
On the Understandability of Language Constructs to
Structure the State and Behavior in Abstract State
Machine Specifications: A Controlled Experiment

Philipp Paulweber∗, Georg Simhandl, Uwe Zdun

University of Vienna, Faculty of Computer Science, Research Group Software Architecture,
Währingerstraße 29, 1090 Vienna, Austria

Abstract

Abstract State Machine (ASM) theory is a well-known state-based formal method
to analyze and specify software and hardware systems. As in other state-based
formal methods, the proposed modeling languages for ASMs still lack easy-to-
comprehend abstractions to structure state and behavior aspects of specifica-
tions. Modern object-oriented languages offer a variety of advanced language
constructs, and most of them either offer interfaces, mixins, or traits in addition
to classes and inheritance. Our goal is to investigate these language constructs
in the context of state-based formal methods using ASMs as a representative
of this kind of formal methods. We report on a controlled experiment with 105
participants to study the understandability of the three language constructs in
the context of ASMs. Our hypotheses are influenced by the debate of object-
oriented communities. We hypothesized that the understandability (measured
by correctness and duration variables) shows significantly better understanding
for interfaces and traits compared to mixins, as well as at least a similar or bet-
ter understanding for traits compared to interfaces. The results indicate that
understandability of interfaces and traits show a similar good understanding,
whereas mixins shows a poorer understanding. We found a significant difference
for the correctness of understanding when comparing interfaces and mixins.

Keywords: Abstract State Machines, Empirical Software Engineering,
Understandability, Language Constructs, Controlled Experiment

1. Introduction

The Abstract State Machine (ASM) theory is a well-known state-based for-
mal method consisting of transition rules and algebraic functions and has been
described by Gurevich [1] in the beginning of the 1990s. Several scientists of dif-
ferent research fields used and applied the ASM theory and its ASM method [2].

∗Corresponding author
Email addresses: philipp.paulweber@univie.ac.at (Philipp Paulweber),

georg.simhandl@univie.ac.at (Georg Simhandl), uwe.zdun@univie.ac.at (Uwe Zdun)

Preprint submitted to Elsevier April 25, 2021

This usage ranges from software, hardware and system engineering perspectives
to specify, analyze, verify, and validate systems in a formal way [3]. The diver-
sity of ASM-based applications ranges from formal specification of semantics of
programming languages, such as those for Java by Stärk et al. [4] or Very High
Speed Integrated Circuit Hardware Description Language (VHDL) by Sasaki
[5], compiler back-end verification by Lezuo [6], software run-time verification
by Barnett and Schulte [7], software and hardware architecture modeling e.g.
of Universal Plug and Play (UPnP) by Glässer and Veanes [8], to even Reduced
Instruction Set Computing (RISC) designs by Huggins and Campenhout [9].

By definition, an ASM formally describes the evolution of function states
through dedicated transaction rules in a step-by-step manner1 and are used to
specify sequential, parallel, concurrent, reflective, and even quantum algorithms
[2]. In order to describe, analyze, and even execute ASMs, several languages
and tools were developed over time to model ASM specifications based on the
ASM theory description by Gurevich [1]. Additionally, several theory improve-
ments were provided to increase the expressiveness of ASM languages which
were summarized by Börger and Stärk [2] and Börger and Raschke [10].

The landscape of developed ASM languages and the corresponding tools is
rather limited nowadays. Best known are the ASM implementations AsmetaL
[11] and CoreASM [12]. AsmetaL provides a feature-rich tool set to model, ana-
lyze, interpret, and generate code of described ASM specifications2. The core of
AsmetaL is implemented and based on the Eclipse Modeling Framework (EMF)
and provides therefore a Java-based interpreter. CoreASM3 is another Java-
based interpreter implementation for ASM specifications. Its main focus is
on the language extensibility which is supported through the adaption of the
parser implementation [12]. The base implementation CoreASM is written in
Java as well as all language extensions have to be written in Java. Besides this
two interpreter-oriented implementations there exists AsmL [13] and Corinthian
Abstract State Machine (CASM) [14]. AsmL is based on the .NET framework
and allowed the compilation (code generation) of ASM specifications. Gurevich
itself was part of this project but it discontinued. CASM was introduced by
Lezuo and provides compilation as well as interpreting of modeled ASM specifi-
cations. Due to the compilation focus of CASM it uses a statically typed inferred
language design and Lezuo et al. [14] established compilation techniques to out-
perform CoreASM and AsmL in terms of ASM execution performance. There
are several other ASM language tool implementations like AsmGofer [15] or
eXtensible ASM (XASM) [16], but those projects are discontinued.

ASMs are part of the state-based formal methods which provide their own
languages and tools. The most prominent candidates are Alloy [17], Event-
B [18], Temporal Logic of Actions (TLA) [19], Vienna Development Method
(VDM) [20], and Z [21].

1The ASM theory was formerly called Evolving Algebra.
2See https://asmeta.github.io for the AsmetaL project site.
3See https://github.com/CoreASM for the CoreASM project site.

2

https://asmeta.github.io
https://github.com/CoreASM

Interfaces Traits Mixins

Protocol Protocol
Behavior

Protocol
Behavior

State

Figure 1: Overview of Language Construct Properties

1.1. Problem Statement

Today, a common threat in the various ASM languages and tools, as well
as in most other state-based formal methods, is that the proposed modeling
languages lack easy to comprehend abstractions to describe reusable and main-
tainable specifications [22]. While very few have embraced basic object-oriented
abstractions such as classes and inheritance, more advanced language constructs
are usually missing. Mernik et al. [23] point out that the lack of such object-
oriented abstractions in formal methods is one of main the reason why formal
methods and their languages are not widely used and are more or less unpop-
ular compared to feature-rich programming languages. Börger [24] suggests in
one of his latest article that we need better abstractions (language constructs)
in existing ASM modeling languages without focusing on class and inheritance
concepts.

In contrast modern object-oriented languages offer a variety of advanced lan-
guage constructs, and most offer either interfaces [25], mixins [26], or traits [27]
in addition to classes and inheritance. All of those three language construct have
similar and some different properties and characteristics, which are depicted in
Figure 1 and described as follows:

Interfaces define (typed) operations (signatures) to which an implementer of
a certain interface (type) has to conform [25]. Therefore, an interface
defines a so called contract [28]. No behavioral or state information can
be defined through interfaces.

Mixins can define reusable behavioral and state information that can be used
to combine (mix) and form new types [26] [29]. Mixins enrich interfaces
with behavioral and state information.

Traits are similar to interfaces with the difference that they can define stateless
behavior which depends on the trait itself [27]. Therefore, compared to
mixins, a definition of a state in a trait is not allowed. The properties and
capabilities of traits are situated between the other language constructs
interfaces and mixins.

There is a heated debate in the object-oriented community, which of those
abstractions is best suited to promote reusable and maintainable specifications,
and many implementations combine different language constructs. A notable
example would be the programming language Scala [30], which offers a trait

3

syntax that is similar to the Java 8 [31] interface syntax and offers mixins lan-
guage constructs through the class-based implementation and extension syntax.
Another example of mixed language constructs, namely interfaces and traits,
can be found in the programming language Rust [32], where the language user
has to express every interface definition through traits and the structures (as
well as types) have to conform to specified traits and implement all required
functionalities.

Empirical research on language constructs in ASM languages and similar
state-based formal methods has the potential to influence language designers
and compiler engineers when making decisions on choosing language constructs
in specification language designs and implementations.

1.2. Research Objectives, Hypotheses, and Results

In this empirical study we investigate how well and fast a participant
understands textual language construct representations for state-based
formal methods. State-based formal methods and their modeling languages
are usually based on base concepts that are significantly different from classes.
Reusable and maintainable specifications would be highly useful in these meth-
ods and languages, too, and are largely missing in today’s methods and lan-
guages. In our study, we use ASMs as a representative of state-based formal
methods, and the modeling language CASM [14] [33] [34] [35] as a representative
for ASM-based languages and tools. As our study focuses on the general notion
of adding advanced language constructs to CASM, we believe that most of our
results can be generalized to other ASM languages and tools. The latter could
be confirmed with a follow-up study.

In this study the term understandability corresponds to how well and
fast a participant understands a given language construct in example ASM
specifications. We define the experiment goal using the Goal Question Metric
(GQM) template [36] as follows: Analyze the Interfaces, Mixins, and Traits
language constructs for the purpose of their evaluation with respect to their
understandability from the viewpoint of the novice and moderately advanced
software architect, designer, or developer in the context (environment) of
the Advanced Software Engineering (ASE) and Distributed Systems Engineering
(DSE) courses at the Faculty of Computer Science of the University of Vienna4.

Our hypotheses are influenced by the debate in the object-oriented com-
munity, which recently discuss traits often more favorably than mixins5. In
particular, mixins contain state information whereas traits do not, mixins use
implicit conflict resolution whereas traits use explicit resolution and mixins are
linearized (order of used language construct matters) whereas traits are flattened
(order of used language construct does not matter). Also, the community often
discusses traits more favorably than interfaces6 or point out that ”Traits are In-

4See https://cs.univie.ac.at for faculty website.
5See, e.g. https://stackoverflow.com/questions/925609.
6See, e.g. https://stackoverflow.com/questions/9205083.

4

https://cs.univie.ac.at
https://stackoverflow.com/questions/925609
https://stackoverflow.com/questions/9205083

terfaces”7 with code-level reuse functionality. On the other hand, interfaces are
probably the best known abstraction to developers today, and like most ordinary
developers our participants are trained in programming languages offering the
language construct interfaces in Java or how to model interfaces through and
abstract class in C++. As a consequence, we hypothesized that understandabil-
ity measured by correctness and duration variables shows a significantly better
understanding for traits compared to mixins and for interfaces compared to mix-
ins. Further, we derived from the debate another hypothesis that traits offer at
least a similar or even better understanding compared to interfaces.

The obtained results in this study indicate that the language constructs in-
terfaces and traits show a similar good understanding. The language construct
mixins shows poorer understanding compared to interfaces and traits, which in-
dicates that from a language user perspective the strict separation of behavioral
and structural elements is better understandable than the intermixed represen-
tation form.

1.3. Structure of this Article

In Section 2, we describe ASMs, the used language and constructs used
in this study, and present related studies. Section 3 elaborates the planning
of the language construct study. In Section 4, we describe the execution of the
experiment, while the results are presented in Section 5 and discussed in Section
6. Last but not least, we conclude the article in Section 7.

2. Background

This section discusses some properties regarding ASMs and language con-
structs that are of interest in this study. Readers already familiar with ASMs
and the discussed type abstractions and their corresponding representations may
consider to skip the whole or some parts of this section.

2.1. Abstract State Machines

ASMs are used to express calculations in an abstract manner for all kind
of different application fields. According to Gurevich and Tillmann [37], the
ASM thesis states that if there is a computer system A, it can be simulated
in a step-by-step manner by a behavioral equivalent ASM B. The resulting
ASM theory and formal method consist of three core concepts: (1) an ASM
specification language, which looks similar to pseudo code to express rule-based
computations over algebraic functions with arbitrary data structures and type
domains; (2) a ground model serving as a rigorous form of blueprint and reference
model; and (3) stepwise refinement of the reference model by instantiating more
concrete models which uphold the properties of the reference model [2].

7See, e.g. https://blog.rust-lang.org/2015/05/11/traits.html.

5

https://blog.rust-lang.org/2015/05/11/traits.html

ASMs has two field of works – modeling and refinement. In order to model
an application or system through an ASM specification, an ASM language user
has to understand the three most important modeling concepts [10] of ASMs:

States are the notion in ASMs to define the objects and attributes of an appli-
cation or system through relations and function types. Therefore, every
state information in an ASM specification is expressed through a function
definition (see Section 2.2).

Transactions describe under which conditions the modeled states evolve (value
change). The evolving is expressed through transaction rules. ASMs de-
fine several kinds of rules (conditional, iterative etc.) but the most impor-
tant one is the update rule. An update rule in ASMs defines which state
(function location) shall be updated with a new value. More than one
update during a transaction is collected in a so called update-set. ASM
rules allow interleaved parallel and sequential execution semantics [38],
a correct ASM specification does not allow the update (insertion to the
update-set) of the same function location twice or more, which is referred
in the literature as an inconsistent update [10]. A language user can model
transactions through named rules (see Section 2.2).

Agents are the actors of an ASM specification. There can be one (single) agent
or multiple agents. Every agent activates his top-level rule and applies the
collected updates after the rule termination to the states. This is called
an ASM step. Multiple ASM steps (of one or multiple agents) form the
notion of an ASM run, which ends depending on the termination condition
modeled in the ASM specification.

Refinement of a modeled ASM specification can be achieved by one of the
three kinds – data, horizontal, or vertical refinement. A data refinement makes
the usage replacing abstract operations with refined operations which have a
one-to-one mapping (e.g. change or make a type more concrete). A horizontal
refinement makes the usage of upgrading the functionalities or changing the
environmental settings. A vertical refinement adds more and more details about
the application or system (e.g. add another requirement, more states etc.).

A more detailed description and elaboration of the ASM modeling and re-
finement concepts is given by Börger and Raschke [10].

2.2. ASM Language Representative

In this study, we use the basic syntax elements from the CASM language8

[35]. The CASM language elements used can be found in a similar fashion in
other ASM languages; hence, we believe it is likely that our results can be gen-
eralized to these other ASM languages and also to other state-based formalisms.

8See https://casm-lang.org/syntax for CASM language description.

6

https://casm-lang.org/syntax

1 function counter : -> Integer // variable

2

3 function personsAge : String -> Integer // hash -map

Listing 1: Function Definition Example

1 derived nextCounter -> Integer = counter + 1

2

3 derived isFullAged(name : String) -> Boolean = (personsAge(name) >= 18)

Listing 2: Derived Definition Example

1 rule incrementOrResetCounter = // named rule

2 if nextCounter != 10 then // conditional rule (if -then part)

3 counter := nextCounter // update rule

4 else // conditional rule (else part)

5 counter := 0 // update rule

Listing 3: Named Rule Definition Example

CASM is a statically typed ASM-based specification language. Every specifica-
tion is composed of definition elements. Relevant to this study are the following
three definitions – Function, Derived, and Rule definitions.

Function Definition

A function definition specifies an n-dimensional state (argument types)
which maps to a certain function type (return type). E.g. variables in a pro-
gramming language are modeled as nullary functions in ASMs, or hash-maps
can be expressed as unary functions in ASMs. Listing 1 illustrates the concrete
syntax and some examples.

Derived Definition

A derived definition specifies functions which state values can only be de-
rived from other functions or deriveds without modifying the ASM state. There-
fore, deriveds are side-effect free functions and can be in some cases even pure
functions. Listing 2 illustrates the concrete syntax and some examples which
use state information from Listing 1.

Rule Definition

A rule definition specifies a named rule (language user defined rule) which
describes the actual computation and transaction of the ASM state evolving
through basic ASM rules which are: (1) update rule to produce a new value for
a given state function (location); (2) block rule to express bounded parallelism
of multiple rules; (3) sequential rule to express sequential execution semantics
of multiple rules; (4) conditional rule to specify branching (if-then-else); (5)
forall rule to express parallel computations; (6) choose rule to specify non-
deterministic choice; (7) iterate rule to express iterations; and (8) call rule to

7

invoke named rules (sub-rule call). A more detailed explanation of all ASM
rules is given by Börger and Raschke [10]. Listing 3 illustrates the concrete
syntax and an example which depends on some definitions from Listing 1 and
Listing 2.

2.3. Experiment Language Construct Representations

Besides a class concept used in AsmL [13], no other advanced language con-
struct has been introduced in the ASM language and tool landscape. To enable
moving the state-of-the-art in advanced language constructs for such formal lan-
guages forward, this study tests three representations of language constructs,
namely interfaces, mixins, and traits, to search for a suitable language con-
struct, structuring and extension of functionality for such languages in general
and specifically for CASM. In order to do so, we introduced three new defini-
tions for this study into the existing CASM syntax – Feature, Structure, and
Implement definitions.

Feature Definition

A feature definition specifies a new type (functionality) together with a set
of operations (derived and rule declarations) which form a protocol.

Structure Definition

A structure definition specifies a composition of (function) states which
can be extended with one or multiple features (functionalities).

Implement Definition

An implement definition specifies which feature gets implemented and used
by which structure.

Please note that we use these very general terms on purpose as they can be
mapped to all three language constructs under investigation. As a consequence,
we can avoid that participants in the experiment are biased by knowing keywords
identifying the language construct through interface, mixin, or trait which
especially applies for the keyword feature. All three language construct syntax
are designed in the style of modern object-oriented programming languages.

Language Construct Interfaces (Experiment Group A)

The feature syntax in the language construct Interfaces only describes
the protocol consisting of the set of operations [39] [25] a structure has to
implement. Therefore, it consists only of derived and/or rule declarations.
In order to use a feature, the keyword implement has to be used to extend
the current structure. Listing 4 depicts an example specification with the
Interface language construct9. This syntax is primarily influenced by the Java
programming language [31] interface syntax.

9See form ifaces.pdf at [40].

8

Language Construct Mixins (Experiment Group C)

The feature syntax in the language construct Mixins is equal to Inter-
faces except that it supports an optional default implementation through an
implement definition. Besides the default behavior such a definition can de-
fine an internal state through function definitions. Therefore, mixins can define
required type behavior and state [41] [26]. To indicate that a structure shall
provide the behavior of a feature, the implement keyword is used to extend the
current structure implementation by the default implementation and function
state. Every default implementation can be overwritten by an explicit concrete
implementation of a certain operation. Listing 5 depicts an example specifica-
tion with the Mixins language construct10. This syntax is primarily influenced
by the Scala programming language [30] trait syntax which enables mixins ca-
pabilities.

Language Construct Traits (Experiment Group B)

The feature syntax in the language construct Traits is equal to Interfaces
except that it supports definition of optional default implementations inside the
feature definition itself. A structure only contains the state information. The
behavior in the Traits abstraction is implemented through two different kinds
of separated implement definitions: (1) provides the behavior of the structure;
(2) provides the behavior of a certain feature for a structure. It is important
to note here that a default implementation provided in the feature syntax can
be overwritten in the implement definition. Listing 6 depicts an example spec-
ification with the Traits language construct11. This feature and implement

syntax is influenced by the Rust programming language [32] trait syntax12.

2.4. Related Studies

So far, interfaces, mixins and traits have mainly been studied in the context
of programming languages and mainly by proposing new solutions. A small
number of empirical studies exists in this field which are mainly case studies.
For instance, Murphy-Hill et al. present a case study on the potential of traits to
reduce code duplication [42]. Apel and Batory present a case study comparing
aspect and feature abstractions using a mixin layer approach to unify the two
[43]. Batory et al. present another case study on achieving extensibility through
product-lines and domain-specific languages using a mixin-based approach [44].
However, so far no study comparing the three advanced language constructs
covered in our study exists and also no controlled experiments.

Interface abstractions have been extensively studied in the context of formal
methods [45] [46] [47] and architecture description languages that offer formal
representations [48] [49]. Traits and mixins, in contrast have not yet been stud-
ied in the context of formal methods. We are not aware of any formal method

10See form mixins.pdf at [40].
11See form traits.pdf at [40].
12See https://doc.rust-lang.org/rust-by-example/trait.html for the discussion.

9

https://doc.rust-lang.org/rust-by-example/trait.html

1 feature Formatting = {

2 derived toString : -> String

3 }

4

5 structure Person implement Formatting = {

6 function name : -> String

7 function age : -> Integer

8

9 derived getName -> String = this.name

10 derived getAge -> Integer = this.age

11

12 rule setName(name : String) = this.name := name

13 rule setAge(age : Integer) = this.age := age

14

15 // encapusalted feature implementation

16 derived toString -> String = this.getName () + (this.getAge () as String)

17 }

Listing 4: Interfaces-Based Example Specification

1 feature Formatting = {

2 derived toString -> String

3 }

4

5 implement Formatting = {

6 derived toString -> String = ""

7 }

8

9 structure Person implement Formatting = {

10 function name : -> String

11 function age : -> Integer

12

13 derived getName -> String = this.name

14 derived getAge -> Integer = this.age

15

16 rule setName(name : String) = this.name := name

17 rule setAge(age : Integer) = this.age := age

18

19 // overwrite of feature implementation

20 derived toString -> String = this.getName () + (this.getAge () as String)

21 }

Listing 5: Mixins-Based Example Specification

1 feature Formatting = {

2 derived toString -> String

3 }

4

5 structure Person = {

6 function name : -> String

7 function age : -> Integer

8 }

9

10 implement Person = {

11 derived getName -> String = this.name

12 derived getAge -> Integer = this.age

13

14 rule setName(name : String) = this.name := name

15 rule setAge(age : Integer) = this.age := age

16 }

17

18 // decoupled feature implementation

19 implement Formatting for Person = {

20 derived toString -> String = this.getName () + (this.getAge () as String)

21 }

Listing 6: Traits-Based Example Specification

10

that unifies or integrates any two or all three advanced language constructs
covered in our study.

Overall formal methods have been studied before in only a few empirical
studies other than case studies. An example of the few existing studies is the
one by Sobel and Clarkson, who study the aiding effect of first-order logic for-
malisms in software development [50]. Czepa and Zdun [51] and Czepa et al.
[52] have studied the understandability of formal methods for temporal property
specification using similar research methods as used in this study.

Ferrarotti et al. [53] report on a recent study where ASM-based high-level
software specifications are extracted from Java programs by using an semi-
automated approach. This study is of interest, because it maps the Java object-
oriented programming language concepts to the ASM sub-machine [53] concept
in order to represent the abstract type (interfaces) and sub-classing mechanisms.

Related to this study, we conducted another controlled experiment [54] with
98 participants where we analyzed the specification efficiency by using only
the language constructs interfaces and traits. Since this study only investigates
how well participants can understand (read, comprehend) ASM specifications by
answering questions about certain properties, the other study [54] investigates
how efficient and effective participants can write (specify) ASM specifications
using a certain language construct and receiving an informal system description
as stimuli. The results indicate that the language construct trait is more efficient
than interfaces. Apart from that, we are not aware of any other empirical study
that systematically investigated advanced language constructs in the context of
formal methods.

3. Experiment Planning

This study is structured following the guidelines by Jedlitschka et al. [55] on
how empirical research shall be conducted and reported in software engineering.
Moreover, the guidelines by Kitchenham et al. [56], Wohlin et al. [57], and
Juristo and Moreno [58] for empirical research in software engineering were
used in our study design. For the statistical evaluation of the acquired data
we considered and applied the robust statistical method guidelines for empirical
software engineering by Kitchenham et al. [59].

3.1. Goals

The goal of this experiment is to measure the construct understand-
ability on how well and fast a participant understands a given textual represen-
tation of three different language constructs, namely Interfaces, Mixins,
and Traits. The quality focus of the construct understandability is the correct-
ness and duration of the participant’s answers.

3.2. Context and Design

This study reports on a controlled experiment with 105 participants
in total to study the understandability of the language constructs interfaces,

11

mixins, and traits in the context of ASMs. We used a completely random-
ized design with one alternative per experimental group, which is appropriate
for the stated goal. Through this, we tried to avoid learning effects of the par-
ticipants and experimenter bias in the assignment of the groups. The statistical
evaluation technique is based on measuring how well a participant understands
a textual representation of applications described in an ASM language and how
well and correct the participant answers behavioral and structural questions
about the given applications.

The study was carried out with 70 computer science students who had en-
rolled in the course ASE13, which is a mandatory part of the Master of Sci-
ence (MSc) curricula at the University of Vienna, and with 35 computer science
students who had enrolled in the course DSE14, which is an optional part of
the Bachelor of Science (BSc) and MSc curricula at the University of Vienna,
at the same time respectively in the summer term 2018. All participants had a
limited time of 105 minutes to process the survey.

3.3. Participants

All participants of the experiment are BSc and MSc students of the Faculty
of Computer Science at the University of Vienna, Austria enrolled in at least
one of the following courses:

DSE: BSc and MSc students are enrolled in the course and used as proxies
for novice to moderately advanced software architects, designers, or develop-
ers. This course, which is intended for students in the fourth semester of the
BSc curricula or first semester of the MSc curricula, is concerned with teaching
principles of distributed systems, programming and engineering methods for dis-
tributed software, and solving accompanying problems like latency, concurrency,
unpredictability, and scalability.

ASE: MSc students are enrolled in the course and used as proxies for mod-
erately advanced software architects, designers, or developers. This course,
which is intended for students in the second semester of the MSc curricula,
is concerned with teaching principles of modern software engineering methods,
including distributed software architectures, design methods, and advanced soft-
ware engineering tools and techniques for Domain Specific Language (DSL) [60]
and Model-Driven Development (MDD) [61] approaches.

For both courses, the participants (students) received training in program-
ming, software engineering, (data) modeling, basic formal methods, algorithms,
and mathematics. At the beginning of the courses, the students were informed
that during the semester there will be an opportunity to participate in an ex-
periment. The attendance of the experiment was optional, and the submitted
solutions (filled out survey forms) were rewarded with up to 6 bonus points.

There was the option to receive the 6 bonus points by performing the tasks,
but not participate in the experiment (opt out option). How well (correctness)

13See https://ufind.univie.ac.at/en/course.html?lv=053020&semester=2018S for ASE.
14See https://ufind.univie.ac.at/en/course.html?lv=052500&semester=2018S for DSE.

12

https://ufind.univie.ac.at/en/course.html?lv=053020&semester=2018S
https://ufind.univie.ac.at/en/course.html?lv=052500&semester=2018S

a participant answered the survey determined the bonus points achieved (for
correctness definition, see Section 3.5).

In total, there were 105 participants, which were randomly allocated to the
treatments (i.e. the three language construct representations in an ASM speci-
fication language, see Section 2). Due to random assignment of the participants
to groups – Interfaces (Group A), Mixins (Group C), and Traits (Group B) –
the final distribution resulted in 36 : 34 : 35.

Someone may argue that students as experiment participants are not good
proxies for novice and moderately advanced software engineers. The partici-
pants in our experiment are students of two advanced courses (DSE and ASE)
at the University of Vienna, which trained the students in abstractions needed
for the experiment task domain, and were trained in basic formal methods in
prior courses. Easy to understand formalisms are key to correct specifications
in practice. We expect advanced students to be good proxies for inexperienced
developers and architects.

In this study, we do not focus on well trained experts as they are usually
also much better trained in formalisms, because the goal of the study is not to
focus on techniques that can only be applied by a few very well trained experts.
Furthermore, according to Kitchenham et al. [56] using students “is not a major
issue as long as you are interested in evaluating the use of a technique by novice
or nonexpert software engineers. Students are the next generation of software
professionals and, so, are relatively close to the population of interest”. This is
directly reflected in this study because some of the students who participated in
the experiment show several years of programming experience as well as several
years of work experience in the software and/or hardware industry (see Figure
2c, which summarizes the participants’ industrial work experiences).

Other studies by Svahnberg et al. [62] or Salman et al. [63] would argue
even further and state that under certain circumstances, students are valid
representatives for professionals in empirical software engineering experiments.

3.4. Material and Tasks

The experiment is based on a selection of basic software design patterns
for distributed system applications. The selection includes the Message Queue,
Publish-Subscribe, and Remote Procedure Call patterns as example applications
inspired by examples provided by Börger and Raschke [10].

The selected software design patterns are related to the subjects taught in
both courses – DSE and ASE. This study consists of two major experiment
material artifacts:

(1) Information Sheet An experiment information document15 explaining
the ASM language syntax and semantics without the experiments’
language construct syntax and semantics extensions.

15See info.pdf at [40].

13

(2) Survey Form Three experiment survey forms16 per experimental group
and language construct contain the actual survey along with the explicit
experiments’ language construct syntax and semantics extension and
description per experimental group.

All three experiment survey forms are structured the same way consisting
of four parts: (1) a participant information questionnaire; (2) the experiments’
group language construct syntax and semantics extension description; (3) three
experiment tasks (equal to all experiment groups); (4) an overall experiment
questionnaire.

Each experiment task consists of a given ASM specification, which is pro-
vided in the different experiment groups in the respective language construct
(Interfaces, Mixins, or Traits) textual representation. Every task is divided into
sub-tasks to test the participants’ understandability of the given ASM specifi-
cation. The students (participants) were instructed to read the given ASM
specification before they start to process the following four sub-tasks:

(1) Behavioral Four yes-and-no questions were used to determine understand-
ing of behavioral properties. An example question in task 2: ”A Service

can only handle structure values, which implement the Subscriber fea-
ture”.

(2) Structural Four filling-out-blanks sentences were used to determine under-
standing of structural properties. An example sentence in task 2: ”The
feature is implemented (included) two times for a structure.”

(3) Operational Multiple-choice answers of console outputs were used to de-
termine understanding of operational and executable properties of the
given ASM specification.

(4) Self Assessment A task-based questionnaire was used to obtain an ob-
jective perspective of the participants’ self assessment of how correct their
answers are with a certain level of confidence.

Important is that all the sub-tasks (questions) are identical except for the
textual representation of the given ASM specification in the corresponding ex-
periment groups’ language construct.

3.5. Variables and Hypotheses

This controlled experiment measures the following two dependent variables:

(1) Correctness as achieved in answering the questions, which include trying
to mark the correct answer and filling in the blanks in the tasks;

(2) Duration as the time it took to answer the questions of all tasks in an
experiment survey form (see Section 3.4) excluding breaks.

16See form ifaces.pdf, form mixins.pdf, and form traits.pdf at [40].

14

These two dependent variables are commonly used to measure the construct
understandability (cf. Hoisl et al. [64], Czepa and Zdun [51]). The inde-
pendent variables (factors) have three treatments, namely the three different
representations of language constructs Interfaces, Mixins, and Traits.

We hypothesized that Traits are easier to understand than Mixins due to
the explicit and separated functionality extension definition blocks offered by
traits. And Interfaces are easier to understand than Mixins due to their sim-
plicity without the additional overhead of possible default implementations and
optional local state bound to a certain type.

Furthermore, we hypothesized that Traits are easier to understand than
or as understandable as Interfaces due to their almost equal Application Pro-
gramming Interface (API) declaration styles. Consequently, we formulate the
following null hypotheses, where understandability is measured by correctness
and duration variables, for this controlled experiment:

H0,1 There is no difference in terms of understandability between Interfaces
and Mixins.

H0,2 There is no difference in terms of understandability between Traits and
Mixins.

H0,3 There is no difference in terms of understandability between Interfaces
and Traits.

Based on the formulated null hypotheses, we can derive and formulate the
following alternative hypotheses for this controlled experiment:

HA,1 The understandability shows a significantly better understanding of In-
terfaces compared to Mixins.

HA,2 The understandability shows a significantly better understanding of Traits
compared to Mixins.

HA,3 The understandability shows a significantly better or similar understand-
ing of Interfaces compared to Traits.

4. Experiment Execution

This experiment was executed in two steps, namely a preparation and a
procedure phase.

4.1. Preparation

Two weeks before the experiment we handed out the preparation mate-
rial (the experiment information sheet, see Section 3.4) through an e-learning
platform17. This document provided general information of the upcoming ex-
periment and an introduction to the ASM language syntax and semantics used

17See https://moodle.org for e-learning platform information.

15

https://moodle.org

without explaining one of the three language constructs. All ASM language con-
cepts used are depicted with short example ASM specification snippets. The
participants were allowed to use this document during the experiment in printed
form. The main reason why we provided the experiment information document
is that all participants needed to be educated to the same level of detail with
regard to a state-based formal method and specifically to a concrete ASM lan-
guage representation (see Section 2).

4.2. Procedure

The experiment was carried out using paper and pencil, as if it were an
(closed book) exam. Participants were allowed to bring only one aid to process
the experiment survey form as described in the previous Section 4.1. At the
beginning of the experiment, every participant received a random experiment
survey form (see Section 3.4). They were instructed to fill out and process the
survey from the first page to the last page in this particular order. Further-
more, a clock with seconds granularity was projected onto a wall to provide
timestamp information to the participants. They were asked to track start and
stop timestamps during the processing of the experiment tasks. After the exper-
iment every participants’ answer was recorded in a LibreOffice18 OpenDocument
Spreadsheet (ODS) file [65]. The participants’ task start and stop timestamps
were converted to a duration in seconds and summed up to a total duration
for all tasks. We used the four-eyes principle during every manual work step
(answer obtaining and timestamp conversion) in the data collection.

4.3. Deviations

The experiment execution and the data collection were performed as de-
scribed in Section 4.1 and Section 4.2. We did not observe any unforeseen
difficulties and did not deviate from the experiment plan.

5. Analysis

All statistical analysis was performed with the software tool R19. The anal-
ysis processes20 contain the following steps: (1) load the prepared data-set from
Section 5.1; (2) calculate the descriptive statistics for the dependent variables
which are explained in detail in Section 5.2; (3) perform a group-by-group com-
parison with appropriate statistical hypotheses tests which are explained in
detail in Section 5.3; (4) generate table/plot information in order to include
this information in this article. In order to reproduce the analysis results, some
R library package dependencies have to be installed21.

18See https://www.libreoffice.org for version 6.1.4.2.
19See https://www.r-project.org for version 3.5.2.
20See analyze.r at [40].
21See install.r at [40].

16

https://www.libreoffice.org
https://www.r-project.org

5.1. Data-Set Preparation

The raw data22 collected during the experiment execution phase (see Section
4) was prepared23 in the following manner: (1) the obtained LibreOffice ODS
file [65] was exported to a Comma-Seperated Values (CSV) file [66]; (2) the CSV
file was imported for further processing; (3) type castings of several data rows
were performed; (4) overall correctness C of all task correctness values C1, C2,

and C3 is obtained by the following formula C =
∑n=3

1
Cn∗n

6 , which means that
we weighted the first task correctness C1 with 1

6 , the second task correctness C2

with 2
6 , and the third task correctness C3 with 3

6 of the overall task correctness
C to represent a complexity gain in understanding the given ASM specifications.
Every task correctness Cn where n = 1, 2, 3 is determined by accumulating the
percentage of the correct answers of the sub-tasks 1), 2), and 3) which were
explained in Section 3.424; (5) and stored as an R Data-Set (RDS) file [67] for
further processing and analysis.

5.2. Descriptive Statistics

The participants’ experience and characteristics (background information)
are captured in the experiment by: age (see Figure 2a), gender, course, and
level of education, programming experience (see Figure 2b), modeling experi-
ence, software (SW) and hardware (HW) industry experience (see Figure 2c),
and programming and specification languages used25. Overall, the random dis-
tribution of the participants to the experiment groups is almost balanced.

The participants’ programming experience (see Figure 2b) refers to the
amount of years using one or multiple programming languages either in an
industrial work context or an educational work environment or both.

Table 1 contains the number of observations, central tendency measures, and
dispersion measures per language construct for the dependent variable Correct-
ness26 and this acquired data is visualized as a kernel density plot in Figure 3a
and a box plot in Figure 3b. In the box plot we can observe that for the Inter-
faces group the median and its quantiles are above those of the other groups.
There is one outlier in the Mixins group. Note that the Traits group has almost
a similar median to the Interfaces group and that this distribution is strongly
right skewed. According to the kernel density plot, the data does not appear to
be normally distributed, and all three distributions look different, which implies
unequal variances. The Interfaces has its peak at 0.55 and Mixins has its peak
at 0.45. In contrast to the two other groups, the Traits groups has two peaks,
one at about 0.215 and the other one at about 0.525.

22The data-set is published in the long term open data archive Zenodo [40] together with
all documents and R scripts.

23See prepare.r at [40].
24For detailed formula, see prepare.r Line 235-340 at [40].
25See appendix.pdf at [40] for supplementary background information.
26Unit is correctness rate between 0.0 and 1.0 (denoted [1]).

17

21 23 25 27 29 31 33 35 37

F
re

q
u

en
cy

0

4

8

12 Age [a]

Interfaces
Mixins
Traits

(a) Participants’ Age

1 3 5 7 9 11 13 15

F
re

q
u

en
cy

0

4

8

12 Exp. Prog. [a]

Interfaces
Mixins
Traits

(b) Participants’ Programming Experience

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5

F
re

q
u

en
cy

0
5

10
15
20
25

Exp. SW+HW [a]

Interfaces
Mixins
Traits

(c) Participants’ SW/HW Industry Experience

Figure 2: Histograms per Group of Participants’ Background Information

Table 2 contains the number of observations, central tendency measures, and
dispersion measures per language construct for the dependent variable Dura-
tion27 and this acquired data is visualized as a kernel density plot in Figure 4a
and a box plot in Figure 4b. In the box plot we can observe that for the Traits
group has the lowest median compared to the other groups, but the quantiles
of the Traits group are similar to the Interfaces group in contrast to the Mixins
group. According to the kernel density plot, the data does not appear to be
normally distributed, and all three distributions look different, which implies
unequal variances. The Traits group has its peak at 2500 seconds and the Mix-
ins group has its peak at 2750 seconds. In contrast to the two other groups, the
Interfaces group has two peaks, one very flat one at about 2250 seconds and
another much bigger one at about 3125 seconds.

5.3. Hypothesis Testing

Due to the presence of three experiment groups and two dependent variables,
the Multivariate Analysis of Variance (MANOVA) [68] would be a suitable sta-
tistical procedure, but necessary assumptions must be met to apply this method.

27Unit is duration in seconds (denoted [s]).

18

Table 1: Descriptive Statistics per Group of Dependent Variable Correctness

Interfaces Mixins Traits

Observations [1] 36 34 35

Mean [1] 0.5294 0.4574 0.4598
Standard deviation [1] 0.1110 0.1147 0.1533

Median [1] 0.5448 0.4707 0.5231
Median abs. deviation [1] 0.0869 0.0950 0.1030

Minimum [1] 0.2639 0.1528 0.1204
Maximum [1] 0.7083 0.6759 0.6528

Skew [1] -0.6132 -0.4984 -0.7713
Kurtosis [1] -0.1797 0.2185 -0.6515

Shapiro-Wilk Test p [1] 0.0685 0.3822 0.0017

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

D
en

si
ty

Correctness [1]

Interfaces
Mixins
Traits

(a) Kernel Density Plot of Correctness

0.0 0.2 0.4 0.6 0.8 1.0

G
ro

u
p
s

Correctness [1]

Interfaces
Mixins
Traits

(b) Box Plot of Correctness

0.0 0.4 0.8

-2

-1

0

1

2

T
h

eo
re

ti
ca

l
Q

u
an

ti
le

s

Sample Quantiles

Interfaces

0.0 0.4 0.8

Mixins

0.0 0.4 0.8

Traits

(c) Normal Q-Q Plot of Correctness

Figure 3: Descriptive Plots per Group of the Dependent Variable Correctness

The investigation of the kernel density plots – Figure 3a for Correctness and
Figure 4a for Duration – indicates that not all distributions of the experiment
groups are normally distributed, which the MANOVA would need in order to be
applied. We applied the Shapiro-Wilk normality test [69] (last row in Table 1

19

Table 2: Descriptive Statistics per Group of Dependent Variable Duration

Interfaces Mixins Traits

Observations [1] 35 33 34

Mean [s] 2833.00 2753.33 2856.97
Standard deviation [s] 718.33 702.84 815.27

Median [s] 3001.00 2723.00 2636.00
Median abs. deviation [s] 762.06 612.31 728.70

Minimum [s] 1244.00 1011.00 1312.00
Maximum [s] 4102.00 4256.00 4838.00

Skew [1] -0.3657 -0.0757 0.5375
Kurtosis [1] -0.7073 -0.0528 -0.1457

Shapiro-Wilk Test p [1] 0.4215 0.9737 0.4259

0 1000 2000 3000 4000 5000

0e+00
1e-04
2e-04
3e-04
4e-04
5e-04
6e-04

D
en

si
ty

Time [s]

Interfaces
Mixins
Traits

(a) Kernel Density Plot of Duration

0 1000 2000 3000 4000 5000

G
ro

u
p
s

Time [s]

Interfaces
Mixins
Traits

(b) Box Plot of Duration

0 2000 4000

-2

-1

0

1

2

T
h

eo
re

ti
ca

l
Q

u
an

ti
le

s

Sample Quantiles

Interfaces

0 2000 4000

Mixins

0 2000 4000

Traits

(c) Normal Q-Q Plot of Duration

Figure 4: Descriptive Plots per Group of the Dependent Variable Duration

and Table 2) and only the Traits group for the dependent variable Correctness
shows a significant (p ≤ 0.05) difference to the normal distribution, which would
make MANOVA not suitable to be applied to Correctness. To finally conclude
that the MANOVA method cannot be applied, we visually inspected the nor-

20

Table 3: Hypothesis Tests per Group Combination of the Dependent Variable Correctness

Interfaces Interfaces Mixins
vs. Mixins vs. Traits vs. Traits

Cliff’s δ -0.4003 -0.2667 0.1361
sδ 0.1294 0.1317 0.1434
vδ 0.0168 0.0173 0.0206
zδ -3.0931 -2.0254 0.9492

CIlow -0.6212 -0.5023 -0.1496
CIhigh -0.1205 0.0059 0.4009

P (X > Y) 0.6985 0.6294 0.4252
P (X = Y) 0.0033 0.0079 0.0134
P (X < Y) 0.2982 0.3627 0.5613

p 0.0029 0.0467 0.3460
pFDR 0.0172 0.1401 0.6668

Wilcoxon Test W 857 798 514
(two-tail, 6=) pW 0.0041 0.0540 0.3338

pWFDR 0.0246 0.1620 0.6647

mal Q-Q plots for both dependent variables, which are depicted in Figure 3c for
Correctness and Figure 4c for Duration. All distribution plots indicate that
the linearity assumption is not met and the power of the test might be affected.
Thus we ruled out multivariate and parametric testing because it could lead to
unreliable results. Instead, we selected a non-parametric testing method.

When we considered our acquired data, according to Kitchenham et al. [59],
we cannot use the Kruskal-Wallis test [70] because it is strongly affected by
unequal variances. Therefore, we select a robust non-parametric test called
Cliff’s δ [71]. This testing method is unaffected by non-normal data, change in
distribution, and (possible) unstable variance.

The results of the Cliff’s δ test is shown in Table 3 for the dependent variable
Correctness and in Table 4 for the dependent variable Duration. Due to the
fact that we applied this hypothesis test six times, we are required to lower the
significance level in order to avoid Type I errors, which is about not detecting
an effect that is not present.

A suitable approach would be to apply the Bonferroni correction [72], which
suggests to lower the current significance level α = 0.05 divided by the times
a certain test was applied (n = 6), which would result into α′ = α

n = 0.05
6 =

0.0083̇. Unfortunately, this significance level correction is known to increase
Type II errors, which is about not detecting an effect that is present. Therefore,
we choose a more robust correction method which does not increase Type II
errors, namely the False Discovery Rate (FDR) adjusted p-values [73].

According to the FDR adjusted p-values (pFDR) in Table 3 and Table 4,
there is evidence not to reject some null hypotheses of this study (see Section
3.5). Since Cliff’s δ test is closely related to the Wilcoxon rank sum test [74]
(also know as Mann-Whitney test [75]), we performed a two-tailed (pW) sample
Wilcoxon test for all language construct (group) combinations to determine
the possibility of misinterpretations of the used Cliff’s δ test. The results are

21

Table 4: Hypothesis Tests per Group Combination of the Dependent Variable Duration

Interfaces Interfaces Mixins
vs. Mixins vs. Traits vs. Traits

Cliff’s δ -0.1091 -0.0286 0.0285
sδ 0.1418 0.1416 0.1431
vδ 0.0201 0.0201 0.0205
zδ -0.7692 -0.2017 0.1993

CIlow -0.3734 -0.2985 -0.2484
CIhigh 0.1716 0.2456 0.3011

P (X > Y) 0.5541 0.5143 0.4857
P (X = Y) 0.0009 0.0000 0.0000
P (X < Y) 0.4450 0.4857 0.5143

p 0.4445 0.8407 0.8426
pFDR 0.6668 0.8426 0.8426

Wilcoxon Test W 640.5 612 545
(two-tail, 6=) pW 0.4431 0.8430 0.8459

pWFDR 0.6647 0.8459 0.8459

presented at the bottom of Table 3 and Table 4 along with the appropriate FDR
adjusted p-value pWFDR

.
Only for the Correctness of Interfaces vs. Mixins we found evidence of a

better understanding of answering structural, behavioral, and operational ques-
tions about given ASM specifications.

The test results on Correctness are significant for the comparison of the
language constructs Interfaces and Mixins. This would suggest to reject H0,1

and to accept HA,1. Nevertheless, the hypothesis test results on the dependent
variable Duration are not significant which would indicate not to reject H0,1.
For the inferential statistical test results on Correctness and Duration we can
observe that those dependent variables do not show any significant difference for
the comparison of Mixins vs. Traits as well as for the comparison of Interfaces
vs. Traits, which suggests not to reject the null hypotheses H0,2 and H0,3.
Therefore, both alternative hypotheses HA,2 and HA,3 cannot be accepted in
this controlled experiment.

6. Discussion

The descriptive statistics are not in favor of any language construct in the
overall comparison. By looking only at the Correctness, Interfaces and Traits
seem to perform better than Mixins.

The median of the Correctness variable is for language construct Inter-
faces 54%, Mixins 47%, and Traits 52%, which can be considered rather low
in an overall participants’ correctness performance. Due to the fact that all
participants have no prior knowledge of ASMs and formal methods in general
(checked by an informational question in the survey), a median for the cor-
rectness between 47% to 54% can be considered a rather good result in this
study. For the Duration descriptive statistical results, Traits and Mixins seem

22

Table 5: Correlation per Group of the Depended Variables Correctness to Duration

Interfaces Mixins Traits

Spearman’s ρ 0.1720 -0.1277 0.1428
p 0.3231 0.4788 0.4204
S 5911.7954 6748.2555 5610.2857

0 2000 4000

0.0

0.2

0.4

0.6

0.8

1.0

dataB[[i]]

d
at

aA
[[

i]
] Interfaces

C
or

re
ct

n
es

s
[1

]

Time [s]

0 2000 4000

0.0

0.2

0.4

0.6

0.8

1.0

dataB[[i]]

d
at

aA
[[

i]
] Mixins

0 2000 4000

0.0

0.2

0.4

0.6

0.8

1.0

dataB[[i]]

d
a
ta

A
[[

i]
] Traits

Figure 5: Scatter Plot per Group of the Dependent Variables Correctness to Duration

to perform better than Interfaces. The median of the Duration variable is for
language construct Interfaces 3001s (50min 1s), Mixins 2723s (45min 23s), and
Traits 2636 (43min 56s), which are good results in the scope of the processed
survey and the achieved Correctness results with a limited experiment time
of 105min (1h 45min). Note that the highest participant duration was 4838s
(1h 20min 38s).

In the inferential statistics Interfaces show a significantly better understand-
ing than Mixins in terms of Correctness. If we compare all language con-
structs, there is no real difference in terms of understanding for the inferential
statistics. This implies that for the ASM language user (novice and moderately
advanced software architect, designer, or developer) it does not matter, which
language construct is used.

By looking at the scatter plot (Figure 5) and correlation (Table 5) of the two
dependent variables Correctness and Duration, we cannot observe a linear
trend that the dependent variables are correlated since in all language constructs
the significance p-value is greater than the significance level of α < 0.5. The
kernel density plots for the participants’ self assessment is depicted in Figure
6. The self assessment was measured by calculating the difference between the
actual Correctness value and the participants Confidence value that a cer-
tain task was correct. A self assessment value ≤ 0 means overestimated and ≥ 0
means underestimated the Correctness of the given experiment answers. All
three groups show a similar self assessment with its peak in the underestimated
section. This implies that all three language constructs show a similar partici-
pants’ self assessment regarding their Confidence in the Correctness of their
given solutions.

23

-1.0 -0.5 0.0 0.5 1.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0

D
en

si
ty

Self. Assess. [a]

Interfaces
Mixins
Traits

Figure 6: Kernel Density Plot per Group of Participants’ Self Assessment

6.1. Threats to Internal Validity

During the experiment, we did not observe any disturbing environmental
events or history effects. Due to the total (limited) time of 105 minutes of the
experiment, the chances for maturation effects and experimental fatigue were
limited, and we did not observe such. Furthermore, due to the randomized
design of the experiment every participant is only tested once with one assigned
treatment – interfaces, mixins, or traits – to carry out the experiment for the
provided tasks. Therefore, learning effects can be ruled out. Every participant
was able to score the same amount of points and we graded all groups with the
same procedures. This rules out instrumental bias.

Selection bias was limited due to the random assignment of participants to
groups. We cannot rule out cross-contamination between the groups as a po-
tential threat to internal validity because the participants are computer science
students and share the same social group and interact outside of the research
process as well. We have not observed any demoralization or compensatory
rivalry. All participants are graded based on their correctness value in the pro-
cessed survey by gaining points for their enrolled course (but had an opt out
option, as explained in Section 3.3).

6.2. Threats to External Validity

A possible threat to external validity is that we carried out the experiment
with students as participants because this limits the ability to make generaliza-
tions. As only one participant has prior knowledge in Rust and Scala language,
only further seven participants have prior knowledge in Scala, but all partici-
pants know Java, a higher familiarity with Interfaces than with the other two
tested language constructs can be assumed in our participants. Nonetheless, in
our study results, the understandability of Traits is almost equal to the under-
standability of Interfaces, which might be surprising. Further study is needed
to investigate if the relation between the two language constructs – Interfaces
and Traits – is different for developers highly familiar with Traits.

In addition to the types of the participants in this experiment (students as
novice and moderately advanced software architect, designer, or developer), it
would be useful to repeat the experiment with broader and more experienced
test groups like professionals in different fields ranging from high-level software

24

design to low-level hardware specifications. Furthermore, the selected experi-
ment tasks are limited to basic software patterns for distributed systems.

In order to reduce the risk that participants are biased to identify the used
language construct in the experiment, we use the syntax keyword feature for
all three language constructs under investigation and not the well known ab-
straction keywords interface, mixin, or trait with are highly familiar to
participants in modern programming languages.

6.3. Threats to Construct Validity

We focus in this study on the understandability of language constructs for an
ASM language. The understandability is measured by two dependent variables
namely correctness and duration. These two dependent variables are commonly
used to measure the construct understandability (cf. Hoisl et al. [64], Czepa
and Zdun [51]), but it cannot be ruled out that other constructs would be a
better measure for understandability.

Berger et al. [76] for example uses the concept of efficiency in their controlled
experiment. The construct efficiency measures the ratio of correct answers to
time. In this case the amount of time represents only the time it takes after re-
ceiving the stimuli to answer certain questions. Since we allow in this controlled
experiment the participant to reread the stimuli if needed multiple times during
the processing of the questions, the amount of time includes, besides the actual
time to answering questions, the time of comprehending the task stimuli, which
compromises to reason about efficiency. In another study [54] we established by
the controlled experiment design that the participants track the timings (dura-
tion) of comprehending and answering separately which allows to reason about
efficiency.

6.4. Threats to Content Validity

In this study, we only focus on three language constructs – interfaces, mixins,
and traits. The understandability is tested for three ASM syntax variations, not
commonly existing in today’s languages and tools, which use one of the language
constructs. Testing more complex scenarios (more structures and language con-
structs) would improve the content validity.

6.5. Threats to Conclusion Validity

Due to some missing timestamps for the dependent variable duration and
missing answers for the dependent variable correctness we cannot rule out that
statistic validity might be affected. Still, those outliers are important measure-
ments because they reflect that for a certain group of the participants the given
ASM specifications in a certain language construct are too complex or not un-
derstood at all. Deleting those would compromise the conclusion validity. To
improve the conclusion validity, we selected a test with great statistical power
which fits the best explored model assumptions of all statistical tests suitable
for the collected data set.

25

6.6. Inferences

Based on the evidence found in this research, a possible use of either In-
terfaces and Traits in ASM language designs should provide a similar under-
standability. As Mixins perform significantly worse for the dependent variable
Correctness than Interfaces, they should be used with more caution and might
perform worse in some respects than the other two language constructs. Re-
garding the dependent variable Duration, it seems that for all the different
kinds of textual language construct representations the participants need a sim-
ilar duration to process the surveys and without further studies no generalized
claim can be drawn from the gathered results.

6.7. Relevance to Practice

State-of-the-art abstractions are key for acceptance of formal methods in
practice. So far many formal specification languages lack in their support for
other advanced language constructs, such as Interfaces, Mixins, and Traits. As
there were no empirical studies on their use in formal specification languages,
little was known before this study on how they compare relative to each in the
formal methods context.

The findings in this study are first indicators for language engineers [77] in
practice to choose, specify, and implement new language constructs in existing
or newly developed programming/specification languages in order to achieve a
more understandable language syntax for the language user.

Many formalisms, including ASMs, have been implemented in different pro-
gramming and/or specification languages. Our empirical results can help lan-
guage users of these formalisms to choose one of those languages using the avail-
able language constructs in the language syntax as a decision criterion (among
others) and/or by considering the extensibility of the language options with
regard to language constructs.

Due to the fact that the understandability of formal methods has not been
empirically investigated to a larger extend so far, these results and future studies
can contribute to an increased usage of formal methods in practice. Moreover,
the explained method can be used in communities of practice, e.g. by conducting
online experiments. The feedback of language users is a valuable source for
language extensions and further development.

7. Conclusion

This article reports on a controlled experiment with 105 participants on
the understandability of language constructs tested for the applicability in the
context of an ASM-based modeling language as a representative for other ASM-
based languages and other state-based formal methods.

The focus of the study is the understanding of structural and behavioral
properties of given ASM specifications modeled in three CASM language syntax
extensions, which are not yet part of CASM or any other ASM-based language,
namely Interfaces, Mixins, and Traits.

26

According to the descriptive and inferential statistics, Interfaces and Traits
can be used interchangeably with regard to their expectations in terms of un-
derstandability, whereas Mixins should be used with caution, as they show sig-
nificantly worse understanding in comparison with Interfaces for the dependent
variable Correctness. As Mixins show no significant difference in terms of
Duration compared to Interfaces and for both dependent variables compared
to Traits, more research is needed to understand the reasons why they perform
worse with regard to only one dependent variable.

This study is a first step towards establishing an understandable ASM lan-
guage design with regard to language constructs for structuring behavioral spec-
ifications. The outcomes can be used by language designers and compiler engi-
neers to define a suitable language construct in an ASM language like CASM.
They indicate that at least some of the heated debates on language constructs
can be neglected and the best suited abstraction in the context of other language
design concerns like language consistency can be chosen. It would be interest-
ing to study further if our results can be transferred to other state-based formal
methods and maybe even to abstractions in object-oriented languages.

Acknowledgements

We would like to thank all students who participated in this empirical study
of the DSE and ASE course in the summer term 2018. Furthermore, we want
to thank Christoph Czepa for the information and help with the statistical
procedures and Emmanuel Pescosta for the discussions about object-oriented
language abstractions.

References

[1] Y. Gurevich, Evolving Algebras 1993: Lipari Guide - Specification and
Validation Methods, Oxford University Press, Inc., New York, NY, USA,
1995, pp. 9–36.

[2] E. Börger, R. Stärk, Abstract State Machines: A Method for High-Level
System Design and Analysis, Springer Science & Business Media, 2003.

[3] A. Raschke, D. Méry, F. Houdek, Rigorous State-Based Methods, in: Pro-
ceedings of 7th International Conference, ABZ 2020, Ulm, Germany, May
27–29, 2020, Springer, 2020, p. 8.

[4] R. F. Stärk, J. Schmid, E. Börger, Java and the Java Virtual Machine:
Definition, Verification, Validation, Springer Berlin Heidelberg, 2001.

[5] H. Sasaki, A Formal Semantics for Verilog-VHDL Simulation Interoper-
ability by Abstract State Machine, in: Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’99, ACM, New York, NY,
USA, 1999.

27

[6] R. Lezuo, Scalable Translation Validation; Tools, Techniques and Frame-
work, Ph.D. thesis, wien, Techn. Univ., Diss. (2014).

[7] M. Barnett, W. Schulte, Spying on Components: A Runtime Verification
Technique, in: Proceedings of the Workshop on Specification and Verifica-
tion of Component-Based Systems, SAVCBS’01, 2001, pp. 7–13.

[8] U. Glässer, M. Veanes, Universal Plug and Play Machine Models, in: Design
and Analysis of Distributed Embedded Systems, Springer, 2002, pp. 21–30.

[9] J. K. Huggins, D. V. Campenhout, Specification and verification of pipelin-
ing in the arm2 risc microprocessor, ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES) 3 (4) (1998) 563–580.

[10] E. Börger, A. Raschke, Modeling Companion for Software Practitioners,
Springer, 2018.

[11] A. Gargantini, E. Riccobene, P. Scandurra, A metamodel-based language
and a simulation engine for abstract state machines, Journal of Universal
Computer Science 14 (12) (2008) 1949–1983.

[12] R. Farahbod, V. Gervasi, U. Glässer, CoreASM: An Extensible ASM Exe-
cution Engine, Fundamenta Informaticae 77 (1-2) (2007) 71–104.

[13] Y. Gurevich, B. Rossman, W. Schulte, Semantic Essence of AsmL, in:
Formal Methods for Components and Objects, Springer, 2004, pp. 240–
259.

[14] R. Lezuo, G. Barany, A. Krall, CASM: Implementing an Abstract State
Machine based Programming Language, in: Software Engineering (Work-
shops), 2013, pp. 75–90.

[15] J. Schmid, Introduction to AsmGofer, http://www.tydo.de/AsmGofer

(2001).

[16] M. Anlauff, XASM – An Extensible, Component-based Abstract State Ma-
chines Language, in: Abstract State Machines-Theory and Applications,
Springer, 2000, pp. 69–90.

[17] D. Jackson, Alloy: a lightweight object modelling notation, ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 11 (2) (2002)
256–290.

[18] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, L. Voisin,
Rodin: an open toolset for modelling and reasoning in event-b, Interna-
tional journal on software tools for technology transfer 12 (6) (2010) 447–
466.

[19] L. Lamport, The temporal logic of actions, ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 16 (3) (1994) 872–923.

28

http://www.tydo.de/AsmGofer

[20] D. Bjørner, The vienna development method (vdm), in: Mathematical
Studies of Information Processing, Springer, 1979, pp. 326–359.

[21] B. Potter, D. Till, J. Sinclair, An introduction to formal specification and
Z, Prentice Hall PTR, 1996.

[22] M. Mernik, X. Wu, B. Bryant, Object-Oriented Language Specifications:
Current Status and Future Trends, in: ECOOP Workshop: Evolution and
Reuse of Language Specifications for DSLs (ERLS), 2004.

[23] M. Mernik, M. Lenic, E. Avdicausevic, V. Zumer, A Reusable Object-
Oriented Approach to Formal Specifications of Programming Languages,
in: L’Objet, 1998, 4(3), pp. 273–306.

[24] E. Börger, Why programming must be supported by modeling and how, in:
International Symposium on Leveraging Applications of Formal Methods,
Springer, 2018, pp. 89–110.

[25] P. S. Canning, W. R. Cook, W. L. Hill, W. G. Olthoff, Interfaces for
strongly-typed object-oriented programming, in: Conference Proceedings
on Object-oriented Programming Systems, Languages and Applications,
OOPSLA ’89, ACM, New York, NY, USA, 1989, pp. 457–467. doi:

10.1145/74877.74924.
URL http://doi.acm.org/10.1145/74877.74924

[26] M. Flatt, S. Krishnamurthi, M. Felleisen, Classes and mixins, in: Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’98, ACM, New York, NY, USA, 1998,
pp. 171–183. doi:10.1145/268946.268961.
URL http://doi.acm.org/10.1145/268946.268961

[27] N. Schärli, S. Ducasse, O. Nierstrasz, A. P. Black, Traits: Composable units
of behaviour, in: European Conference on Object-Oriented Programming,
Springer, 2003, pp. 248–274.

[28] B. Meyer, Applying’design by contract’, Computer 25 (10) (1992) 40–51.

[29] G. Bracha, W. Cook, Mixin-based inheritance, ACM Sigplan Notices
25 (10) (1990) 303–311.

[30] M. Odersky, L. Spoon, B. Venners, Programming in Scala, Artima Inc,
2008.

[31] A. Potts, D. H. Friedel, Java programming language handbook, Coriolis
Group Books, 2018.

[32] N. D. Matsakis, F. S. Klock II, The rust language, in: ACM SIGAda Ada
Letters, Vol. 34, ACM, 2014, pp. 103–104.

29

http://doi.acm.org/10.1145/74877.74924
http://doi.acm.org/10.1145/74877.74924
https://doi.org/10.1145/74877.74924
https://doi.org/10.1145/74877.74924
http://doi.acm.org/10.1145/74877.74924
http://doi.acm.org/10.1145/268946.268961
https://doi.org/10.1145/268946.268961
http://doi.acm.org/10.1145/268946.268961

[33] R. Lezuo, P. Paulweber, A. Krall, CASM - Optimized Compilation of Ab-
stract State Machines, in: SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES), ACM, 2014, pp.
13–22.

[34] P. Paulweber, U. Zdun, A Model-Based Transformation Approach to Reuse
and Retarget CASM Specifications, in: Abstract State Machines, Alloy, B,
TLA, VDM, and Z - 5th International Conference, ABZ 2016, Lecture
Notes in Computer Science 9675, Springer, 2016, pp. 250–255.

[35] P. Paulweber, E. Pescosta, U. Zdun, CASM-IR: Uniform ASM-Based In-
termediate Representation for Model Specification, Execution, and Trans-
formation, in: Abstract State Machines, Alloy, B, TLA, VDM, and Z - 6th
International Conference, ABZ 2018, Lecture Notes in Computer Science
10817, Springer, 2018, pp. 39–54.

[36] R. Van Solingen, V. Basili, G. Caldiera, H. D. Rombach, Goal Question
Metric (GQM) Approach, Encyclopedia of software engineering (2002).

[37] Y. Gurevich, N. Tillmann, Partial Updates: Exploration, Journal of Uni-
versal Computer Science 7 (11) (2001) 917–951.

[38] Y. Gurevich, Sequential Abstract-State Machines Capture Sequential Algo-
rithms, ACM Transactions on Computational Logic (TOCL) 1 (1) (2000)
77–111.

[39] B. Liskov, S. Zilles, Programming with abstract data types, in: Proceedings
of the ACM SIGPLAN Symposium on Very High Level Languages, ACM,
New York, NY, USA, 1974, pp. 50–59. doi:10.1145/800233.807045.
URL http://doi.acm.org/10.1145/800233.807045

[40] P. Paulweber, G. Simhandl, U. Zdun, On the Understandability of Lan-
guage Constructs to Structure the State and Behavior in Abstract State
Machine Specifications: A Controlled Experiment (Jan. 2021). doi:

10.5281/zenodo.4480316.
URL https://doi.org/10.5281/zenodo.4480316

[41] D. A. Moon, Object-oriented programming with flavors, in: Conference
Proceedings on Object-oriented Programming Systems, Languages and
Applications, OOPSLA ’86, ACM, New York, NY, USA, 1986, pp. 1–8.
doi:10.1145/28697.28698.
URL http://doi.acm.org/10.1145/28697.28698

[42] E. R. Murphy-Hill, P. J. Quitslund, A. P. Black, Removing duplication
from java.io: A case study using traits, in: Companion to the 20th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’05, ACM, New York, NY, USA,
2005, pp. 282–291. doi:10.1145/1094855.1094963.
URL http://doi.acm.org/10.1145/1094855.1094963

30

http://doi.acm.org/10.1145/800233.807045
https://doi.org/10.1145/800233.807045
http://doi.acm.org/10.1145/800233.807045
https://doi.org/10.5281/zenodo.4480316
https://doi.org/10.5281/zenodo.4480316
https://doi.org/10.5281/zenodo.4480316
https://doi.org/10.5281/zenodo.4480316
https://doi.org/10.5281/zenodo.4480316
https://doi.org/10.5281/zenodo.4480316
http://doi.acm.org/10.1145/28697.28698
https://doi.org/10.1145/28697.28698
http://doi.acm.org/10.1145/28697.28698
http://doi.acm.org/10.1145/1094855.1094963
http://doi.acm.org/10.1145/1094855.1094963
https://doi.org/10.1145/1094855.1094963
http://doi.acm.org/10.1145/1094855.1094963

[43] S. Apel, D. Batory, When to use features and aspects?: A case study, in:
Proceedings of the 5th International Conference on Generative Program-
ming and Component Engineering, GPCE ’06, ACM, New York, NY, USA,
2006, pp. 59–68. doi:10.1145/1173706.1173716.
URL http://doi.acm.org/10.1145/1173706.1173716

[44] D. Batory, C. Johnson, B. MacDonald, D. von Heeder, Achieving extensi-
bility through product-lines and domain-specific languages: A case study,
ACM Trans. Softw. Eng. Methodol. 11 (2) (2002) 191–214.

[45] E. M. Clarke, J. M. Wing, Formal methods: State of the art and future
directions, ACM Comput. Surv. 28 (4) (1996) 626–643. doi:10.1145/

242223.242257.
URL http://doi.acm.org/10.1145/242223.242257

[46] L. De Alfaro, T. A. Henzinger, Interface theories for component-based de-
sign, in: International Workshop on Embedded Software, Springer, 2001,
pp. 148–165.

[47] Y. Cheon, G. Leavens, M. Sitaraman, S. Edwards, Model variables: Cleanly
supporting abstraction in design by contract, Software: Practice and Ex-
perience 35 (6) (2005) 583–599.

[48] F. Oquendo, π-adl: an architecture description language based on the
higher-order typed π-calculus for specifying dynamic and mobile software
architectures, ACM SIGSOFT Software Engineering Notes 29 (3) (2004)
1–14.

[49] D. Garlan, Formal modeling and analysis of software architecture: Com-
ponents, connectors, and events, in: International School on Formal Meth-
ods for the Design of Computer, Communication and Software Systems,
Springer, 2003, pp. 1–24.

[50] A. E. K. Sobel, M. R. Clarkson, Formal methods application: An empirical
tale of software development, IEEE Transactions on Software Engineering
28 (3) (2002) 308–320.

[51] C. Czepa, U. Zdun, On the understandability of temporal properties for-
malized in linear temporal logic, property specification patterns and event
processing language, IEEE Transactions on Software Engineering (2018).

[52] C. Czepa, H. Tran, U. Zdun, T. T. T. Kim, E. Weiss, C. Ruhsam, On
the understandability of semantic constraints for behavioral software ar-
chitecture compliance: A controlled experiment, in: Software Architecture
(ICSA), 2017 IEEE International Conference on, IEEE, 2017, pp. 155–164.

[53] F. Ferrarotti, M. Moser, J. Pichler, Stepwise Abstraction of High-Level
System Specifications from Source Code, Journal of Computer Languages
60 (2020) 100996.

31

http://doi.acm.org/10.1145/1173706.1173716
https://doi.org/10.1145/1173706.1173716
http://doi.acm.org/10.1145/1173706.1173716
http://doi.acm.org/10.1145/242223.242257
http://doi.acm.org/10.1145/242223.242257
https://doi.org/10.1145/242223.242257
https://doi.org/10.1145/242223.242257
http://doi.acm.org/10.1145/242223.242257

[54] P. Paulweber, G. Simhandl, U. Zdun, Specifying with Interface and Trait
Abstractions in Abstract State Machines: A Controlled Experiment, sub-
mitted paper to TOSEM (under minor revision).

[55] A. Jedlitschka, M. Ciolkowski, D. Pfahl, Reporting Experiments in Soft-
ware Engineering, in: Guide to advanced empirical software engineering,
Springer, 2008, pp. 201–228.

[56] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, J. Rosenberg, Preliminary guidelines for empirical
research in software engineering, IEEE Transactions on software engineer-
ing 28 (8) (2002) 721–734.

[57] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering, Springer Science & Business Me-
dia, 2012.

[58] N. Juristo, A. M. Moreno, Basics of software engineering experimentation,
Springer Science & Business Media, 2013.

[59] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton, S. Char-
ters, S. Gibbs, A. Pohthong, Robust Statistical Methods for Empirical Soft-
ware Engineering, Empirical Software Engineering 22 (2) (2017) 579–630.

[60] M. Fowler, Domain-Specific Languages, Pearson Education, 2010.

[61] S. Beydeda, M. Book, V. Gruhn, et al., Model-Driven Software Develop-
ment, Vol. 15, Springer, 2005.

[62] M. Svahnberg, A. Aurum, C. Wohlin, Using students as subjects-an em-
pirical evaluation, in: Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement, ACM,
2008, pp. 288–290.

[63] I. Salman, A. T. Misirli, N. Juristo, Are students representatives of pro-
fessionals in software engineering experiments?, in: Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, Vol. 1,
IEEE, 2015, pp. 666–676.

[64] B. Hoisl, S. Sobernig, M. Strembeck, Comparing three notations for defin-
ing scenario-based model tests: A controlled experiment, in: Quality of
Information and Communications Technology (QUATIC), 2014 9th Inter-
national Conference on the, IEEE, 2014, pp. 180–189.

[65] J. J. Parsons, Practical Open Source Office: LibreOffice(TM) and Apache
OpenOffice, 2nd Edition, Course Technology Press, Boston, MA, United
States, 2012.

[66] Y. Shafranovich, Common Format and MIME Type for Comma-Separated
Values (CSV) Files, RFC 4180, Y. Shafranovich (Oktober 2005).
URL http://tools.ietf.org/html/rfc4180

32

http://tools.ietf.org/html/rfc4180
http://tools.ietf.org/html/rfc4180
http://tools.ietf.org/html/rfc4180

[67] R Development Core Team, R: A Language and Environment for Statisti-
cal Computing, R Foundation for Statistical Computing, Vienna, Austria,
ISBN 3-900051-07-0 (2008).
URL http://www.r-project.org

[68] F. H. Borgen, M. J. Seling, Uses of discriminant analysis following manova:
Multivariate statistics for multivariate purposes., Journal of Applied Psy-
chology 63 (6) (1978) 689.

[69] S. S. Shapiro, M. B. Wilk, An analysis of variance test for normality (com-
plete samples), Biometrika 52 (3/4) (1965) 591–611.

[70] W. H. Kruskal, W. A. Wallis, Use of ranks in one-criterion variance analysis,
Journal of the American statistical Association 47 (260) (1952) 583–621.

[71] N. Cliff, Dominance statistics: Ordinal analyses to answer ordinal ques-
tions., Psychological bulletin 114 (3) (1993) 494.

[72] O. J. Dunn, Estimation of the means of dependent variables, The Annals
of Mathematical Statistics (1958) 1095–1111.

[73] Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical
and powerful approach to multiple testing, Journal of the royal statistical
society. Series B (Methodological) (1995) 289–300.

[74] F. Wilcoxon, Individual Comparisons by Ranking Methods, Biometrics
Bulletin 1 (6) (1945) 80–83.
URL http://www.jstor.org/stable/3001968

[75] H. B. Mann, D. R. Whitney, On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other, The annals of mathe-
matical statistics (1947) 50–60.

[76] T. Berger, M. Völter, H. P. Jensen, T. Dangprasert, J. Siegmund, Efficiency
of Projectional Editing: A Controlled Experiment, in: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2016, pp. 763–774.

[77] A. G. Kleppe, Software Language Engineering: Creating Domain-Specific
Languages using Metamodels, Addisson-Wesley, 2009.

33

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/3001968

	Introduction
	Problem Statement
	Research Objectives, Hypotheses, and Results
	Structure of this Article

	Background
	Abstract State Machines
	ASM Language Representative
	Experiment Language Construct Representations
	Related Studies

	Experiment Planning
	Goals
	Context and Design
	Participants
	Material and Tasks
	Variables and Hypotheses

	Experiment Execution
	Preparation
	Procedure
	Deviations

	Analysis
	Data-Set Preparation
	Descriptive Statistics
	Hypothesis Testing

	Discussion
	Threats to Internal Validity
	Threats to External Validity
	Threats to Construct Validity
	Threats to Content Validity
	Threats to Conclusion Validity
	Inferences
	Relevance to Practice

	Conclusion

