Pan-flavivirus analysis reveals sfRNA-independent, 3’UTR-biased siRNA production from an Insect-Specific Flavivirus
RNA interference (RNAi) plays an essential role in mosquito antiviral immunity, but it is not known whether viral small interfering RNA (siRNA) profiles differ between mosquito-borne and mosquito-specific viruses. A pan-Orthoflavivirus analysisin Aedes albopictus cells revealed that viral siRNAs were evenly distributed across the viral genome of most representatives of the Flavivirus genus. In contrast, siRNA production was biased toward the 3' untranslated region (UTR) of the genomes of classical insect-specific flaviviruses (cISF), which was most pronounced for Kamiti River virus (KRV), a virus with a unique, 1.2 kb long 3' UTR. KRV-derived siRNAs were produced in high quantities and almost exclusively mapped to the 3' UTR. We mapped the 5' end of KRV subgenomic flavivirus RNAs (sfRNAs), products of the 5'−3' exoribonuclease XRN1/Pacman stalling on secondary RNA structures in the 3' UTR of the viral genome. We found that KRV produces high copy numbers of a long, 1,017 nt sfRNA1 and a short, 421 nt sfRNA2, corresponding to two predicted XRN1-resistant elements. Expression of both sfRNA1 and sfRNA2 was reduced in Pacman-deficient Aedes albopictus cells; however, this did not correlate with a shift in viral siRNA profiles. We suggest that cISFs, particularly KRV, developed a unique mechanism to produce high amounts of siRNAs as a decoy for the antiviral RNAi response in an sfRNA-independent manner.
Top- Besson, Benoit
- Overheul, Gijs
- Wolfinger, Michael T.
- van Rij, Ronald
Category |
Journal Paper |
Divisions |
Bioinformatics and Computational Biology |
Journal or Publication Title |
Journal of Virology |
ISSN |
0022-538X |
Date |
2024 |
Export |