
About the Concolic Execution and Symbolic
ASM Function Promotion in CASM

Philipp Paulweber1?, Jakob Moosbrugger??, and Uwe Zdun2

1 Vienna University of Technology, Institute of Information Systems Engineering
Research Unit Compilers and Languages (CompLang)

Argentinierstraße 8, 1040 Vienna, Austria
ppaulweber@complang.tuwien.ac.at

2 University of Vienna, Faculty of Computer Science
Research Group Software Architecture (SWA)

Währingerstraße 29, 1090 Vienna, Austria
uwe.zdun@univie.ac.at

Abstract. Abstract State Machines (ASMs) are a well-known state
based formal method to describe systems at a very high level and can
be executed either through a concrete or symbolic interpretation. By
symbolically executing an ASM specification, certain properties can be
checked by transforming the described ASM into a suitable input for
model checkers or Automated Theorem Provers (ATPs). Due to the
rather fast increasing state space, model checking and ATP solutions
can lead to inefficient implementations of symbolic execution. More ef-
ficient state space and execution performance can be achieved by using
a concolic execution approach. In this paper, we describe an improved
concolic execution implementation for the Corinthian Abstract State Ma-
chine (CASM) language. We outline the transformation of a symbolically
executed ASM specification to a single Thousands of Problems for The-
orem Provers (TPTP) format. Furthermore, we introduce a compiler
analysis to promote concrete ASM functions into symbolic ones in order
to obtain symbolic consistency.

Keywords: Abstract State Machine, Concolic Execution, CASM, TPTP, Z3

1 Introduction

Due to the mathematical foundation of the Abstract State Machine (ASM) the-
ory [1] [2], ASM specifications can be evaluated through either concrete or sym-
bolic interpretation. All available ASM implementations offer a concrete execu-
tion, and some ASM implementations provide a symbolic execution based on
model checking (e.g. Farahbod et al. [3] for CoreASM). Besides the approaches
targeting model checking applications, some ASM implementations transform

? The work in this paper was carried out at the former affiliation2

?? No affiliation

2 Paulweber et al.

1 CASM
2

3 init test
4

5 [symbolic]
6 function x : -> Integer
7

8 [symbolic]
9 function y : -> Integer

10

11 rule test =
12 {
13 if x = 0 then
14 skip
15 else
16 y := 12 / x
17 program(self) := undef
18 }
19

20

21

22

23 // ...

Listing 1.1: Example.casm

1 tff(symbolNext , type , sym2: $int).
2 fof(id0 ,hypothesis ,x(1,sym2)).
3 fof(’Example.casm :13’,hypothesis ,sym2 =0).
4 fof(id1 ,hypothesis ,x(2,sym2)).
5 fof(final0 ,hypothesis ,x(0,sym2)).

Listing 1.2: If-Then-Branch TPTP Trace of
Example.casm by Lezuo [6]

1 tff(symbolNext , type , sym2: $int).
2 fof(id0 ,hypothesis ,x(1,sym2)).
3 fof(’Example.casm :13’,hypothesis ,sym2 !=0).
4 tff(symbolNext , type , sym4: $int).
5 tff(symbolNext , type , sym5: $int).
6 fof(id1 ,hypothesis ,y(1,sym5)).
7 fof(id2 ,hypothesis ,x(2,sym2)).
8 fof(id3 ,hypothesis ,y(2,sym4)).
9 fof(final0 ,hypothesis ,x(0,sym2)).

10 fof(final1 ,hypothesis ,y(0,sym4)).

Listing 1.3: Else-Branch TPTP Trace of
Example.casm by Lezuo [6]

the specifications into Automated Theorem Provers (ATP) problems to check
with off-the-shelve solver tools desired properties (e.g. Arcaini et al. [4] for As-
metaL with SMT solver Yices). A major disadvantage of such techniques is that
for rather small ASM specifications, huge ATP input problems are generated
which result into large states and long evaluation times of the underlying solver.

To overcome this problem, a concolic execution [5] can be used to reduce
the number of symbolic path conditions by performing a mixed concrete and
symbolic interpretation. Branches inside an evaluation are driven by concrete
results and only symbolic states of interest are tracked in the output trace which
directly optimizes the results. Therefore, concolic execution [5] trades complete-
ness for computation speed. So far, only Lezuo [6] described a concolic exe-
cution approach for ASM specifications. Based on a prototype version of the
Corinthian Abstract State Machine (CASM) language3 [7], the described con-
colic execution performed a model-to-text transformation by emitting directly
multiple Thousands of Problems for Theorem Provers (TPTP) [8] traces of the
symbolically executed specification. A downside of Lezuos’ [6] approach is that
for each conditional rule (path condition) the generated TPTP trace gets forked
into an if-then and else part resulting into two TPTP specifications which are
emitted during the symbolic execution of an ASM specification.

Listing 1.1 depicts an example CASM specification consisting of two functions
– x and y – and a named rule test with a block rule, conditional rule, skip
rule, and two update rules. This specification represents the running example
which was used by Lezuo [6] to describe a division-by-zero-free ASM specification
expressed in the latest CASM language syntax. Both functions – x and y –
are set explicitly to symbolic in order to determine a TPTP trace showing
that the function y gets only updated with a non-zero Integer value of function
x. Two TPTP traces are generated by using Lezuos’ [6] implemented (closed
source) symbolic execution. Listing 1.2 depicts the if-then part and the Listing

3 For the CASM syntax description, see: https://casm-lang.org/syntax

https://casm-lang.org/syntax

Concolic Execution and Symbolic ASM Function Promotion in CASM 3

1.3 depicts the else part. Based on this traces, a language user can use an external
ATP solver Z3 [9] or vanHelsing [10] and prove the division-by-zero-free property
for the functions y and x by analyzing each TPTP trace.

We present in this paper an improved version of the concolic execution for
the (open-source) CASM language and implementation. Based on the concolic
execution definition by Lezuo [6], we provide two major improvements in the
current presented implementation state: (1) the concolic execution generates a
single TPTP trace and does not generate forked TPTP traces for each path
condition (see Section 2); and (2) a language user only has to set ASM functions
of interest to symbolic and each ASM function is automatically promoted to
symbolic if there exists a path which updates that ASM function (see Section
3). Furthermore, we do not directly generate TPTP traces through a model-to-
text transformation. We have implemented an abstraction of the TPTP model
and provided an in-memory model-to-model transformation. This design deci-
sion allows us to directly (re)use in the CASM compiler the transformed TPTP
instance either for further analysis, in-memory evaluation, or emitting to a tex-
tual representation in order to use an external solver.

2 CASM Concolic Execution and TPTP Model

CASM is a concrete ASM implementation with a strongly typed inferred spec-
ification language. The concolic execution is implemented as forward symbolic
execution by reusing and extending the Abstract Syntax Tree (AST) based con-
crete execution4. Due to the CASM compiler design [11], the symbolic constant,
calculation, and environment handling is directly implemented on the CASM
Intermediate Representation (IR) level5. Our own TPTP implementation6 sup-
ports in-memory model-to-model transformation based on the SMT/SAT solver
Z3 [9] to invoke a Z3-based evaluation without external tooling.

Since each ASM function can be explicitly selected to be evaluated as sym-
bolic state (annotation syntax), a complete selection of all available ASM func-
tions inside a specification would enable a full symbolic execution of the provided
specification. So far we support all basic ASM rules in the transformation ex-
cept for symbolic iterate rules consisting of symbolic path conditions. Listing
1.4 depicts the same division-by-zero-free running example as shown in Listing
1.1 with one small change. In this listing the function y is not explicitly set to
symbolic, because the function of interest we want to analyze is the function x.
Function y gets implicitly set to symbolic through a novel compiler analysis pass
(see Section 3) in order to provide symbolic consistency for the specified update
to function y where function x is used in the division operation (see Listing 1.4
at Line 16). Listing 1.5 corresponds to the result TPTP trace of the concolic
execution. A first look at this TPTP trace gives the impression that it is longer
than both TPTP traces combined of the previous implementation depicted in

4 For CASM front-end, see: https://github.com/casm-lang/libcasm-fe/pull/206
5 For CASM mid-end, see: https://github.com/casm-lang/libcasm-ir/pull/29
6 For TPTP model, see: https://github.com/casm-lang/libtptp/pull/5

https://github.com/casm-lang/libcasm-fe/pull/206
https://github.com/casm-lang/libcasm-ir/pull/29
https://github.com/casm-lang/libtptp/pull/5

4 Paulweber et al.

1 CASM
2

3 init test
4

5 [symbolic]
6 function x : -> Integer
7

8 // concrete , not set symbolic
9 function y : -> Integer

10

11 rule test =
12 {
13 if x = 0 then
14 skip
15 else
16 y := 12 / x
17 program(self) := undef
18 }

Listing 1.4: Example.casm

1 tff(2,type ,’%0’:$int).
2 tff(4,type ,’%1’:$o).
3 tff(6,type ,’%2’:$int).
4 tff(8,type ,’%3’:$int).
5 tff(12,type ,’%4’:$int).
6 tff(15,type ,’%5’:$int).
7 tff(9,hypothesis ,’#div#i’:($int*$int*$int)>$o).
8 tff(0,hypothesis ,’@x’:($int*$int)>$o).
9 tff(1,hypothesis ,’@y’:($int*$int)>$o).

10 tff(3,hypothesis ,’@x’(1,’%0’)).
11 tff(5,hypothesis ,’%1’<=>(’%0’=0)).
12 tff(7,hypothesis ,~’%1’=>(’@x’(1,’%2’))).
13 tff(10,hypothesis ,~’%1’=>(’#div#i’(12,’%2’,’%3’))).
14 tff(11,hypothesis ,~’%1’=>(’@y’(2,’%3’))).
15 tff(13,hypothesis ,’@x’(1,’%4’)).
16 tff(14,hypothesis ,’@x’(0,’%4’)).
17 tff(16,hypothesis ,’@y’(2,’%5’)).
18 tff(17,hypothesis ,’@y’(0,’%5’)).

Listing 1.5: TPTP Trace of Example.casm

Listing 1.2 and Listing 1.3, but besides the path condition fork there is a huge
difference in the form of the trace representation itself. Lezuos’ [6] implementa-
tion uses mixed First Order Form (FOF) and Typed First Order Form (TFF)
formulae to represent the state evolving which fully complies to the deprecated
TPTP versions before 7.0 [8]. Since the latest major revision 7 of TPTP the
mixing of FOF and TFF does not work anymore, because variables and con-
stants in FOF formulae are assumed to be in the same infinite domain, which
is not the case for any type in a TFF formulae [8]. The later implies that each
variable or constant in a TFF formulae is not equal to any variable or constant
in a FOF formula. Therefore, we generate a fully typed TPTP trace by using
only TFF formulae in the trace result. A transformed TPTP trace consists of
four parts: (1) type declarations for intermediate calculations (see Listing 1.5
Line 1 to 6); (2) language operand definitions (see Listing 1.5 Line 7); (3) all
function definitions (see Listing 1.5 Line 8 to 9); and (4) the actual trace it-
self (see Listing 1.5 Line 10-18). Since in TPTP each variable can only be used
once and there exists no notion of time, each ASM function gets mapped to a
TPTP predicate with 2 or more arguments where the first argument represents
an Integer based time. Similar to the definition by Lezuo [6], we use time at 1 to
represent the initialization of ASM functions. Time at 0 equals the termination
of an ASM execution. This encoding provides an elegant way to describe start
and termination constraints, since the times are known before the concolic exe-
cution starts. Furthermore, since CASM supports block rules (parallel execution
semantics) and sequential rules (sequential execution semantics) the handling of
parallelism is an important issue. The evolving of function states (ASM steps) is
encoded in the time value of each function in the first argument. Sequential rule
computations which create pseudo update-sets [7] are not shown and tracked in
the TPTP trace except for the remaining update to functions.

3 ASM Function Promotion and Symbolic Consistency

Due to the possibility that some ASM functions in a CASM specification can
be marked as symbolic, the concolic execution can reach an interpretation of

Concolic Execution and Symbolic ASM Function Promotion in CASM 5

1 casmi: info: promoting function ’y’ to be symbolic , because function is
2 updated with symbolic value.
3 Example.casm :16:8..16:19
4 y := 12 / x
5 ^---------^

Listing 1.6: CLI Tool Information of ASM Symbolic Function Promotion

the ASM specification where a symbolic value or calculation could be used in
an update rule to a concrete ASM function. This would abort the concolic exe-
cution and would lead to an execution error, because the symbolic consistency
is violated. Therefore, we implemented a symbolic consistency analysis in the
compiler pass pipeline which analyses in advance which concrete ASM functions
will be updated by symbolic values. Note that updating a symbolic ASM func-
tion with a concrete value (e.g. a numeric value) is possible and does not violate
symbolic consistency.

The symbolic consistency pass is an AST-based compiler analysis pass and
checks if any function update produces a symbolic conflict. Each function, rule
parameters, and expression AST node gets annotated by the analysis which
labels the nodes either symbolic, concrete, or unknown.

Depending on the annotated functions through the annotation syntax, all
functions are labeled either symbolic or concrete and all other nodes in the
AST are labeled unknown at the beginning of the analysis. Since CASM sup-
ports named rule calls, each possible rule call hierarchy starting from the init

statement has to be evaluated in order to determine symbolic consistency. The
analysis derives in a step-by-step manner a Rule Call Graph (RCG) where each
callable rule has to go through four states – init, started, evaluated, and finished.
The resulting RCG is used to derive the final symbolic function promotion which
assures symbolic consistency.

We implemented a proper reporting of ASM functions which are promoted
to symbolic. Listing 1.6 depicts a console output of our CASM interpreter
Command Line Interface (CLI) tool named casmi7 which evaluated in concol-
ic/symbolic execution mode the Example.casm specification shown in Listing 1.4
and outputs an information message that function y gets promoted to a symbolic
ASM function.

4 Conclusion

In this paper, we describe an improved ASM based concolic execution approach
which is implemented for the CASM language and its framework.

Novel about this contribution is that the transformation of an ASM spec-
ification towards a TPTP model instance is performed through an in-memory
model-to-model transformation which allows either further in-memory analysis,
optimization, and evaluation of the TPTP instance or a flexible model-to-text
transformation into a TPTP textual representation. Furthermore, the imple-
mented approach only generates a single TPTP trace and promotes non-symbolic

7 For CLI tool casmi, see: https://github.com/casm-lang/casmi/pull/12

https://github.com/casm-lang/casmi/pull/12

6 Paulweber et al.

ASM functions to symbolic ones if the symbolic consistency is violated which is
determined in advance through a symbolic consistency pass.

With our new concolic execution approch we aim at a complete translation
validation of the CASM compiler implementation itself by checking each internal
transformation step of the intermediate models [11]. Moreover, due to the intro-
duction of state and behavioral separation in the CASM language [12], we are
currently investigating the ability of automated semantic checking for imported
ASM rules from loaded libraries or modules.

Acknowledgements We would like to thank Andreas Krall1 for proof-reading
the paper and Emmanuel Pescosta for several concolic execution discussions.

References

[1] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide - Specification and Validation
Methods,” pp. 9–36, New York, NY, USA: Oxford University Press, Inc., 1995.

[2] E. Börger and A. Raschke, Modeling Companion for Software Practitioners.
Springer, 2018.

[3] R. Farahbod, U. Glässer, and G. Ma, “Model Checking CoreASM Specifications,”
in Proceedings of the 14th International ASM Workshop (ASM’07), Citeseer, 2007.

[4] P. Arcaini, A. Gargantini, and E. Riccobene, “SMT-Based Automatic Proof of
ASM Model Refinement,” in Software Engineering and Formal Methods, (Cham),
pp. 253–269, Springer International Publishing, 2016.

[5] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A Survey
of Symbolic Execution Techniques,” ACM Computing Surveys (CSUR), vol. 51,
no. 3, p. 50, 2018.

[6] R. Lezuo, Scalable Translation Validation; Tools, Techniques and Framework.
PhD thesis, 2014. Wien, Techn. Univ., Diss.

[7] R. Lezuo, P. Paulweber, and A. Krall, “CASM - Optimized Compilation of Ab-
stract State Machines,” in SIGPLAN/SIGBED Conference on Languages, Com-
pilers and Tools for Embedded Systems (LCTES), pp. 13–22, ACM, 2014.

[8] G. Sutcliffe, “The TPTP Problem Library and Associated Infrastructure,” Journal
of Automated Reasoning, pp. 1–20, 2017.

[9] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pp. 337–340, Springer, 2008.

[10] R. Lezuo, I. Dragan, G. Barany, and A. Krall, “vanHelsing: A Fast Proof Checker
for Debuggable Compiler Verification,” in 2015 17th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 167–
174, IEEE, 2015.

[11] P. Paulweber, E. Pescosta, and U. Zdun, “CASM-IR: Uniform ASM-Based Inter-
mediate Representation for Model Specification, Execution, and Transformation,”
in ABZ 2018, LNCS 10817, pp. 39–54, Springer, 2018.

[12] P. Paulweber, E. Pescosta, and U. Zdun, “Structuring the State and Behavior
of ASMs: Introducing a Trait-Based Construct for Abstract State Machine Lan-
guages,” in International Conference on Rigorous State-Based Methods, Lecture
Notes in Computer Science 12071, pp. 237–243, Springer, 2020.

	About the Concolic Execution and Symbolic ASM Function Promotion in CASM

