
– METIS –
A Flexible Database Foundation for the Unified

Management of Multimedia Contents

Ross King∗, Niko Popitsch∗, Utz Westermann†
∗Research Studio Digital Memory Engineering

Thurngasse 8/20, 1090 Vienna, Austria
{ross.king, niko.popitsch }@researchstudio.at

†Dept. of Computer Science and Business Informatics
University of Vienna, Liebiggasse 4/3-4, 1010 Vienna, Austria

gerd-utz.westermann@univie.ac.at

Abstract— Multimedia database systems largely focus
on the management of media of one particular type
and suffer from inflexible architectures, which makes
it difficult to adapt them to individual application
needs. This paper gives an overview of METIS, a
flexible multimedia database foundation for the unified
management of media of arbitrary types, characterized
by profound customizability. METIS can be customized
to feature any media types, metadata attributes, and
associations desired for media description and classi-
fication. The system offers frameworks supporting the
integration of any query operators, similarity measures,
and/or feature extraction algorithms required for media
retrieval. METIS makes use of a persistence abstraction
layer that allows one to change storage back-ends and
includes a highly customizable web front-end for ad-
ministration and media management tasks. Along with
the concept of semantic packs, which allow the bundling
of domain-specific customizations, METIS constitutes a
ready-to-use but nevertheless highly adaptable database
foundation for a wide range of multimedia applications.

I. I NTRODUCTION

Among the plenitude of multimedia database sys-
tems that have emerged throughout the recent years,
most of the systems focus on the management of
media of a single type, such as videos (e.g., [1],
[2], [3]) or images (e.g., [4], [5], [6]). But many
applications – consider, for example, an e-learning
environment with various multimedia educational ma-
terial like video recordings of lectures with associated
presentation slides or an online philatelic database
giving access to additional multimedia information
such as documentary films on postage stamp images
– require a unified and integrated management of

media of multiple types. Due to their isolated view of
a single media type and their heterogeneous models
applied for media description and indexing, however,
the mere combination of several media type-specific
database systems will not result in a unified, integrated
media management, but rather in a set of isolated silos
of media of a particular type [7]. Trulymultimedia
database systems that offer a unified and integrated
management of media of different type are still found
rarely in the field [8].

A further problem we find with current multimedia
database systems is that they often focus on a single
application domain such as news (e.g., [9], [10]) or
medicine (e.g., [11], [12]) and are based on more or
less hard-wired architectures that are tailored to the
requirements of that domain. But in order to provide
a foundation for a wider range of applications, a multi-
media database system must show profound flexibility
and customizability in order to be adaptable to indi-
vidual application needs, which may differ substan-
tially: the above mentioned e-learning environment
certainly must apply schemes for media classification
and description that differ from the philatelic database
as well as different features, similarity measures, and
index structures for media retrieval. This argument
for flexibility similarly applies to the back-end and
front-end of a multimedia database system: a company
running the e-learning environment for the education
of its employees might demand the reliability of a
commercial relational database server for storage and
the ability to address media already stored in some
media server, whereas the provider of the philatelic
database, suffering from a tight budget, might be

perfectly satisfied with keeping all data in the file
system. It is also difficult to provide generic user
interfaces for media annotation and retrieval that are
acceptable for both applications.

In the present paper, we give an overview of
METIS, a general-purpose multimedia database sys-
tem for the unified and integrated management of
media of different kinds that follows the ideal of
flexibility and offers customizability at all architectural
levels:

• The system coresupports the flexible definition
of arbitrary media types, metadata attributes, and
associations, which are necessary for media cate-
gorization, description, and interrelation. It also
supports the integration of new data types for
the metadata attributes, as well as new functions
and operators for media retrieval and automatic
feature extraction.

• The storage back-endis built on top of a persis-
tence abstraction layer which allows one to oper-
ate the system on a large-scale database server or
with small-scale file storage. It further provides
an extensible locator mechanism for transparent
access to media in different storage systems and
locations.

• The visualization layer provides generic user
interfaces for system administration and media
management tasks. It is based on a framework
that supports the rapid customization of these
interfaces for many different levels of application
needs.

Thus, METIS establishes a highly generic database
foundation usable within a wide range of multime-
dia applications. In order to manage the complexity
associated with this flexibility and allow users to
set up working systems quickly, METIS additionally
features the central concept of semantic packs, roughly
comparable to extenders of object-relational database
systems. Semantic packs are transportable and easily-
deployed bundles that contain customizations fromall
levelsof the system for an application domain. This
includes:

• domain-specific definitions of media types, meta-
data attributes and associations,

• domain-specific implementations of data types,
query operators and feature extraction algorithms,

• implementations of locators for additional storage
locations and customizations of the web front-end
desirable for the domain.

In the remainder of this paper, we discuss the archi-
tectural components of METIS in more detail: Section
II treats the core of the system, Section III details
the persistence abstraction layer, Section IV covers
the visualization layer of METIS, Section V explains
the concept of semantic packs, while Section VI gives
an overview of our current and future work on the
METIS architecture. Section VII relates METIS to
other approaches in the field. Section VIII concludes
the paper with a summary.

II. METIS CORE

In this section, we provide an overview of the
core of the METIS system, with an emphasis on the
flexibility and customizability of the framework.

We have implemented the METIS core as a Java
servlet, easily deployable as a web archive (WAR). In
this manner METIS is not only platform independent,
but can also be deployed in a variety of environments,
ranging from Apache’s Tomcat (currently used by
our prototype) to commercial application servers, thus
contributing to the flexibility of the system.

In the following, we describe the METIS data model
available for the management of media objects (II-A).
The data model is extended by the concept of complex
media objects (II-B), followed by a short summary of
functions and operators (II-C). We are concluding this
section with a brief discussion of the system’s query
processing component (II-D).

A. Data Model

It is the major goal of METIS to offer a multimedia
database solution for the unified management of any
type of media that can be flexibly adapted to individual
application requirements. It is important that this ob-
jective is already reflected by the data model METIS
applies for the internal representation and management
of media.

Figure 1 illustrates the major constituents of the
METIS data model and their interrelationships. In
this model, all basic media (text, audio, images, etc.)
are uniformly represented as so-calledsingle media
objects. A single media object constitutes an abstract,
logical representation of actual media; concrete media
files are attached to a single media object through an
arbitrary number ofmedia instances. Media instances
carry elementary metadata about the media (such as
size, encoding format, bit rate, etc.) and are connected
to the actual media data via so-calledmedia locators,

MT MT

MT

MT

SMO

multiple
inheritance

MA

MA

Model

Instance

type specific configuration
(e.g. max.value)

programmable type
implementations

Av

Av

MI

MI loc

HTTP

Custom

multiple instances for
alternative media

media location
transparency

1..*

0..1

T

loc

MT media type

MA metadata attribute

T metadata type

SMO single media object

Av metadata attribute value

MI media instance

media locator

Legend

multiple
inheritance

multiple
inheritance
multiple
instantiation

Fig. 1. The METIS core data model

allowing the system to uniformly address file systems,
web servers, and databases as media sources.

This ability to gather different physical manifesta-
tions of media under a common logical media object
is a very useful and flexible feature: it can in one case
be exploited for load balancing, by addressing multiple
instances of a given medium on alternative servers, or
it can be exploited by applications that support the
automatic adaptation to available network bandwidth
to choose between media instances of varying quality.

In order to provide a basis for the semantic clas-
sification of media objects in METIS, these may
be organized in categories, known asmedia types.
As we cannot know in advance what application-
specific categories will be required, the METIS data
model permits the definition of any custom media
types needed by an application. In the case of the
abovementioned philatelic database application, for
example, possible types could be “Austrian stamp”,
“overprinted stamp”, or “perforated stamp”. Media
types may be arranged in specialization relationships
in order to be able to model taxonomies of media
types. Multiple inheritance between media types is
supported in order to enhance the expressiveness of
the model. Multiple taxonomies may exist in parallel
for the classification of media along different, possibly
orthogonal, dimensions. For example, the philatelic
database could provide parallel taxonomies for the
country of origin, perforation, and damages of stamps.

Single media objects can be classified by assigning
them an arbitrary number of media types. We are
aware that this concept of multiple instantiation of

media types overlaps with the concept of multiple
inheritance; however, this allows the classification of
media objects according to parallel taxonomies of
media types, without being forced to pollute these oth-
erwise independent taxonomies with artificial, hybrid
media types.

Media types allow the classification of media ob-
jects. For the more detailed description of high-level
characteristics as well as low-level features of media
objects, the METIS data model includes the concept of
metadata attributes. Metadata attributes are connected
to media types in order to specify the metadata asso-
ciated with the media objects of that type. Metadata
attributes are freely-definable first-class objects, which
means they can be shared among multiple media
types, and are also propagated through the inheritance
hierarchy. In this way attributes are independent of
media types, and we may therefore, for example, use
a single Dublin Core attributedc:title (with its
inherent semantics) [13] for two different domain-
specific taxonomies of media types: the name of stamp
in the philatelic database, and the title of a lecture
in the e-learning environment. The connection of a
metadata attribute with a media type may be config-
ured with a specific cardinality, which declares how
often values of the attribute (calledmetadata attribute
values) must/may be defined for media objects of that
type. Metadata attributes may also be restricted to a
range of values and can be given default values.

Metadata attributes are typed; their values are in-
stances of a specificmetadata type, and METIS
offers a framework that enables the integration of
arbitrary type implementations by means of dynam-
ically loaded Java classes. These implementations can
provide comparison functionality, integrity checking
routines, hashing functions for indexing, and the like,
which are appropriate for the instances of the type. In
this manner, not just standard data types like string,
integer, float, etc. may be made available; it is possible
to supply types of arbitrary complexity (e.g., an e-mail
type, a type for color distributions of images, or even
a type capturing an MPEG-7 media descriptor [14],
[15]) depending on the application area, the feature
extraction methods available, or the search techniques
that should be employed.

Besides expressing media characteristics and fea-
tures via attribute values, it is a common approach to
describe media by their relationships to other media.
For this purpose, the METIS data model finally offers
the concept ofassociations. Associations establish

binary, directed relationships between media objects;
their semantics are given byassociation types, which
are freely definable for an application domain. For
the sources and the targets of associations of a given
type, a media type has to be provided that has to be
implemented by all participating media objects in the
respective role. Additionally, it is possible to provide
cardinalities for these media types to specify how
often objects of that type must/may participate in the
association.

In summary, the combination of customizable media
types, metadata attributes, and associations results in
a highly expressive and flexible model for media de-
scription and classification. In addition, the separation
of logical single media objects from their physical
media instances, transparently addressed by media
locators, gives METIS the ability to uniformly handle
heterogeneous media in different storage locations.
The expressiveness of its data model should allow
METIS to be customized to conform to most popu-
lar media description and metadata standards in the
field. The model should be capable of capturing all
but the most complex RDF Schemas [16] and RDF
descriptions [17] compliant to these schemas.

B. Complex Media Objects

The management of multimedia documents is not
the central consideration of METIS; however, the data
model includes an object type that allows a very
general representation of such documents, thecomplex
media object. Complex media objects are similar to
single media objects in the sense that they instantiate
media types, may be assigned attribute values, and
may participate in associations. However, complex
media objects extend single media objects in that they
serve as containers of other single media objects.

For the representation of the various temporal, spa-
tial, and interaction relationships between the single
media objects in a complex media object, we have cho-
sen not to develop yet another multimedia document
model. As we aim at a unified media management,
we want to be open to as many existing multimedia
document format standards as possible such as MHEG
[18], SMIL [19], SVG [20], or even standards yet
to be defined. For this reason, we have outsourced
the problem of multimedia document modeling to a
simple but flexible template mechanism, schematically
represented by Figure 2.

Templatesare first-class objects in the system and
may be shared between multiple complex media ob-

<smil>
<head>[...]</head>
<body>
[...]
<img src=“…/MetisDownloadServlet?id=..."
type="image" dur="3s" region="image"/>
[...]
<img src=“…/MetisDownloadServlet?id=..."
type="image" dur="3s" region="image"/>
[...]
</body>
</smil>

METIS
TemplateProcessor

XSLT

<smil>
<head>[...]</head>
<body xmlns:template="http://www.researchstudio
.at/xml/ns/metis/template“>
[...]
<template:Placeholder name=“my_logo“
type="image" dur="3s" region="image" />

[...]
<template:Placeholder name=“large_picture“
 type="image" dur="3s" region="image" />
[...]
</body>
</smil>

XSL
stylesheet

SMO
SMO

CMO

Template
(source)

Result

XSL
stylesheetXSL

stylesheet

chosen corresponding to template type
(e.g. SMIL, XHTML, etc.)

XML based template
(e.g. SMIL, XHTML, etc.)

resolved at
request-time

SMO

SMO single media object

Legend

complex media objectCMO

large_picture
my_logo

Fig. 2. Complex Media Objects

jects. A template consists of an XML document in
a chosen multimedia document format, enriched by
placeholdersfor the media content that is supplied by
the complex media objects using the template. For ex-
ample, as indicated in the figure, an author of a SMIL-
based template has introduced placeholders for a logo
and a large picture to be assigned by the creators
of any complex media objects using that template.
When the presentation of a complex media object
is requested, a format-specific XSLT stylesheet [21]
replaces the placeholders in the template at runtime
with format-compliant references to the respective
media objects connected to these placeholders.

We are well aware that this simple approach to the
representation of multimedia documents has its limi-
tations. For instance, the METIS data model merely
makes explicit the basic media objects of which a
complex media object consists. All other details, such
as the temporal synchronization and the spatial layout
of these objects, are implicitly hidden in the template.
As a result, METIS has difficulties in supporting the
querying of complex media objects along such presen-
tation aspects. However, we believe that a semantics-
oriented, content-based querying of complex media
objects should be more relevant in practice; in this
regard, the METIS data model with its media types,
metadata attributes, and associations offers rich facil-
ities for the description of complex media objects.

Despite its limitations, the template-oriented rep-
resentation of multimedia documents has noteworthy
benefits. First, it reflects real world media production
workflows, in which design and content responsi-
bilities are separated between media designers and

editors. Second, changes to a template are immediately
visible in the presentation of all complex media objects
using that template. Finally, as a complex media object
can be connected to more than one template, it is
possible to define the content of a complex media
object independent of presentation style and format,
and then choose the template best suiting the needs
and restrictions of the presentation channel at runtime.

C. Functions and Operators

In the previous subsections we presented the rich
means by which the METIS data model offers for
media representation and description. In the follow-
ing, we describe how the functionality for processing
and working with these data is provided in METIS,
through operators for metadata attribute value com-
parison, functions for computing similarity between
single media objects, and operators for sorting and
ordering.

As this kind of functionality is usually application-
specific (e.g., the philatelic database application will
certainly apply different similarity measures for re-
trieving similar images than a passport photo database
application that wants to provide face-recognition sup-
port) and as we provide a generic and highly customiz-
able data model, it is not sufficient to simply provide a
static library of predefined functions and operators. In-
stead, METIS again follows the ideal of flexibility and
customizability and provides a framework supporting
the inclusion of arbitrary new functions and operators.

Function Repository

MT TFsimilarity(,)MT

TFaddition(, ,)T T T

TFextraction()MT

JAVA
CLASS

JAVA
CLASS

JAVA
CLASS

parameters and return
values are instances of

metadata types or media
types

function
implementations are
dynamically loaded

JAVA classes

functions are named

Legend

MT media type

T metadata type

Fig. 3. The METIS function repository

An overview of thisfunction frameworkis given by
Figure 3. Thefunctionsin the framework have aname,
may accept an arbitrary number ofarguments, and
deliver areturn value. Function arguments and return
values are typed, either by media types or metadata

types. This means that functions can be passed and
process media objects, both single and complex, as
well as instances of metadata types, such as values of
metadata attributes. Similarly, the result of a function
call may be a media object or metadata type instance.

Functions are implemented by dynamically loaded
Java classes which conform to a certain interface
imposed by METIS. Thesefunction implementations
have full access to all METIS resources including
the data model which makes them very flexible and
powerful constructs. For example, a function could
process a single media object passed as an argument
and automatically classify this single media object by
assigning it to a media type.

Functions are managed by the framework’sfunc-
tion repository. The repository offers several methods
for the querying of the functions available with the
system. For instance, a list of all functions with a
given name, arguments of certain types, or a given
return type may be requested. The function repository
further allows the registration and the unregistration
of functions and their implementations.

The functions registered with the repository can
be used for several purposes. On the one hand, they
can be invoked within queries of the query processor
(see below) in order to compare metadata attribute
values attached to media objects, compute similarities
between media objects, etc. On the other hand, func-
tions can be used to automatically extract and compute
values of metadata attributes of media objects. In this
case, metadata attributes may be configured to obtain
their values from the call of a certain function which
takes a media object as its single argument. Whenever
a media object with such a metadata attribute is
modified, METIS automatically invokes the function,
passes the media object, and sets the value of the
attribute to the function’s result.

D. Query Processor

The METIS core finally provides a processor for
the querying and retrieval of media objects. The query
processor aims at permitting a hybrid search [8] for
single and complex media objects, taking into account
the semantic classification of media, their high-level
characteristics and low-level features, and their rela-
tionships to other media objects.

For this purpose, the query processor offers a sim-
ple, although currently rudimentary query language,
which permits the selection of all media objects in
the system that fulfill a givencondition. A condi-

media type selection

feature selection

metadata attribute selection

query results

Fig. 4. The METIS query processor

tion consists of arbitrarily nested conjunctions and
disjunctions ofselection predicates. These predicates
allow the selection of media objects according to their
kind (i.e., single or complex), the media types they
instantiate (either directly or indirectly via media type
inheritance), the values of their metadata attributes
(using appropriate comparison functions registered
with the function repository), and their participation
in associations.

Figure 4 is intended to communicate a better im-
pression of the query language and its selection pred-
icates by means of a screenshot of the query user
interface of the METIS web front-end. The left of
the query interface consists of a graphical tool for
query formulation, which supports the creation of
conditions with arbitrarily nested selection predicates;
the right part of the query interface displays the
query results. The depicted query selects media objects
from the philatelic image database according to their
classification by media types and the values of their
metadata attributes, which comprise manually anno-
tated high-level characteristics as well as automatically
extracted low-level features. In particular, the query
selects all media objects of type “Postage Stamp”
with their country of issue being “Canada”, whose

primary stamp color is either “navy” or “red”. It is
important to note that all comparison operators for
metadata attributes used in the query – i.e., the string
comparison used to check the country of issue just
as well as the feature comparison operator used for
checking primary stamp colors – are implemented as
functions registered with the function framework.

Admittedly, the expressiveness of the query lan-
guage in its current state is limited. For instance, the
language does not yet support joins between media
objects. In many cases, however, the high degree of
flexibility and extensibility of METIS provides meth-
ods to the circumvent these limitations: missing query-
ing functionality can in many cases be outsourced
and implemented as functions utilizing the function
framework.

Finally, we note that queries are persistent objects
and can be stored in METIS for repetitive use.

III. PERSISTENCEABSTRACTION LAYER

The METIS system design is fundamentally object-
oriented, and in the initial prototypes, used an object
database system as the persistence mechanism. How-
ever, we observe a strong bias against object database
systems among potential commercial project partners.

This bias is rarely technical, but is rather based on a
confidence in the well-established relational database
technology, which is in most cases already in place.

In order to meet the requirements of such partners,
and to maintain the spirit of our flexibility paradigm,
METIS was re-implemented to include apersistence
abstraction layer. The storage interface was suffi-
ciently abstracted so that all database specific features
reside in a single class, which implements a specific
database manager interface.

All persistent METIS objects extend the common
persistent object base class. This class demands the
implementation of store, update, and delete function
for each of its subclasses. These methods do not
directly access the storage layer, but rather an ab-
stractdatabase manager interface, which in addition
manages transactions, commits and rollbacks. In this
manner, persistence is abstracted from the concrete
storage back-end. For each supported storage back-
end, one must implement a single, corresponding
database manager class.

Currently, we have implemented a simple file
system-based variant that serializes the METIS ob-
jects to XML files. A second implementation exists
for the PostgreSQL database system; this reference
implementation is essentially SQL92 compliant and
thus it is easily adapted to other open source or
commercial relational database systems. By altering
a single configuration property, we can thus switch
between a low-cost system to a large-scale back-end
suitable for commercial use.

For performance reason, the persistent object class
implements a simple write-through cache in main
memory. All persistent objects (excluding the raw
media data, of course) are cached in this way; more
advanced caching mechanisms are under considera-
tion.

As a final feature, the persistence abstraction layer
provides a framework for the integration of new media
locators into METIS, allowing new storage locations
for media to be addressed from media instances.
This media locator frameworkdefines interfaces for
different kinds of storage locations (such as interfaces
for storage locations supporting read-only, read-write,
or random access), which must be implemented ac-
cordingly by Java classes for the storage locations
to be supported. This framework enables METIS to
seamlessly reference media stored, for example, in
legacy database systems. When media data is accessed
via a media instance at runtime, METIS transparently

loads and instantiates the appropriate locator imple-
mentation.

IV. V ISUALIZATION LAYER

METIS is packaged with its own web-based admin-
istration front-end. As our goal is not only flexibility in
the back-end (as described above) but also in the visu-
alization layer, we decided to realize the METIS front-
end using a highly configurablerendering pipeline,
based on a series of XSLT transformations. This
enables us to easily adapt the user interface at many
levels to the application requirements, from purely
graphical requirements, such as corporate identity,
to functional requirements, such as user-dependent
interface behavior. Additionally, we want to provide
the possibility of a interface skinning mechanism that
enables a fast implementation of multi-lingual user
interfaces.

We chose to make use of the Apache Cocoon [22]
framework for the implementation of our rendering
pipeline. With its concept of eXtensible Server Pages
(XSP), Cocoon allows us to enforce a clean separa-
tion of content, style and logic; with its concept of
sitemaps, Cocoon easily allows us to integrate METIS
with legacy web-applications. However, within Co-
coon, we chose not to use XSLT in the traditional
manner, which involves defining an abstract XML
user interface language, with abstract layout compo-
nents that are incrementally replaced by content and
style tags in the desired presentation format, typically
HTML. In our experience, elaborate graphical design
concepts, compatible with different browsers, require
highly complex HTML code, which in turn necessi-
tates a complex XSLT pipeline.

COCOON

production presentation

XSP
(template with
custom tags)

XSLT
(logicsheet)

XSLT
(general
styles)

XSP
(no custom

tags)

HTML
(result)

L S
METIS
data

C

JAVA
Servlet

CSS
Cascading

Style Sheets

S
JS

JavaScript
Files

L

Logic

Legend

L StyleS C Content

Fig. 5. The METIS rendering pipeline (simplified)

Instead, we derived our general visualization
pipeline from the typical workflow for creating a web
front-end. After a graphical user interface concept is
defined, a graphic artist creates screen-designs, from
which XHTML templates are created. These templates

are enriched bylogical tags, representing application
data (such as lists of METIS objects) andvisual
tags, representing graphical widgets (such as buttons).
As indicated in Figure 5, in our general rendering
pipeline, XSLT stylesheets (called logicsheets by Co-
coon) incrementally replace these tags by Java logic
and HTML code for rendering the graphical widgets,
resulting in an eXtensible Server Page. This XSP page
(similar to Java Server Pages) is then processed by
Cocoon and the resulting Java servlet serves the final
HTML code.

Thus, the METIS visualization pipeline enables
highly flexible modification of the user interface -
through modified templates, allowing a complete re-
structuring of the interface, through modified logic
sheets, introducing changes to the interface logic, and
through modified XSLT stylesheets, enabling a new
look-and-feel for graphical widgets in the interface.

V. SEMANTIC PACKS

The generic nature and customizability of METIS
results in many advantages, but also introduces two
principle difficulties. First, as METIS supports a
generic internal data model, the declared types, at-
tributes or objects have no defined semantics. An
application that wants to use the data model stored
in METIS can neither interpret metadata attributes or
media types nor distinguish between attributes and
types from different application domains that happen
to share the same name. A similar problem exists in
XML, wherein tags with the same name yet com-
pletely different meanings may be found in a single
document.

The second problem is that the administration of
all the configurable elements offered at the various
layers of METIS, from the data model to persistence
to visualization, is extremely complex. A method
of grouping these elements for specific application
domains is required.

In METIS we approach these difficulties by in-
troducing the concept of asemantic pack, which
is illustrated by Figure 6. Semantic packs establish
spaces of semantically related METIS objects, analo-
gously to XML namespaces. They are identified by a
unique URI reference. All object names in METIS
are prefixed by the URI of the semantic pack to
which they belong, thus solving the problem of unique
identification.

Unlike XML namespaces, semantic packs do not
only establish a logical space; they are also physical

MT

MA

MT

MT

ID3v2

MA

MA

v 1.3

MT

MT

PortalUserProfile

MA

MA

MA

v 1.0

BASE

v 2.3

T

T

T

T

T

T

T

plugin data
models

may build on
each other

are versioned and
updatable at

runtime

SMO

may contain instances as
"premodelled" data

http://www.researchstudio.at/xml/
ns/metis/core/sempack/base

are uniquely
identified by a URI
reference

Fig. 6. METIS Semantic Packs

containers that include the definitions of the METIS
objects in the space, possibly including metadata at-
tributes, functions, media type hierarchies, and as-
sociations, as well as dynamically loaded Java class
files such as basic data type implementations, media
locators, feature extractors, and even templates for
the web front-end. Using this mechanism, one can
pre-package and deliver application- and/or domain-
specific customizations of METIS, thereby reducing
the aforementioned administration complexity.

Semantic packs can be hierarchically organized: a
semantic pack can make use of objects from another
semantic pack. For example, most semantic packs
would make use of the METIS base semantic pack,
which contains the implementations of the primitive
metadata types, such as string, integer or date, required
by almost any application. Versioning of semantic
packs is also supported, that is, they can be extended
and dynamically updated, as long as backwards com-
patibility is maintained.

Physically, semantic packs are Java archives (JAR),
which makes them easy to transport, install, and
administer. As an additional positive side-effect, these
JAR archives can be signed, thus authenticating the
origin of a semantic pack and preventing the integra-
tion of malicious code.

These characteristics establish semantic packs as
an essential foundation for a modularized develop-
ment. Possibly distributed parties can contribute their
expertise and develop semantic packs with METIS

customizations for their domain. As a further benefit,
it is possible to model existing metadata standards
with METIS and bundle them as semantic packs;
thereby, standard conformity can be established by
merely installing a semantic pack.

VI. OPEN ISSUES

We have implemented the METIS architecture as
described in the previous sections. As a result, we now
possess a very flexible multimedia database system for
the unified management of media of different types;
however, there are still several areas requiring further
development.

One essential aspect of the system that clearly
requires more development is the query framework.
We are now developing an indexing framework which
permits the integration of arbitrary unordered, ordered,
and multidimensional index structures into METIS for
those applications that require more efficient querying
of media. Comparable to index extension interfaces
of object-relational database systems (e.g., [23]), such
an indexing framework will even further increase the
flexibility and customizability of METIS. We also
intend to extend the limited query language of METIS
towards relevant multimedia querying standards on the
horizon, such as SQL/MM [24].

Furthermore, it is our intention to make METIS
usable as a database foundation for the whole multi-
media production cycle, in which people continuously
and collaboratively work on media. As this requires
the ability to manage and keep track of different
versions of the same media and its metadata, we
are working on integrating versioning support for
media objects into METIS. In such a scenario with
multiple users with different responsibilities accessing
a common database, security becomes a pressing issue
as well (not to mention the use of and access to
media material that is frequently restricted by copy-
right regulations). Therefore, we additionally plan to
provide METIS with a configurable user management
and access control allowing the system to adapt to the
security needs of an application.

Finally, we are striving to further optimize the
persistence abstraction layer by evaluating different
caching techniques. We are also investigating how dif-
ferent METIS instances running on distributed nodes
can be integrated on the basis of a peer-to-peer net-
work.

VII. R ELATED WORK

The essential idea underlying the architecture of
METIS is to provide a multimedia database platform
for the unified management of media of arbitrary
types that can be flexibly tailored to the individual
needs of an application. By comparing METIS to other
approaches in the field, we show that a multimedia
database system with such a flexibility and customiz-
ability is unprecedented.

Today, we find a broad spectrum of media type-
specific database system prototypes, including video
databases (like the well-known OVID [1], Stratifica-
tion [25], and VideoQ [26] systems or more recent
ones like SMOOTH [2] or IFINDER [3]), image
databases (such as the classic Vimsys [27] and QBIC
[4] systems or newer ones like MARS [5], KMeD [11],
DISIMA [6], or IMKA [28]), and (though consider-
ably fewer in number) audio databases [29], [30]; but,
as we have already mentioned, far less effort has been
dedicated to trulymultimedia database systems like
METIS that address the unified, integrated manage-
ment of media of more than one type.

Among these efforts, a large group consists of
multimedia extensions for traditional object-oriented
or object-relational database systems, such as Jasmine
[31], or the multimedia extensions for the Oracle and
IBM DB2 database servers [32], [33]. However, these
extensions mostly constitute libraries of rather isolated
data types for the handling of different types of media
in a traditional database system, already making it
difficult to speak of unified media management.

Another group of systems (such as AMOS [34],
the ZYX-Datablade [35], ViSiOn [36], and Media-
Manager [37]) provides a more integrated treatment
of media of different types in a database but, unlike
METIS, emphasizes the modeling of multimedia doc-
uments based on these media and not classic media
management tasks such as media description, search,
and retrieval.

Very few systems actually provide a unified media
management that is comparable to METIS: the Media
Integration Blade [38], which established a unified
media management layer on top of the multimedia
extensions for the Informix Dynamic Server, can be
regarded as a precursor of METIS. But the Media
Integration Blade suffers from a limited and to a large
extent hardwired data model that makes it difficult to
adapt to specific application needs.

The MediaLand system [8], very similar to METIS,

offers a flexible data model that permits the definition
arbitrary, logical media type hierarchies, the definition
of arbitrary attributes and associations for media of
these types. METIS, however, with its concept of
semantic packs, with its ability to integrate arbitrary
data types for the values of metadata attributes, query
operators, and feature extractors, with its persistence
abstraction layer allowing one to change the storage
back-end, as well as with its read-to-use web front-end
that can be quickly customized to application needs,
takes the ideal of flexibility to a further level.

VIII. C ONCLUSION

In this paper, we have given an overview of METIS,
a general-purpose database foundation for the unified
management of multimedia content that is highly cus-
tomizable to application- and domain-specific needs.
We have described the data model METIS applies for
the uniform management of media of different types
(including multimedia documents), which allows the
definition of any custom media types, metadata at-
tributes, metadata types, and association types desired
by an application for media classification and descrip-
tion. We have discussed the function framework –
which not only permits the integration of arbitrary
functions and operators for the querying of media
objects and their descriptions, but also the integration
of functionality for the automatic derivation and ex-
traction of metadata attribute values – and sketched
the query processor of METIS. We have illustrated the
persistence abstraction layer, which allows us to react
to individual storage requirements by changing the
storage back-end of METIS with relatively little effort,
and supports the integration of locators for transpar-
ent access to media in arbitrary storage locations.
We have outlined the system’s highly customizable
visualization layer, and introduced the concept of
semantic packs as transferable and easily deployable
bundles of domain-specific customizations from all
levels of METIS. We have given an overview of
open issues upon which we are directing our current
and future work, and emphasized the novelty of the
METIS approach through an extensive comparison
with prominent multimedia database systems existing
in the field.

Currently, we are applying METIS in several
projects. Apart from a philatelic image database serv-
ing demonstration purposes, which already appeared
in the examples of this paper, we are using METIS
to develop a news video database, which integrates a

commercial audio logger with METIS for the auto-
matic classification of news videos, and an MP3 mu-
sic jukebox, which integrates music processing algo-
rithms for automatic song classification and similarity
search. The initial experience we have gained from
these projects indicates that the METIS approach to
providing a generic, highly customizable multimedia
database solution as a common foundation for a wide
variety of applications is very promising.

REFERENCES

[1] E. Oomoto and K. Tanaka, “OVID: Design and Implementa-
tion of a Video-Object Database System,”IEEE Transactions
on Knowledge and Data Engineering, vol. 5, no. 4, 1993.

[2] H. Kosch, R. Tusch, L. B̈osz̈ormenyi, et al., “SMOOTH
– a Distributed Multimedia Database System,” inProc. of
the 27th International Conference on Very Large Data Bases
(VLDB 2001), Rome, Italy, Sept. 2001.

[3] J. Löffler, K. Biatov, C. Eckes, and J. K̈ohler, “IFINDER:an
MPEG-7-based retrieval system for distributed multimedia
content,” inProc. of the 10th ACM International Conference
on Multimedia, Juan-les-Pins, France, Dec. 2002.

[4] M. Flickner, H. Sawhney, W. Niblack, et al., “Query
by Image and Video Content: the QBIC System,”IEEE
Computer, vol. 28, no. 9, 1995.

[5] M. Ortega, K. Chakrabarti, and S. Mehrotra, “Supporting
Ranked Boolean Similarity Queries in MARS,”IEEE Trans-
actions on Knowledge and Data Engineering, vol. 10, no. 6,
1998.

[6] V. Oria, M.T. Özsu, P. Iglinski, et al., “DISIMA: An
Object-Oriented Approach to Developing an Image Database
System,” inProc. of the 16th International Conference on
Data Engineering, San Diego, California, Mar. 2000.

[7] R. Jain, P. Kim, and Z. Li, “Experiential Meeting System,”
in Proc. of the ACM SIGMM Workshop on Experiential
Telepresence (ETP 2003), Berkeley, California, Nov. 2003.

[8] J.-R. Wen, Q. Li, W.-Y. Ma, and H.-J. Zhang, “A Multi-
Paradigm Querying Approach for a Generic Multimedia
Database Management System,”ACM SIGMOD Record, vol.
32, no. 1, 2003.

[9] H.D. Wactlar, A.G. Hauptmann, M.G. Christel, et al., “Com-
plementary Video and Audio Analysis for Broadcast News
Archives,” Communications of the ACM, vol. 43, no. 2, 2000.

[10] H. Yang, L. Chaisorn, Y. Zhao, et al., “VideoQA:Question
Answering on News Video,” inProc. of the 11th ACM In-
ternational Conference on Multimedia, Berkeley, California,
Nov. 2003.

[11] W.W. Chu, C.-C. Hsu, A.F. Ćardenas, and R.K. Taira,
“Knowledge-Based Image Retrieval with Spatial and Tempo-
ral Constructs,”IEEE Transactions on Knowledge and Data
Engineering, vol. 10, no. 6, 1998.

[12] D. Power, E. Politou, M. Slaymaker, et al., “A Relational
Approach to the Capture of DICOM Files for Grid-Enabled
Medical Imaging Databases,” inProc. of the 2004 ACM
Symposium on Applied Computing, Nicosia, Cyprus, Mar.
2004.

[13] DCMI, “Dublin Core Metadata Element Set,” DCMI Rec-
ommendation Version 1.1, Dublin Core Metadata Initiative
(DCMI), July 1999.

[14] J.M. Martinez, R. Koenen, and F. Pereira, “MPEG-7 – The
Generic Multimedia Content Description Standard, Part 1,”
IEEE MultiMedia, vol. 9, no. 2, 2002.

[15] J.M. Martinez, “MPEG-7 – Overview of MPEG-7 Descrip-
tion Tools, Part 2,”IEEE MultiMedia, vol. 9, no. 3, 2002.

[16] D. Brickley and R.V. Guha, “RDF Vocabulary Description
Language 1.0: RDF Schema,” W3C Working Draft, World
Wide Web Consortium (W3C), Jan. 2003.

[17] O. Lassila and R.R. Swick, “Resource Description Frame-
work (RDF) Model and Syntax Specification,” W3C Recom-
mendation, World Wide Web Consortium (W3C), Feb. 1999.

[18] ISO/IEC IS 13522-5, “Information Technology – Coding
of Hypermedia Information - Part 5: support for Base-Level
Interactive Applicatons,” ISO/IEC International Standard,
International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC), 1996.

[19] J. Ayars, D. Bulterman, A. Cohen, et al., “Synchronized
Multimedia Integration Language (SMIL 2.0),” W3C Rec-
ommendation, World Wide Web Consortium (W3C), Aug.
2001.

[20] J. Ferraiolo, J. Fujisawa, and D. Jackson, “Scalable Vector
Graphics (SVG) 1.1 Specification,” W3C Recommendation,
World Wide Web Consortium (W3C), Jan. 2003.

[21] J. Clark, “XSL Transformations (XSLT),” W3C Recommen-
dation, World Wide Web Consortium (W3C), Nov. 1999.

[22] Apache Software Foundation, “Cocoon,”
http://cocoon.apache.org, 2003.

[23] IBM Corp., “Virtual Index Interface Programmer’s Manual,”
System Documentation Version 9.3, IBM Corp., Aug. 2001.

[24] J. Melton and A. Eisenberg, “SQL Multimedia and Appli-
cation Packages (SQL/MM),”ACM SIGMOD Record, vol.
30, no. 4, 2001.

[25] T.G.A. Smith and G. Davenport, “The Stratification System
- A Design Environment for Random Access,” inProc. of
the 3rd International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV
1992), La Jolla, California, Nov. 1992.

[26] S.-F. Chang, W. Chen, H. Meng, et al., “VideoQ: an Au-
tomated Content-Based Video Search System Using Visual
Cues,” inProc. of the 5th ACM International Conference on
Multimedia 1997, Seattle, Washington, Nov. 1997.

[27] A. Gupta, T. Weymouth, and R. Jain, “Semantic Queries
with Pictures: The VIMSYS Model,” inProc. of the
17th International Conference on Very Large Data Bases,
Barcelona, Spain, Sept. 1991.

[28] B. Benitez, S.-F. Chang, and J.R. Smith, “IMKA: a
Multimedia Organization System Combining Perceptual and
Semantic Knowledge,” inProc. of the ACM International
Conference on Multimedia 2001, Ottawa, Canada, Sept.
2001.

[29] A. Ghias, J. Logan, D. Chamberlain, and B.C. Smith, “Query
by Humming – Musical Information Retrieval in an Audio
Database,” inProc. of the 3rd ACM International Conference
on Multimedia 1995, San Francisco, California, Nov. 1995.

[30] H. Crysandt and J. Wellhausen, “Music Classification with
MPEG-7,” in SPIE Proceedings Storage and Retrieval for
Media Databases, Santa Clara, California, Jan. 2003.

[31] S. Koshafian, S. Dasananda, and N. Minaasian,The Jasmine
Object Database: Multimedia Applications for the Web,
Morgan Kaufmann Publishers, San Francisco, California,
1998.

[32] R. Ward and others, “Oracle interMedia User’s Guide,”

Oracle 10g System Documentation Release 1 (10.1), Oracle
Corp., Dec. 2003.

[33] IBM Corp., “Image, Audio, and Video Extenders – Adminis-
tration and Programming,” DB2 Universal Database System
Documentation Version 8, IBM Corp., June 2003.

[34] S. Boll, W. Klas, and M. L̈ohr, “Integrated Database Services
for Multimedia Presenations,” inMultimedia Information
Storage and Management, S.M. Chung, Ed. Kluwer Aca-
demic Publishers, Boston, Masschussetts, 1996.

[35] S. Boll, W. Klas, and U. Westermann, “Exploiting OR-
DBMS Technology to Implement the ZYX Data Model for
Multimedia Documents and Presentations,” inProc. of the
8th GI-Fachtagung Datenbanksysteme in Büro, Technik und
Wissenschaft (BTW 1999), Freiburg, Germany, Mar. 1999.

[36] T. Lee, L. Sheng, N.H. Balkir, A. Al-Hamdani, et al., “Query
Processing Techniques for Multimedia Presentations,”Mul-
timedia Tools and Applications, vol. 11, no. 1, 2000.

[37] S.-C. Chen, M.-L. Shyu, and N. Zhao, “MediaManager:
A Distributed Multimedia Management System for Content-
Based Retrieval, Authoring and Presentation,” inProc. of
the 9th International Conference on Distributed Multimedia
Systems (DMS 2003), Miami, Florida, Sept. 2003.

[38] U. Westermann and W. Klas, “Architecture of a DataBlade
Module for the Integrated Management of Multimedia As-
sets,” in Proc. of the First International Workshop on
Multimedia Intelligent Storage and Retrieval Management
(MISRM ’99), Orlando, Florida, Oct. 1999.

