose a novel
architecture refactoring approach that is specific for archi-
tectural design in the context of the microservice ADDs,
and uses the empirically validated metrics proposed in our
prior work [9]. These metrics enable us to study, for each of
the above named ADDs, precisely how much a microservice
architecture model conforms to favored or less favored design
options. For each possible design option in the ADDs, we
propose to systematically specify each possible violation.
Based on those specifications, we propose automated violation
detection algorithms. From the combination of possible ADD
options, the chosen option, possible violations, and the de-
tected violations, in each design situation we can calculate all
possible next decision options by applying possible solutions
to the violations. This leads to a search tree of possible next
architecture design models, which we each assess using our
metrics. With this we can compare architecture conformance
of the current design and possible refactorings, and suggest



to an architect all possible improvements in the three ADDs.
Please note that this approach is designed to be continuously
applicable during each run of a continuous delivery pipeline.
This paper aims to study the following research questions:

• RQ1 What are the possible architecture violations related
to the above-mentioned coupling-related architectural de-
sign decisions and how can they be automatically de-
tected?

• RQ2 How can architects be guided in fixing those vi-
olations in a continuous feedback loop, while retaining
enough flexibility for architect’s to chose between pos-
sible options, e.g. because other architecture trade-offs
need to be considered?

To evaluate our approach we utilized a set of 27 models
based on microservice-based systems originally created or
described by practitioners (see Table I) as our main data
set. We implemented the automated violation detection and
refactoring algorithms to detect the possible violations and to
generate all the possible fixes for addressing each violation.
We then calculate our metrics on coupling in microservices
to judge the improvements compared with the initial version.
Our result is that in at most 4 refactoring steps, each of the
violations found in the 27 models can be fully resolved leading
to optimal metric values, usually with many suggested optimal
models provided as options for architects to choose from.

This paper is structured as follows: In Section II we explain
the decisions considered in this paper. We also explain the
related patterns and practices, as well as the corresponding
metrics as the background of our work. Section III discusses
and compares to related work. Next, we describe the research
methods and the tools we have applied in our study in Sec-
tion IV. We then describe the approach details in Section V.
In Section VI we explain the evaluation process of our work.
Section VII discusses the RQs regarding the evaluation results.
In Section VIII, we then analyse the threats to validity. Finally,
in Section IX we draw conclusions and discuss future work.

II. BACKGROUND

In this section, we briefly introduce the three coupling-
related decisions, their decision options (i.e. the possible
patterns and practices that can be chosen). This information
comes from two of our prior works: a) The decisions have
been modeled based on an empirical study of existing best
practices and patterns by practitioners [9], [10]. This study
also contained a detailed analysis of possible decision drivers
(forces, quality attributes) of the decision options. b) We have
defined and empirically validated metrics to assess, for a
given system model, how well it conforms to the patterns
and best practices modeled in our decision model. Based on
the reported positive and negative decision outcomes on the
mentioned decision drivers, we could further assess which
of the options are more or less favored in the microservice
practitioner literature. For evaluation we used 27 microservice
component architecture models, summarized in Table I and
described in Section IV.

A. Decisions

1) Decision: Persistent Data Storage of Services: This
decision is about how persistent data storage is handled for
services, if any is needed. The following decision options can
be chosen: No Persistent Data Storage is applicable only for
services whose functions are performed on transient data. The
most recommended option is Database per Service pattern [3],
in which each service has its own database and manages its
own data independently. Another option, is to use a Shared
Database [3]: two or more services read to and write from
a common database. This option has two alternatives: Data
Shared via Shared Database in which multiple services share
the same table, resulting in a strongly coupled system. In
contrast in the Database Shared but no Data Sharing option,
each service writes to and reads from its own tables, which
has a lesser impact on coupling.

In our previous work, we have empirically defined two
metrics that can be used to assess conformance to each of
the decision options:

• Database Type Utilization to measure the proportion of
services that are using individual databases.

• Shared Database Interactions to measure the proportion
of interconnections via a Shared Database among the
total number of service interconnections.

2) Decision: Service Interconnections: Another important
aspect in microservices is how the services communicate be-
tween each other. The decision is about how tightly service are
coupled via their interconnections. No Service Interconnection
is an optimal option but in reality this is not applicable. One
other option is Synchronous Service Interconnections which
is usually not the favored option in microservice systems.
A number of asynchronous alternative options exist. One of
these is Asynchronous Direct Interconnections, in which all
the services communicate asynchronously via direct invoca-
tions. Another option is asynchronous communication through
intermediary components. These can be Pub/Sub Interconnec-
tions [11], in which services publish and subscribe to events
between each other, maybe combined with Event Sourcing;
Messaging Interconnections [11], in which services produce
and consume messages that are stored in a message broker;
Asynchronous Interconnections via API Gateway [3], where
services route asynchronous invocations via the API Gateway;
Shared Database Interconnection, in which services interact
via a shared database—every communication that is happening
in this way is considered as asynchronous. Please note that
the last option is beneficial over synchronous invocations in
this decision, but leads to other problems, including shared-
database interactions from the previous decision.

For this decision too we have empirically defined two
metrics that can be used to assess conformance to each of
the decision options:

• Asynchronous Communication Utilization to measure the
proportion of asynchronous service interconnections in
the system.



• Service Interactions via Intermediary Components to
measure the proportion of service interconnections via
asynchronous relay architectures, such as Message Bro-
kers, Publish/Subscribe, or Stream Processing.

3) Decision: Dependencies through Shared Services: Op-
timally, in a microservice-based system, services should not
share other services all together at least not in a strongly
coupled fashion. There are many patterns that are related
to system structures avoiding service sharing. Especially in
large scale systems, service sharing can lead to additional
issues such as a chain of transitive dependencies between
services and severe maintenance issues. We have identified
four decision options for this decision: First, the optimal
case, the might be No Shared Services. There are three cases
containing some service sharing: Directly Shared Service in
which two or more services are directly connected to other
service(s); Transitively Shared Service in which a service is
linked to other services via at least one intermediary service
creating a transitive chain; and Cyclic Dependency [12] in
which services create a direct or transitive path that leads
back to the initial service. Cyclic dependencies are considered
as highly problematic since the services can no longer be
changed, understood, or tested in isolation.

For this decision too we have empirically defined three
metrics that can be used to assess conformance to each of
the decision options:
• Direct Service Sharing to measure the proportion of

directly shared elements in the system.
• Transitively Shared Services to measure the proportion of

transitively shared elements in the system.
• Cyclic Dependencies Detection to detect the presence of

at least one cyclic dependency in the system.

III. RELATED WORK

Microservice best practices have been widely examined in
various studies. A collection of microservice patterns and
practices has been published by Richardson [3] and another
collection of practices related to event-driven microservice
architectures has been published by Skowronski [8]. Zimmer-
mann et al. [7] introduced patterns related to microservices
APIs. Fowler and Lewis [13] have discussed microservice
fundamentals and best practices. Pahl and Jamshidi [1] have
summarized many of those in a mapping study. Microservice
“bad smells” have been studied by Taibi and Lenarduzzi [14],
which correspond to violations in our work.

There is a number of studies that focus on techniques for
detecting design or architecture smells, which are considered
as violations in our case, but most of them are not specific
to the microservices domain. A catalog of architectural bad
smells using a format has been published in Garcia et al.’s [15],
[16] studies. These studies also propose possible techniques
for identification of these architecture smells. Le et al. [17]
examined the relations between smells and a project’s issues.
They further examined the detection of multiple types of
architecture smells. A number of detection strategies that take
advantage of metrics-based rules for detecting design flaws

have been presented by Marinescu [18]. Garcia et al. [19]
present a machine learning-based technique for recovering an
architectural view containing a system’s components and con-
nectors, which aims at detecting architecture drift or erosion.
A prototypical tool for architecture recovery of microservice-
based systems (MicroART) is presented by Granchelli et
al. [20]. Alshuqayran et al. [21] suggest a microservice archi-
tecture recovery approach based on a meta-model and rules for
mapping artifacts to it. A multivocal literature review, focused
on identifying architectural smells for independent deployabil-
ity, horizontal scalability, fault isolation and decentralisation
of microservices, as well as suggesting refactorings to resolve
them, is presented by Brogi et al. [22].

Although these works study various aspects of architecture
violation detection, and some of them investigate aspects
related to the microservice domain, none covers detecting
and addressing coupling-related violations in a microservice
context. In contrast, our work investigates in detail coupling-
related aspects such as data persistence, communication types,
and shared service dependencies. As a direct benefit of this,
we expect that, in the context of loose coupling, our work
produces more accurate detections of decision-specific vio-
lations and more targeted suggestions for fixes than those
other works possibly could. As a downside, our work requires
a model in which the component and connector roles in a
microservice architecture have been modeled (as for instance
done with stereotypes in the model introduced in Figure 3).
That is, our work requires additional insight into a system’s
architecture, and some effort in encoding the corresponding
models; however, this knowledge is at a relatively high level
of abstraction and the resulting models are not impacted by
changes in service implementation. We are currently working
on a semi-automatic approach for architecture reconstruction
and modelling that relies on reusable code abstractions and is
thus suitable for complex systems with short delivery cycles.

IV. RESEARCH AND MODELING METHODS

In this section, we summarize the main research and mod-
eling methods applied in our study. For reproducibility, all the
code and models produced in this study will be made available
online, as an open access data set in a long-term archive1.

A. Research Method

Figure 2 shows the research steps of this study. In Section II
we have already explained in detail the architectural decisions
and the model-based metrics on which this study is based. In
Section V we present a) precise definitions and algorithms for
the detection of possible violations for each decision option,
and b) precise definitions and algorithms for the possible fixes
for each violation.

To evaluate our approach, we have applied it on a dataset
of 27 models, summarized in Table I. This dataset comprises
microservice-based systems from 9 independent sources, de-
veloped by practitioners and published in public repositories

1https://doi.org/10.5281/zenodo.4491583



and practitioners’ blogs. We assume that these systems are,
or reflect, real-world practical examples of microservice ar-
chitectures. However, as many are open-source systems for
demonstrating practices or technologies, they are, at most, of
medium size and modest complexity. For the specification of
our Microservice Component Architectures meta-model and
the calculation of all metrics, violation detection, and fixes,
we used CodeableModels2, a Python tool for the precise
specification of meta-models, models, and model instances in
code. Based on the meta-model, we manually created model
instances for every collected system, and realized automated
constraint checkers and PlantUML code generators to generate
graphical visualizations of all model instances (such as the one
in Figure 3 used in an example below).

Our approach is designed to detect all violations for every
model in our data set, and perform all possible suggested
architecture refactorings (fixes) to it. This we did recursively,
i.e., on the resulting, refactored models for each violation
fix, we again performed all violation detection algorithms
and applied all possible refactorings, until either no more
violations were detected, or the refactored model was identical
to a previous version. In the latter case, this means that it is
not possible to fix all violations, since resolving one violation
will require introducing other violations. For each of the final
models (the ‘leaves’ of the iteration tree), we assessed pattern
conformance through our metrics on microservice coupling,
to judge the improvement compared to the original model.

B. Using the Approach in a Continuous Delivery Pipeline

Figure 1 shows the position of our approach in a delivery
pipeline in which every commit triggers an iterative loop of
improvements. We place our approach after initial tests have
been run, i.e. where usually code coverage and similar checks
are run. In this stage we perform the metrics calculation
process and if a violation is detected we determine the specific
type of violation and provide a set of fix options. The architect
or developer can select the optimal fix or to perform no more
fixes. This triggers the automatic architecture refactoring pro-
cess and a new version of the system component is generated.
The metrics calculation process is performed again for the
new version to evaluate the improvements. If there is no
more violation after the fix process we continue in pipeline
process. Of course, the approach can be equally applied to
more complex systems with multiple delivery pipelines, for
example, by mining docker files or other runtime logs in order
to reconstruct the architecture.

V. APPROACH DETAILS

In this section, we first give an overview of the violations
and possible fixes we have identified, as well as the algorithms
we have developed to detect violations or enact fixes. Also, we
give detailed examples from the Dependencies through Shared
Services decision to illustrate the approach.

We base our violation and fix definitions on the notion of a
microservice-based architecture model consisting of a directed

2https://github.com/uzdun/CodeableModels

Commit Build Test Deploy

selects desired fixes

get guidances on fixes

Architect/
Developer

Violation
Detection

Metrics
Calculation

Fix Suggestions Fixes Selection
Architecture
Refactoring
Suggestions

yes

no

Violation
Found?Deploy

yes

no Fix
Violations?

Architecture 
Assessment

Architecture
Model

Generation

Fig. 1: Placing of our approach in a delivery pipeline

Background

Architecture Refactoring

Violations/Solutions

Architecture Evaluation

Violation Detection
Algorithms

Fix Algorithms

Violation Definition

Fix Definition 

Automatic Architecture
Refactoring

Architectural Design
Decisions on Microservice

Coupling

Microservices Compoent
Architecture Models

Metrics Calculation for
Evaluation Model Data Set

Evaluation

Metrics on Coupling in
Microservices

Fig. 2: Overview diagram of the research method followed in
this study

components and connectors graph. This can be expressed
formally as: A microservice architecture model M is a tuple
(CP, CN, CPT, CNT, ST ) where:
• CP is a finite set of component nodes. The operation
components(M) returns all components in M .

• CN ⊆ CP ×CP is an ordered finite set of connectors.
connectors(M) returns all connectors in M .

• CPT is a set of component types. The operation
services(M) returns all components of type service in
M . The operation service_connectors(M) returns all
connectors of components of type service in M .

• CNT is a set of connector types.

https://github.com/uzdun/CodeableModels


Model ID Model Size Description / Source
BM1 10 components

14 connectors
Banking-related application based on CQRS and event sourcing (from https://github.com/cer/
event-sourcing-examples).

BM2 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely synchronous service invocations instead of event-
based communication.

BM3 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely asynchronous service invocations instead of
event-based communication.

CO1 8 components
9 connectors

The common component model E-shop application implemented as microservices directly
accessed by a Web frontend (from https://github.com/cocome-community-case-study/
cocome-cloud-jee-microservices-rest).

CO2 11 components
17 connectors

Variant of CO1 using a SAGA orchestrator on the order service with a message broker. Added support
for Open Tracing. Added an API gateway.

CO3 9 components
13 connectors

Variant of CO1 where the reports service does not use inter-service communication, but a shared database
for accessing product and store data. Added support for Open Tracing.

CI1 11 components
12 connectors

Cinema booking application using RESTful HTTP invocations, databases per service, and an
API gateway (from https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-\
part-4-703c2b0dd269).

CI2 11 components
12 connectors

Variant of CI1 routing all interservice communication via the API gateway.

CI3 10 components
11 connectors

Variant of CI1 using direct client to service invocations instead of the API gateway.

CI4 11 components
12 connectors

Variant of CI1 with a subsystem exposing services directly to the client and another subsystem routing
all traffic via the API gateway.

EC1 10 components
14 connectors

E-commerce application with a Web UI directly accessing microservices and an API gateway for service-
based API (from https://microservices.io/patterns/microservices.html).

EC2 11 components
14 connectors

Variant of EC1 using event-based communication and event sourcing internally.

EC3 8 components
11 connectors

Variant of EC1 with a shared database used to handle all but one service interactions.

ES1 20 components
36 connectors

E-shop application using pub/sub communication for event-based interaction, a middleware-triggered
identity service, databases per service (4 SQL DBs, 1 Mongo DB, and 1 Redis DB), and backends for
frontends for two Web app types and one mobile app type (from https://github.com/dotnet-architecture/
eShopOnContainers).

ES2 14 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of event-based communication
and one shared SQL DB for all 6 of the services using DBs. No service interaction via the shared database
occurs.

ES3 16 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of event-based communication
and one shared database for all 4 of the services using SQL DB in ES1. However, no service interaction
via the shared database occurs.

FM1 15 components
24 connectors

Simple food ordering application based on entity services directly linked to a Web UI (from https:
//github.com/jferrater/Tap-And-Eat-MicroServices).

FM2 14 components
21 connectors

Variant of FM1 which uses the store service as an API and asynchronous interservice communication.
Added Jaeger-based tracing per service.

FM3 13 components
15 connectors

Variant of FM1 which demonstrates a cyclic dependency case, uses the store service as an API and
asynchronous inter-service communication

HM1 13 components
25 connectors

Hipster shop application using GRPC interservice connection and OpenCensus monitoring & tracing
for all but one services as well as on the gateway. (from https://github.com/GoogleCloudPlatform/
microservices-demo).

HM2 14 components
26 connectors

Variant of HM1 that uses publish/subscribe interaction with event sourcing, except for one service, and
realizes the tracing on all services.

RM1 11 components
18 connectors

Restaurant order management application based on SAGA messaging and domain event interactions.
Rudimentary tracing support (from https://github.com/microservices-patterns/ftgo-application).

RM2 14 components
14 connectors

Variant of RM1 which contains transitively shared services, API Gateway for client services communi-
cation, database per service and direct communication between service.

RM3 14 components
15 connectors

Variant of RM1 which demonstrates a cyclic dependency case, API Gateway for client services
communication, database per service and direct communication between service.

RS 18 components
29 connectors

Robot shop application with various kinds of service interconnections, data stores, and Instana tracing
on most services (from https://github.com/instana/robot-shop).

TH1 14 components
16 connectors

Taxi hailing application with multiple frontends and databases per services from (https://www.nginx.com/
blog/introduction-to-microservices/).

TH2 15 components
18 connectors

Variant of TH1 that uses publish/subscribe interaction with event sourcing for all but one service
interactions.

TABLE I: Selected Models: Size, Details, and Sources

• ST is a finite set of stereotype nodes. The operation
cp_stereotypes(CP ) returns all stereotypes of compo-
nent CP . The operation cn_stereotypes(CN) returns all
stereotypes of connector CN . Stereotypes can be applied

to components to denote their type, such as Service, API
Gateway, etc. Stereotypes can be applied to connectors to
denote their type, such as Read_Data, RESTful HTTP, or
Asynchronous. Some are specialized with tagged values

https://github.com/cer/event-sourcing-examples
https://github.com/cer/event-sourcing-examples
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-\part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-\part-4-703c2b0dd269
https://microservices.io/patterns/microservices.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/microservices-patterns/ftgo-application
https://github.com/instana/robot-shop
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/


(details omitted here for space reasons).
• cp_annotations : CP → {String} is a function that

maps an component to its set of annotations. Annotations
are used in our approach (in some of the fixes) to doc-
ument aspects that need further consideration or maybe
manual refactoring.

• cn_annotations : CN → {String} is a function that
maps a connector to its set of annotations.

Please note that we define many additional model traversal
operations not detailed here for space reasons.

A. Violation Detection

Table II summarizes the possible violations we have iden-
tified for each of the decisions. The table also describes in
detail how the algorithms work that we use for detecting the
violations in models based on our model definition above. In
Algorithm 1 we exemplary detail the algorithm for detecting
the Directly Shared Services Violation of Decision D3. It
returns a list of violations, each described by a set of two
services connectors in which two services si and sj share
a service sm. Its sibling for the Transively Shared Services
Violation is shown in Algorithm 2. This one returns a list of
all service sets in which two services si and sj share a service
sm via intermediaries.

Algorithm 1: Detect Directly Shared Services Violation
i n p u t : Model M
o u t p u t : Set <Tuple >
beg in

v i o l a t i o n s ← ∅
f o r sm ∈ s e r v i c e s (M) :
f o r si ∈ s e r v i c e s (M) :
f o r sj ∈ s e r v i c e s (M) :

i f ((si, sm) ∈ s e r v i c e _ c o n n e c t o r s (M) ∧
(si, sm) ∈ s e r v i c e _ c o n n e c t o r s (M) ) :

v i o l a t i o n s ← violations ∪ (si, sm), (sj , sm)
r e t u r n v i o l a t i o n s

end

Algorithm 2: Detect Transitively Shared Services Violation
i n p u t : Model M
o u t p u t : Set <Tuple >
beg in

v i o l a t i o n s ← ∅
f o r sm ∈ s e r v i c e s (M) :
f o r si ∈ s e r v i c e s (M) :
f o r sj ∈ s e r v i c e s (M) :

i f ( e x i s t s _ t r a n s i t i v e _ l i n k (M, si , sm ) ∧
e x i s t s _ t r a n s i t i v e _ l i n k (M, si , sm ) ) :

v i o l a t i o n s ← violations ∪ (si, sm), (sj , sm)
r e t u r n v i o l a t i o n s

end

B. Fixes

Table III details all the fixes for each identified violation
along with a summary of the fix algorithm. Please note that
many algorithms can only be applied with default values or
approaches fully automatically. Many of them require human
review by the architect and sometimes a human decision to
be applicable. For example, the architects can be presented
with a choice of an intermediary component to use to replace
cyclic links or which of a set of transitive connectors should

be deleted. That is, our fix approach is intended to be used
as guidance to architects in a feedback loop (as illustrated in
Figure 1), not to replace them.

Please note that some obvious details of the algorithms
that are repetitive have been omitted for space reasons. For
example, if connectors are replaced, existing stereotypes and
annotations on them that are not related to the type of
provided replacement must be retained on the new connectors.
To illustrate this consider a RESTful HTTP, Synchronous
connector is replaced with a RESTful HTTP, Asynchronous
connector. Obviously, the stereotype Synchronous changes to
Asynchronous during the fix, but also it must be ensured that
the RESTful HTTP annotation is retained.

The Algorithms 3–6 exemplary present the fixes for De-
cision D3 and its Violation V1 in detail. They represent the
identically named fixes D3.V1.F2–D3.V1.F5 respectively. For
explanations of each fix, please study Table III.

Algorithm 3: Remove Connectors of Directly Shared Services
i n p u t : Model M, Set <Tuple > v i o l a t i o n
o u t p u t : −
beg in

f o r (si, sm) ∈ v i o l a t i o n :
i f (si, sm) ∈ s e r v i c e _ c o n n e c t o r s (M) :

d e l e t e _ c o n n e c t o r (M, (si, sm) )
end

Algorithm 4: Remove Connectors of Directly Shared Services
i n p u t : Model M, Set <Tuple > v i o l a t i o n , Component i n t e r m e d i a r y
o u t p u t : −
beg in

f o r (si, sm) ∈ v i o l a t i o n :
a d d _ c o n n e c t o r (si , i n t e r m e d i a r y ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, ( s _ i , s_m ) ) )
a d d _ c o n n e c t o r ( i n t e r m e d i a r y , sm ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, ( s _ i , s_m ) ) )
d e l e t e _ c o n n e c t o r (M, (si, sm) )

end

Algorithm 5: Integrated Shared Services into Calling Service
i n p u t : Model M, Set <Tuple > v i o l a t i o n
o u t p u t : −
beg in

i n t e g r a t i o n _ a n n o t a t i o n s ← ∅
f o r (si, sm) ∈ v i o l a t i o n :

i n t e g r a t i o n _ a n n o t a t i o n s ← i n t e g r a t i o n _ a n n o t a t i o n s ∪
" i n t e g r a t e d f u n c t i o n a l i t y from : " +
g e t _ s e r v i c e _ n a m e (M, si )

f o r c o n n e c t o r ∈ i n c o m i n g _ c o n n e c t i o n s (M, si ) :
c h a n g e _ t a r g e t ( model , c o n n e c t o r , sm )

d e l e t e _ s e r v i c e (M, si )
a d d _ a n n o t a t i o n s (M, sm , i n t e g r a t i o n _ a n n o t a t i o n s )

end

Algorithm 6: Integrated Calling Service into Calling Services
i n p u t : Model M, Set <Tuple > v i o l a t i o n
o u t p u t : −
beg in

f o r (si, sm) ∈ v i o l a t i o n :
f o r c o n n e c t o r ∈ o u t g o i n g _ c o n n e c t i o n s (M, sm ) :

c h a n g e _ s o u r c e (M, c o n n e c t o r , si )
a d d _ a n n o t a t i o n s (M, si ,

{" i n t e g r a t e d f u n c t i o n a l i t y from : " +
g e t _ s e r v i c e _ n a m e (M, sm ) } )

d e l e t e _ s e r v i c e (M, sm )
end



Violation Violation Detection Algorithm Summary
D1: Persistent Data Storage of Services
D1.V1: Services have a shared
database, but no data is shared via
the shared database

The models are traversed for finding database accesses. Database accesses by more than one service are inspected for the data entities that
are read and written. If none of those data entities are shared by two services, this violation is raised. All violating data accesses (including
services, databases, and connectors involved) are returned by the detector operation.

D1.V2: Services have a shared
database and data is shared via the
shared database

The models are traversed for finding database accesses. Database accesses by more than one service are inspected for the data entities that
are read and written. If at least one of those data entities is shared by at least two services, this violation is raised. All violating data
accesses (including services, databases, and connectors involved) are returned by the detector operation.

D2: Service Interconnections
D2.V1: System services communi-
cate synchronously

All service connectors in the model are traversed. If any synchronous connector is encountered, the violation is raised and the list of all
synchronous connectors is returned by the detector operation.

D3: Dependencies through Shared Services
D3.V1: Directly shared services All services in the model are traversed, and it is checked whether two services share another service via directly linking connectors. If this

is the case, a violation is raised. Each pair of shared service connectors that is found is returned by the detector operation.
D3.V2: Transitively shared services All services in the model are traversed, and it is checked whether two services share another service via transitively linking connectors.

Transitive means here via any number of intermediary other services. If this is the case, a violation is raised. Each pair of shared service
connectors that is found is returned by the detector operation.

D3.V3: Cyclic Dependency On the graph of services and connectors in the model we run a cycle detection based on a depth-first search algorithm. If we detect a cycle,
a violation is raised. All detected cycles are returned as a list of sets of connectors participating in the respective cycle.

TABLE II: Identified Violations and Violation Detection Algorithms

C. Violation Detection and Fixes Example

In Figure 3 the model TH1 from Table I is shown. As
an illustrative example, we use it here to demonstrate the
Directly Shared Services Violation (D3.V1) and possible fixes.
In this model the Payment service is called directly by services
Passenger Management and Drive Management. Here, the
Payment service is considered as shared service causing the
Directly Shared Services Violation. It would be triggered in our
approach by providing a bad metric value, which would trigger
the detailed detection, which would return the {(Passenger
Management, Payment), (Passenger Management, Payment)}
set of tuples. If we run our fix algorithms the resulting model
fix suggestions are for instance:
• Applying Fix D3.V1.F2: The architect can decide that the

connectors or one of them is not really needed or can be
replaced by some other manual refactoring. If this is the
case, the connectors can get removed by this fix.

• Applying Fix D3.V1.F3: Payment service will be dis-
connected from Passenger Management and Drive Man-
agement services and connected to API Gateway (all
interactions will be happening via the API Gateway).
Alternatively, this fix could also introduce a new inter-
mediary component (e.g., Pub/Sub) and all the involved
services will be connected to it with publish and subscribe
operations for the data exchange.

• Applying Fix D3.V1.F4: The Passenger Management
and Drive Management services can be integrated into
Payment service.

• Applying Fix D3.V1.F5: The Payment service can be inte-
grated to Passenger Management and Drive Management
services, if that’s possible.

In all these fixes the identified directly shared services
violation would get fixed.

VI. EVALUATION

For evaluating our work, we have fully implemented our
algorithms for detecting violations and performing fixes, as
well as generating the set of metrics described in Section II
to measure the improvements and the presence of remaining

violations, in our model set. In case multiple violations are
present in a model, then the algorithms can be employed
iteratively, until all violations have been fully resolved.

As an example, let us illustrate this exhaustive iterative
refactoring for the TH1 Model (see Figure 3). TH1 vio-
lates two of the decisions—“System services communicate
synchronously” (D2.V1) fully and “Directly shared services”
(D3.V1) partially, as indicated by the two respective measures
(0.00 and 0.67 respectively) in Table IV. The incremental
refactoring process is illustrated in Figure 4. At the first
iteration step, there are two branches, depending on which
violation is dealt with first. The first iteration step results in 7
possible model variants, one for each fix option from Table III.
Out of those, the model variant F shows no further violations
(i.e., the fix for D2.V1 has also coincidentally fixed violation
D3.V1 and thus optimally resolved all violations). In model
variant G the violation D3.V1 was also coincidentally fixed,
but this fix introduced a new “Services have a shared database
and data is shared via the shared database” (D1.V2) violation.
Thus, after the first iteration, there are 6 new model variants
that still contain a violation.

The second iteration step results in further 18 models. In
turn, 4 of the resulting models now exhibit violation D1.V2,
requiring a third step to be resolved. At the end of the third
step, we have 23 suggested model variants (A1–A2, A3_1–A3_2,
B1–B2, B3_1–B3_2, C1–C2, C3_1–C3_2, D1–D2, D3_1–D3_2, E1–
E4. F, G1–G2) which all optimally resolve the violations (i.e.,
scoring 1.00 in our assessment scale). The architect can choose
the refactoring sequence, and from among those final optimal
model variants, but can also choose to not apply certain fixes,
e.g. due to other constraints that are outside of the scope of
our study.

For evaluation purposes, we have performed this procedure
for all 27 system models in Table I. The resulting number of
intermediate models and violation instances per step, and the
number of final suggested models with an optimal assessment
of 1.00, are given in Table IV, along with the initial violations
and architecture assessment values for each model. Please note
that the metrics reported here are the ones associated to each
of the violations; most metrics from Section II match one-to-



Violation Fix Fix and Fix Algorithm Summary
D1: Persistent Data Storage of Services

D1.V1
D1.V1.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D1.V1.F2: Introduce new service-specific databases
and migrate database accesses

Disconnect services from the shared database and introduce a new database per service. Migrate each service-
specific database access to the respective service-specific database. The architect needs to check if this fix is
possible and, if applied, whether the original database can be deleted after the migration.

D1.V1.F3: Merge services with shared database into
a single service using one database

Merge the services using the same shared database into a single service using that database. The architect
needs to check whether such integration is possible and can provide annotations for implementers about the
details of the envisaged service integration.

D1.V2
D1.V2.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D1.V2.F2: Migrate to new database and add consis-
tency mechanism for the shared data

Same as Fix D1.V1.F3. In addition, add consistency mechanism for the data shared between services. The
architect needs to select the consistency mechanism applied (e.g., eventual consistency via an event store).
Then connectors will be extended with respective stereotypes and exchange of data-related events.

D1.V2.F3: Merge Services with Shared Database into
a single service using one Database

Same as Fix D1.V1.F3.

D2: Service Interconnections

D2.V1

D2.V1.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D2.V1.F2: Replace synchronous direct interconnec-
tion with asynchronous direct interconnection

Disconnect all the synchronously connected services and connect them using asynchronous connectors with
the same stereotypes as the synchronous ones. Delete the synchronous connectors.

D2.V1.F3: Replace synchronous direct interconnec-
tion with interactions via an intermediary component,
e.g., API Gateway, Pub/Sub, Message Broker

The architect has to select if an existing intermediary component can be used for the fix, or a new one has to be
created. Replace synchronous direct interconnections with asynchronous interconnections via this component.
Delete the synchronous connectors.

D2.V1.F4: Introduce communication by writing to
and reading from common databases

The architect has to select if an existing database can be used for the fix, or a new one has to be created. For
each synchronous connectors, introduce communication by writing to and reading from this database. Delete
the synchronous connectors. Please note, while this fix repairs this violation, it leads to a violation of D1.

D3: Dependencies through Shared Services

D3.V1

D3.V1.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D3.V1.F2: Remove connectors of directly shared ser-
vices

Change the connections between services and remove connectors between the involved services. This fix is
only applicable, if a solution makes sense that performs the same functionality without those connectors. This
must be judged by a human architect.

D3.V1.F3: Replace direct links via an intermediary
component, e.g., API Gateway, Pub/Sub, Message
Broker

The architect has to select if an existing intermediary component can be used for the fix, or a new one has
to be created. Replace direct interconnections with asynchronous interconnections via this component. Delete
the direct connectors.

D3.V1.F4: Integrate shared services into calling ser-
vice

Integrate the responsibility and functionality of the shared services (i.e., the services that are called by two
or more services) into calling services (services that call a shared service), and delete the shared services
and any connectors accessing them. Here we add annotations that functionality has been added to the calling
service, so that implementers later on can realize this functionality.

D3.V1.F5: Integrate calling service into shared ser-
vice

Integrate the responsibility and functionality of the calling services into shared services, delete the calling
service, and rewire their clients directly to the shared services. Here we add annotations that functionality
has been added to the shared services, so that implementers later on can realize this functionality. Which
functionality goes to which shared service can be further annotated by the architects.

D3.V2

D3.V2.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D3.V2.F2: Remove connectors of transitively shared
services

The architect needs to decide which of the connectors in each transitive link path are safe to delete. It must
then be checked that this is enough to break up the transitive sharing. Then: Same as D3.V1.F2 for selected
connectors.

D3.V2.F3: Replace direct links via an intermediary
component, e.g., API Gateway, Pub/Sub, Message
Broker

As in D3.V2.F2 the architect needs to select connectors, and a check that sharing is broken needs to be
performed. Then: Same as D3.V1.F3 for the selected connectors.

D3.V2.F4: Integrate transitively shared services into
a calling service

The architect has to select which services on the transitive link path are to integrated into the calling service.
It must then be checked that this is enough to break up the transitive sharing. Then: Same as D3.V1.F4 for
the selected services. The

D3.V2.F5: Integrate transitively calling service into
shared service

As in D3.V2.F4 the architect needs to select services, and a check that sharing is broken needs to be performed.
Then: Same as D3.V1.F5 for the selected services.

D3.V3

D3.V3.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D3.V3.F2: Replace cyclic relations via an intermedi-
ary component, e.g., API Gateway, Pub/Sub, Message
Broker

The architect has to select if an existing intermediary component can be used for the fix, or a new one has to
be created. Replace all connectors in a cycle with connectors to this component. Delete the cyclic connectors.

D3.V3.F3: Remove connectors from a cycle until
there is no cycle

The architect selects connectors that can be deleted in a cyclic path. It is then checked whether the cycle is
broken by those deletions. Then the selected connectors are deleted. If selected by the architect, the steps
from D3.V3.F2 can then be followed to introduce links via an intermediary component instead.

D3.V3.F4: Integrate all functionality of services in-
volved to a cycle into one service

Integrate the responsibility and functionality of the services in the cycle into one integration service, selected
by the architect. This can also be a new service, introduced by the architect. Rewire the cyclic services’ clients
directly to the integration service. Here we add annotations that functionality has been added to the integration
service, so that implementers later on can realize this functionality.

TABLE III: Identified Fixes And Fix Algorithms

one, only D2.V1 has two metrics associated (i.e., both from
Section II-A2). Please also note that for D2.V1 to be fixed, it
is enough that one of the two metrics is optimal (1.00); this is
why the models BM3, CO2, and EC2 require no refactoring
steps, even though they score less than 1.00 in the other of the
two metrics. The metrics measure the degree of the violation,
with 1.00 when no violation exists and 0.00 where the worst
possible option is selected and not even partial conformance
is measured. Obviously, the number of steps required to reach

optimal models depends on a) the number of the violations
present in the initial model and b) on the possible appearance
of new violations during the refactoring process (as explained
in detail in the TH1 example above). As can be seen in
Table IV, all models are fully resolved—i.e., all assessment
metrics are 1.00—after at most four steps.

VII. DISCUSSION OF RESEARCH QUESTIONS

To answer RQ1 we have systematically specified a number
of decision-based violations related to each possible decision



«Client»
Mobile App : Component

«Facade»
API Gateway : Component

«Service»
Passenger Management Service

: Component

«Web UI»
Passenger : Component

«Client»
Browser : Component

«Web UI»
Driver : Component

«Service»
Driver Management Service

: Component

«Service»
Payment Service

: Component

«Service»
Notification Service

: Component

«Database»
Driver DB : Component

«Database»
Passenger DB : Component

«Service»
Trip Management Service

: Component

«Service»
Biling Service
: Component

«Database»
Trip DB : Component

«RESTful HTTP»

«Asynchronous, RESTful HTTP» «Asynchronous, RESTful HTTP»«Asynchronous, RESTful HTTP»

«RESTful HTTP»«Database Connector»

«Asynchronous, RESTful HTTP»«Asynchronous, RESTful HTTP»

«HTTP, HTTPS» «HTTP, HTTPS»

«Asynchronous, RESTful HTTP»

«RESTful HTTP» «RESTful HTTP» «Database Connector»«RESTful HTTP» «Database Connector»

Fig. 3: Example of an Architecture Component Model of model TH1 in Table I: this architecture violates the Service Interaction
(D2.V1) and Dependencies through Shared Services (D3.V1) decisions (cf. Table II).

Model
ID

Initial Model Models Generated / Remaining Violation Instances Resulting Suggested
(Optimal) ModelsAssessments per Refactoring Step

D1.V1 D1.V2 D2.V1 D3.V1 D3.V2 D3.V3 Step 1 Step 2 Step 3 Step 4
BM1 0.33 1.00 1.00, 0.00 1.00 1.00 1.00 2 / 0 – – – 2
BM2 1.00 1.00 0.00, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4
BM3 1.00 1.00 0.00, 1.00 1.00 1.00 1.00 – – – – –
CO1 1.00 1.00 0.00, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4
CO2 1.00 1.00 1.00, 0.00 1.00 1.00 1.00 – – – – –
CO3 0.60 0.00 0.00, 1.00 1.00 1.00 1.00 2 / 0 – – – 2
CI1 1.00 1.00 0.00, 0.00 0.75 1.00 1.00 7 / 6 18 / 4 8 / 0 – 23
CI2 1.00 1.00 0.00, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4
CI3 1.00 1.00 0.00, 0.00 0.70 1.00 1.00 7 / 6 18 / 4 8 / 0 – 23
CI4 1.00 1.00 0.00, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4
EC1 1.00 1.00 0.00, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4
EC2 1.00 1.00 1.00, 0.00 1.00 1.00 1.00 – – – – –
EC3 0.00 0.00 0.00, 1.00 1.00 1.00 1.00 2 / 0 – – – 2
ES1 1.00 1.00 0.60, 0.00 0.73 1.00 1.00 7 / 1 2 / 0 – – 8
ES2 0.00 1.00 0.00, 0.00 0.66 1.00 1.00 9 / 10 26 / 11 28 / 2 4 / 0 45
ES3 0.33 1.00 0.00, 0.00 0.66 1.00 1.00 9 / 10 26 / 11 28 / 2 4 / 0 45
FM1 1.00 1.00 0.00, 0.00 0.38 1.00 1.00 7 / 2 6 / 0 – – 11
FM2 1.00 1.00 0.00, 1.00 0.70 1.00 1.00 4 / 0 – – – 4
FM3 1.00 1.00 0.00, 1.00 1.00 0.77 0.00 7 / 0 – – – 7
HM1 1.00 1.00 0.00, 0.42 0.80 1.00 1.00 7 / 6 18 / 4 8 / 0 – 23
HM2 1.00 1.00 0.80, 0.20 1.00 1.00 1.00 3 / 1 2 / 0 – – 4
RM1 0.00 1.00 1.00, 0.00 1.00 1.00 1.00 2 / 0 – – – 2
RM2 1.00 1.00 0.00, 0.00 1.00 0.82 1.00 7 / 6 18 / 4 8 / 0 – 23
RM3 1.00 1.00 0.00, 0.00 1.00 0.82 0.00 10 / 7 30 / 7 14 / 0 – 38
RS 0.66 1.00 0.11, 0.11 0.63 1.00 1.00 9 / 14 37 / 14 61 / 5 10 / 0 89
TH1 1.00 1.00 0.00, 0.00 0.67 1.00 1.00 7 / 6 18 / 4 8 / 0 – 23
TH2 1.00 1.00 0.66, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4

TABLE IV: This table shows a) the architecture assessment (per decision/violation pair) of the original models used in our
study, b) the number of models generated at each step of an iterative application of our algorithms, and c) the number of
violation instances (generated models × violations per model) still remaining, or introduced, after each iteration, plus d) the
resulting number of suggested (optimal) models at the end (cf. Figure 4 for a detailed example).

option, summarized in Table II. As we have empirically shown
in our prior work [9] that the metrics described in Section II
can reliably distinguish favored or less favored design options,
the role of the violation detectors is to find the precise spots
in the models where the violations occur. For each system
model in our evaluation dataset it was possible to suggest fixes
that bring the architecture to optimal values, meaning that the

algorithms have found the right place(s) to apply the fixes.

Regarding RQ2 we defined a number of algorithms ad-
dressing every possible violation, with multiple fix options
(cf. Table III). If all options are tried out, this results in a
search tree of possible architecture models, which can in turn
be assessed, using our metrics, to measure improvements to
the initial architecture and detect any remaining violations. We



TH1

produces

D3.V1

produces

D2.V1

A B C D

produces

D2.V1

violates violates

violates violates violates violates

GE

produces

D3.V1

violates

A2 B2 C2 D2

violates

A3

violates

B3

violates

C3

violates

D3

E1

E2

E3

F

E4

produces

D1.V2

A3_2 B3_2 C3_2 D3_2

D1.V2

G1

G2

produces

violates

A1 B1 C1 D1

A3_1 B3_1 C3_1 D3_1

Fig. 4: Example of an exhaustive iterative application of our
approach in the TH1 model. Final (i.e., optimally resolved)
resulting models are thickly outlined.

have shown (cf. Table IV) that an iterative approach of using
our algorithms successively, results, within a few steps, in a
sufficient variety of possible architecture models that remove
all detected violations and ensure pattern conformance of the
system architecture. The multiple optimal model variants that
result from our approach give architects substantial levels
of freedom in their design decisions. As detection is fully
automated and human expertise is limited to the fix process,
the approach is well suited to be run in a continuous delivery
environment, which was one of our research goals.

VIII. THREATS TO VALIDITY

To increase the internal validity of our approach, throughout
our study, as well as in the previous works on which it builds,
we have relied on a large number of systems produced by
third parties for testing and evaluation (cf. Table I). Likewise,
the solutions we propose are derived from best practices and
patterns in the published (grey) literature: our work is limited
to gathering, systematizing, and applying them to the given
set of systems. Any omissions can be added to our model
without invalidating the fundamental approach. One possible
threat to the internal validity of our algorithms is that they
depend on the particular modelling approach we have adopted.
However, this approach is by design generic, based on typical
component-and-connector models, and should be both capable
of dealing with most microservice systems, as well as be easy
to extend or adapt if required.

Our approach presently has some limitations: it operates at
a relatively high level of abstraction, does not consider any
decision parameters other than the metrics evaluating pattern
conformance, and limits itself to specific, coupling-related
patterns. We consider that these limitations can be addressed
in future work, by applying the same fundamental, metrics-
based approach to finer-granularity parameters , enriching
our decision support model with additional data sources ,
and adding more patterns to our decision model. In terms
of generalizability, we have not considered industrial-scale
systems with hundreds of services, but are confident that
the fundamental approach is sound. The challenge would be
one of adapting our method and increase its ‘intelligence’
so as to target contiguous portions of large-scale systems at
a time, so that the generated refactored models would be
realistically feasible. The solutions proposed may also not be
always optimal, as we aim to present generically applicable
solutions. It remains possible that an architect will devise a
custom, hybrid solution that optimizes a system in ways that
an automated approach cannot. Again, however, this is a matter
of extending the present approach with the metrics and the
‘intelligence’ required to model these hybrid solutions.

IX. CONCLUSION AND FUTURE WORK

In this paper we have presented a set of violations for three
ADDs and mapped them to existing, empirically validated
metrics judging the outcomes of these decisions. We have
defined automatic detectors for these violations, which provide
the precise places in a model where the violations occur.
Bases on this, we have defined a set of possible fixes for
each violation, as part of an approach for ensuring pattern and
best practice conformance in microservice-based architectures.
We have evaluated our approach on a set of 27 models
showing various degrees of pattern violations and architecture
complexity, and have shown that our approach is capable
of resolving these violations in at most 4 refactoring steps
that can largely be automated. As both metric calculation
and violation detection are fully automated, the approach can
be applied as an additional “architecture assessment test” in
a continuous delivery pipeline, as was our goal. Fixes are
automated, too, but architects have to decide which of the
suggested options should be applied (if any) and sometimes
need to provide some input. Thus the approach is still flexible
enough to let the architect make architectural design choices.

In our future work, we aim to broaden the set of ADDs and
violations included in our approach, enrich it with runtime
metrics and other architecture aspects such as deployment en-
vironments, and extend our model dataset to include larger and
more complex systems. In addition, we hope to experimentally
validate our approach by employing it in real-world delivery
pipelines as part of a feedback loop.

X. ACKNOWLEDGMENTS

This work was supported by: FFG (Austrian Research Pro-
motion Agency) project DECO, no. 864707; FWF (Austrian
Science Fund) project API-ACE: I 4268.



REFERENCES

[1] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study,”
in 6th International Conference on Cloud Computing and Services
Science, 2016, pp. 137–146.

[2] C. Pautasso and E. Wilde, “Why is the web loosely coupled?: a multi-
faceted metric for service design,” in 18th Int. Conf. on World wide web.
ACM, 2009, pp. 911–920.

[3] C. Richardson, “A pattern language for microservices,” http://
microservices.io/patterns/index.html, 2017.

[4] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schus-
ter, “Reusable architectural decision models for enterprise application
development,” in Int. Conf. on the Quality of Software Architectures.
Springer, 2007, pp. 15–32.

[5] O. Zimmermann, “Microservices tenets,” Computer Science - Research
and Development, vol. 32, no. 3, pp. 301–310, Jul 2017.

[6] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis,
“Microservices in practice, part 1: Reality check and service design,”
IEEE Software, vol. 34, no. 1, pp. 91–98, Jan 2017.

[7] O. Zimmermann, M. Stocker, U. Zdun, D. Luebke, and C. Pautasso, “Mi-
croservice API patterns,” https://microservice-api-patterns.org, 2019.

[8] J. Skowronski, “Best practices for event-driven
microservice architecture,” https://hackernoon.com/
best-practices-for-event-driven-microservice-architecture-e034p21lk,
2019.

[9] E. Ntentos, U. Zdun, K. Plakidas, S. Meixner, and S. Geiger,
“Assessing architecture conformance to coupling-related patterns and
practices in microservices,” in 14th European Conference on Software
Architecture (ECSA), 2020, September 2020. [Online]. Available:
http://eprints.cs.univie.ac.at/6478/

[10] ——, “Metrics for assessing architecture conformance to microservice
architecture patterns and practices,” in 18th International Conference on
Service Oriented Computing (ICSOC 2020), December 2020. [Online].
Available: http://eprints.cs.univie.ac.at/6479/

[11] G. Hohpe and B. Woolf, Enterprise Integration Patterns. Addison-
Wesley, 2003.

[12] M. Goldstein and D. Moshkovich, “Improving software through au-
tomatic untangling of cyclic dependencies.” New York, NY, USA:
Association for Computing Machinery, 2014.

[13] J. Lewis and M. Fowler, “Microservices: a definition of this new
architectural term,” http://martinfowler.com/articles/microservices.html,
Mar. 2004.

[14] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad
smells,” IEEE Software, vol. 35, no. 3, pp. 56–62, 2018.

[15] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying ar-
chitectural bad smells,” in 2009 13th European Conference on Software
Maintenance and Reengineering, 2009, pp. 255–258.

[16] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Toward a
catalogue of architectural bad smells,” in Architectures for Adaptive
Software Systems, R. Mirandola, I. Gorton, and C. Hofmeister, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 146–162.

[17] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic, “An empirical
study of architectural decay in open-source software,” in 2018 IEEE
International Conference on Software Architecture (ICSA), 2018, pp.
176–17 609.

[18] R. Marinescu, “Detection strategies: metrics-based rules for detecting
design flaws,” in 20th IEEE International Conference on Software
Maintenance, 2004. Proceedings., 2004, pp. 350–359.

[19] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Yuanfang
Cai, “Enhancing architectural recovery using concerns,” in 2011 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2011), 2011, pp. 552–555.

[20] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino,
and A. Di Salle, “Microart: A software architecture recovery tool for
maintaining microservice-based systems,” in 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW), 2017, pp.
298–302.

[21] N. Alshuqayran, N. Ali, and R. Evans, “Towards micro service ar-
chitecture recovery: An empirical study,” in 2018 IEEE International
Conference on Software Architecture (ICSA), 2018, pp. 47–4709.

[22] D. Neri, J. Soldani, O. Zimmermann, and A. Brogi, “Design
principles, architectural smells and refactorings for microservices: a
multivocal review,” SICS Software-Intensive Cyber-Physical Systems,

vol. 35, no. 1-2, p. 3–15, Sep 2019. [Online]. Available: http:
//dx.doi.org/10.1007/s00450-019-00407-8

http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html
https://microservice-api-patterns.org
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
http://eprints.cs.univie.ac.at/6478/
http://eprints.cs.univie.ac.at/6479/
http://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1007/s00450-019-00407-8
http://dx.doi.org/10.1007/s00450-019-00407-8

	Introduction
	Background
	Decisions
	Decision: Persistent Data Storage of Services
	Decision: Service Interconnections
	Decision: Dependencies through Shared Services


	Related Work
	Research and Modeling Methods
	Research Method
	Using the Approach in a Continuous Delivery Pipeline

	Approach Details
	Violation Detection
	Fixes
	Violation Detection and Fixes Example

	Evaluation
	Discussion of Research Questions
	Threats to Validity
	Conclusion and Future Work
	Acknowledgments
	References

