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Zusammenfassung

Diese Arbeit beschreibt OPAX, eine Nachrichteninfrastruktur auf Basis eines Peer-to-Peer-
Netzwerks. OPAX ermöglicht Applikationen die Einrichtung von Netzwerken und die Verteilung
von XML-Dokumenten an die teilnehmenden Peers. OPAX verbirgt die administrativen Tätig-
keiten des Netzwerks vor der Applikation. Die Netzwerktopologie, also die Anordnung und
Verknüpfung von teilnehmenden Peers, kann in OPAX frei gewählt werden, sodass es der App-
likation ermglicht wird, die Topologie entsprechend den Bedürfnissen zu wählen und anzupassen.

Ein besonderer Graph, der Hyperwürfel, wird vorgestellt, und seine Eignung als Topologie
für ein Peer-to-Peer-Netzwerk wird analysiert. Die Hyperwürfel-Topologie wird in OPAX in zwei
Varianten implementiert: ein vollständig symmetrisch-verteilter Ansatz und ein zentralistischer
Ansatz werden vorgestellt und diskutiert. Schließlich wird die Referenzimplementation von
OPAX und den Hyperwürfel-Topologien beschrieben.
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Abstract

This thesis describes OPAX, a Peer-to-Peer messaging infrastructure. With OPAX, applications
may create networks and distribute XML documents over the participating peers. OPAX hides
the administrative aspects of the network from the application. It provides the possibility to use
any topology system to arrange peers and manage their connections, thus giving the opportunity
to select and adapt the topology to the application’s requirements.

A special graph, the hypercube, is presented and its applicability for a Peer-to-Peer network
topology is analyzed. Based on OPAX, both a fully-symmetric distributed and a centralized
implementation are presented and discussed. Finally, a reference implementation of OPAX and
the hypercube topologies is described.
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Chapter 1

Introduction

1.1 Motivation

The development of computer systems evolved in two major directions since the beginning of the
”computer age”. The explosion of computing power (by the factor 1012 since 1945[32]), together
with an enormous decay of prices, and the introduction of high-speed network systems lead to
the successful establishment of distributed systems.

One key requirement in distributed applications is messaging. The fact that parts of the
application reside on remote computer systems implies the need for mechanisms that transport
information over the underlying network infrastructure to other participants of the distributed
system. Without messaging, there is no distributed system.

In this paper, we present an infrastructure that allows the creation of distributed systems
without the need to consider low-level aspects of messaging: OPAX, an Open P2P Architec-
ture for XML Message Exchange, provides functionality to create networks, add and remove
participants, and to send and receive messages.

In the context of multimedia, wide fields for the application of distributed systems exist.
The increase of network bandwidth allows to distribute multimedia content world-wide. Using
a messaging infrastructure, this distribution effort may be reduced in order to only transport
the data amount actually required by users and/or applications.

Events of interest all over the world become available on the Internet as multime-
dia content like pictures, video and audio streams, or web pages. These events are
bound not only to a certain topic but also to their location and time. The question is
how recent multimedia events can be made available and ”experienceable” to people
considering their different personal contexts such as their location and interests. [6]

In such a situation, users subscribe to the system by specifying certain criteria which de-
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scribe their fields of interest. Any entity publishing multimedia content sends out ”notification
telegrams” which contain meta data about the event. Based on their filter criteria, the user’s
application instance selects events and downloads the multimedia content from the specified
location.

As the Internet’s bandwidth increases, web radio is getting more and more pop-
ular. The large number of radio program providers makes it impossible to keep the
view over the bulk of broadcast content. It would be desirable to establish a system
where listeners can subscribe to radio programs based on their content.

This is an application similar to the one mentioned before. Based on certain criteria, the
software that receives the radio program data selects the broadcast which meets the listener’s
interests, connects to the appropriate streaming server and plays the program, without any need
for the user to search his desired program and switch between different stations.

An e-learning company wants to establish a blackboard application to enable sem-
inar attendants to discuss their questions and insights, allow teachers to announce
hints to problem solutions, and to publish multimedia material to support the in-
struction. Students subscribe news channels depending on the courses they attend
and their personal interests.

A system implementing this scenario may organize the network in several channels, one for
each course, one for administrative messages, and so on. The student’s application receives
messages, filters it, and files it into a news archive which the student may configure according
to his/her personal demands.

1.2 Requirements to a Messaging Infrastructure

The following requirements have been defined as the foundation for this work. There may exist
other requirements to infrastructures, depending on the application; as for this work, we consider
this list as complete.

• Application Independence - To allow the re-use of a messaging infrastructure, it is im-
portant not to determine parameters which affect the application built on top of the
infrastructure. The infrastructure should provide the feasibility to send any kind of data.

• Scalability - The scalability of a system may be measured in at least three dimensions[33] -
numerical, geographical, and administrative. While the geographical aspect of scalability
is not the focus of this work, numerical scalability is crucial for applications that may
grow over time. Numerical scalability requires the algorithm to be efficient even when the
system has to cope with rapidly increasing participant numbers. Administrative scalability
implies the need for a mechanism to ease the administration and maintenance of a growing
number of participants.
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• Dynamic - Akin to scalability, a messaging infrastructure must be able to bear a dynamic
number of participants. It must be possible to add or remove participants without to
need to reconfigure or restart the whole system. Ideally, such changes in the number of
participants should be transparent to the application.

• Efficiency - Especially when working with large numbers of participants, the infrastructure
must provide algorithms that execute with low effort. Tasks like broadcast cause high
network consumption if the used algorithms are not designed carefully.

• Reliability - A distributed system should be able to handle the sudden loss of participants
or links between participants without the need to shutdown the whole system. It should
provide mechanisms that make the failure transparent to the application and prevent the
loss of data.

• Transparent Organization - To make the dynamic and reliability requirements transparent
to applications, the infrastructure must be able to organize itself without the need for
external intervention.

• Security - Although consideration of security aspects is crucial to distributed systems
because of the large number of possible vulnerabilities, these aspects are out of the scope
of this work.

• Equality of Participants - Each participant in the network should have the possibility to
send and receive messages.

1.3 Peer-to-Peer: An Approach for Messaging Infrastructures?

The requirements stated above lead to the consideration of a Peer-to-Peer1 network to implement
a messaging infrastructure. The term ”Peer-to-Peer” arose in the beginning days of the Internet
and is today one of the keywords of information technology. Many systems, like Napster[3],
Gnutella[4], or Freenet[5], have been created and are active to a certain extent today.

Peer-to-peer systems allow the creation of symmetric infrastructures where multiple, equiva-
lent participants(”peers”) of an arbitrary number form a network. The combination of the P2P
idea with highly ordered topology types, like the hypercube, may lead to a scalable, efficient,
dynamic, and reliable communication infrastructure. With OPAX, presented in this paper, we
implement a useful, yet simple P2P framework that allows to use different topologies, depending
on the application’s requirements.

Concepts for the publish/subscribe idea in combination with a P2P infrastructure have been
presented in [39] and [40], the latter using a content-based publish/subscribe system (Scribe)[41]
that is implemented using a distributed hash table.

1In this report, also the abbreviated form P2P is used.
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1.4 Contributions

In this paper, we present OPAX, a Peer-to-Peer-based messaging infrastructure for XML doc-
uments. It makes the network operations (opening of, joining, or departure from a network)
transparent to the application layer and disburdens it from the administrative aspects of the
network. It provides functionality to broadcast application-dependent messages and allows peers
to synchronize them upon joining.

OPAX allows the selection of any topology for the network. In this paper, a hypercube topol-
ogy is implemented and presented, as this type of topology fulfills requirements stated before.
For the management of the hypercube topology, both a decentralized and a centralized approach
are presented and discussed. The paper addresses problems that the usage of the hypercube
topology causes and presents approaches to solve these issues. A reference implementation in
Java is presented.

1.5 Organization of the Thesis

Chapter 2, ”Peer-to-Peer - an Overview”, gives a review about P2P networks, as well as past
and future evolution of the concept of P2P. Chapter 3 presents the hypercube topology, and
its advantages of using it as a P2P topology are depicted. The design principles of the OPAX
framework are formulated in chapter 4, while chapter 5 depicts two different approaches to
implement a hypercube-based P2P network in OPAX, as well as a comparison of them. Chapter
6, ”Example Implementation”, documents JIO, an Java-based implementation of the OPAX
framework. Chapter 7, ”Future Work”, specifies which issues the current OPAX specification
does not cover, and gives starting points for proceeding activity.

4



Chapter 2

Peer-to-Peer - an Overview

Today, the term Peer-to-Peer, respectively the acronym P2P is used in a very vague way. From
a social point, a Peer is defined as one that is of equal standing with another [7]. P2P is seen as
a communications model, wherein each participant has the same capabilities as each other.

When talking about P2P from a technical point of view, one usually means Peer-to-Peer-
Computing. Wikipedia defines a P2P network as network that does not have fixed clients and
servers, but a number of peer nodes that function as both clients and servers to the other nodes
on the network [8].

Panayiotis Tsaparas defines five characteristics of P2P networks[9]:

1. Clients are also servers and routers

2. Nodes are autonomous (there exists no central administrative authority)

3. The network is dynamic: nodes enter and leave the network ”frequently”

4. Nodes collaborate directly with each other (not through well-known servers)

5. Nodes have widely varying capabilities

These criteria implicate certain restrictions to P2P network implementations. The absence
of a central managing and coordinating instance implies that a P2P network protocol must cope
with unexpected peer or link failures, a requirement that may be hard to fulfill in certain situ-
ations, as we will see later. The peers’ autonomy requires that the network must be adequately
protected against attacks and malignant perpetrators as well as eavesdroppers or message forg-
ers. The direct collaboration of peers requires mechanisms to handle Internet barriers, like
firewalls or network address translation facilities.
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2.1 Classification of Peer-to-Peer Networks

Classification schemes for P2P networks exist in great number. Lv[34] uses the following classi-
fication (alternative denomination taken from [31]):

2.1.1 Centralized (Mediated)

Napster[3] and other similar systems have a constantly-updated directory hosted at central
locations (e.g., the Napster web site). Nodes in the P2P network issue queries to the central
directory server to find which other nodes hold the desired files. While Napster was extremely
successful before its legal troubles, it is clear that such centralized approaches scale poorly and
have single points of failure.

2.1.2 Decentralized and Unstructured (Pure P2P)

These are systems in which there is neither a centralized directory nor any precise control over
the network topology or file placement. Gnutella[4] is an example for such a design. The network
is formed by nodes joining the network following some loose rules. The resulting topology has
certain properties, but the placement of files is not based on any knowledge of the topology
(as it is in structured designs). To find a file, a node queries its neighbors, which then forward
to request to their neighbours, and so on. The most typical query method is flooding, where
the query is propagated to all neighbors within a certain radius. These unstructured designs
are extremely resilient to nodes entering and leaving the system and to node and link failures.
However, the current search mechanisms are extremely unscalable, generating large loads on the
network participants.

2.1.3 Decentralized but Structured (Hybrid)

These systems have no central directory server, and so are decentralized, but have a significant
amount of structure. By ”structure” we mean that the network topology is tightly controlled and
that files are placed not at random nodes but at specified locations that will make subsequent
queries easier to satisfy. In loosely structured systems this placement of files is based on hints;
the Freenet P2P network[5] is an example of such a system. In highly structured systems both
the topology and the placement of files are precisely determined; this tightly controlled structure
enables the system to satisfy queries very efficiently.

2.2 Structures Applied to P2P Messaging

For the precise application of constructing a P2P messaging infrastructure, the following con-
siderations can be made about the three categories mentioned above:
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1. The centralized topology, as stated above, has the main disadvantage of a single point
of failure. The implications of a failure in this central instance are dependent on the
responsibilities that this entity has. One can consider a network where the central instance
is used to locate and address other peers: In this case, a failure of the central instance causes
a sudden breakdown and inhibits communication of any kind. If the central instance is pure
topology manager in the sense that it administrates the arrangement and the integration
and departure of peers, communication will still be possible in the case of a failure, but it
will be impossible to integrate new peers or remove peers that want to leave the network.
Appropriate mechanisms have to be integrated into the servers to make them fail-safe and
scalable, as needed.

On the other hand, centralized serves have advantages when the network is desired to
perform operations that require global knowledge (i.e. knowledge that is distributed across
the network), such as searching. Yet, a failure of the central instance makes it impossible
to perform those operations. However, with a careful design and disposition of reliabilities,
centralized systems may be a practical mechanism for a P2P messaging infrastructure. We
will present a centralized structure in section 5.2.

2. A decentralized, unstructured network will have poor performance for operations requiring
global knowledge. As the development of such a network’s topology may result in a single
chain in the worst case, operations like searching or broadcast do not perform well enough
to serve high demands. Additionally, as peers may suddenly leave the network, such
unstructured networks often can not guarantee that messages be delivered or a search
delivers results.

In [30], several modifications to Gnutella’s[4] design are presented that dynamically adapt
the topology and the search algorithms to accommodate today’s P2P systems’ heterogenity.

3. Decentralized, structured networks try to combine the advantages of both approaches.
The structured topology of the network allows the implementation of optimized search,
broadcast, and routing algorithms. The big disadvantage of this topology type is that the
information about the network structure is distributed among peers (as there is no central
instance), yet it must be kept in a consistent state because algorithms that are executed
locally expect the network to be in such a state. This may cause problems, as we will see
in section 5.1, where we present a distributed hypercube topology.

[27] presents Chord, a scalable P2P lookup service based on a key onto node mapping
based on a distributed routing table. Kademlia[28] routes queries and locates nodes using
a XOR-based metric topology.

Hildrum and Kubiatowicz[35] introduce an approach that makes P2P systems like
Pastry[36, 37] or Tapestry[38] tolerant to certain classes of failures when routing a message
through the network.
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2.3 History

ARPANET Today’s most important and popular network, the Internet, has originally been
designed as peer-to-peer system. It was the initial goal of ARPANET1 to share resources, as
indicated by the title of ARPA’s program plan for ARPANET, ”Resource Sharing Computer Net-
works”[20]. ARPANET was connecting independent hosts, distributed over the USA, without
establishing master/slave or client/server relations between hosts. As ARPANET was designed
as a purely scientific medium, no security barriers had to be installed, allowing unobstructed
communications between ARPANET’s participants.

The first protocols that were used in ARPANET, Telnet[21] and FTP[22], are asymmetric
in the sense that they use a client/server relationship between peers. This fact led to the design
of Network Control Program[23], a protocol that was also known as ”host-to-host” protocol - a
terminology very close to today’s ”peer-to-peer”.

Usenet Usenet, also called News, can be considered as the first Internet-based file sharing
system. Similar to today’s P2P systems like Gnutella or Freenet, Usenet does not establish
centralized mechanisms of control. Firstly introduced in 1979, Usenet was based on the Unix-
to-Unix Copy Protocol (UUCP), which enables UNIX systems to share e-mail, files, or messages.
This mechanism, together with a topic hierarchy, and the Network News Transport Protocol
(NNTP), led to one of the most important and powerful applications of the Internet.

Usenet is an example for a successful, locally administered system. There exists no central
authority; activities like creation of a newsgroup are decided by democratic votes. Every user is
allowed to create own newsgroups within the alt.* hierarchy. Every news host’s administrator
has the opportunity to select groups that are not available on his host.

These characteristics make Usenet a good example for new P2P applications. Usenet shows
how distributed systems may work well, without a centralized controlling instance, presumed
the goodwill and mutual valuation of users and administrators, coupled with an simple, even
powerful system architecture.

DNS The Domain Name System is an example for a system that incorporates P2P technologies
as well as hierarchical information structures. Originally, DNS was created to solve a file sharing
problem: In early Internet days, the mapping of hostnames to IP addresses was stored statically
in a local file. This file was distributed over the network periodically. With the increase of
numbers of hosts, this process was no more feasible. To solve the mapping problem, DNS was
developed.

One of the major points of interests in the field of P2P is the scalability of DNS: Originally,
the system was designed for a few thousand hosts, while today, a hundred millions of hostnames
and IP addresses are stored in DNS. Thus, many of the methods used in DNS may be used

1Advanced Research Projects Agency Network
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in today’s P2P application development. These methods include the usage of caching, the
forwarding of requests through the DNS network, and the distribution of network load.

The early days of Internet show that the network would not have reached its importance
without the appropriation of P2P communication technologies. Today’s P2P developers may,
and must learn from the experience that was gained during this development process - problems
that are fronted today are similar to those that have been solved 15 years ago.

2.4 Peer-to-Peer in the Future

Peer-to-Peer has established as a serious technology for distributed systems. Recent concepts and
ideas will improve all aspects of P2P computing, including functionality, performance, stability,
and security. Especially the aspect of storing, managing, and retrieving large amounts of data
does and will challenge researchers, as the list of Peer-to-Peer conferences[53] shows. Danezis
and Anderson[51] present an approach where the storage location of data is assigned depending
on the ”interests” of participating nodes. Usenet, a ”classic” P2P application, is still of interest:
an implementation of this idea recreating the Usenet is to be created.

Sit et al.[55] re-implement the Usenet infrastructure using a Distributed Hash Table.

For practical applications, software designers must decide if to include P2P concepts into
their systems. Roussopoulos et al.[52] present a ”decision tree for analyzing the suitability of a
P2P solution to a problem”, where they formulate five design criteria and seven classes of P2P
solutions.
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Figure 2.1: Decision tree for P2P suitability (from [52])
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To formulate how P2P networking can lower expenses, [54] presents a model to describe the
costs of peers participating a network, and compares different topologies regarding economical
aspects.

Security aspects play a key role in P2P evolving, as no serious distributed system can exist
without such mechanisms. CorSSO[56] is a distributed single-sign-on service, enabling the au-
thentication service to tolerate attacks and failures, and removing users’ objections to sign-on
services managed by a single administrative entity.
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Chapter 3

The Hypercube Topology

This chapter discusses the basic principles of hypercubes in general, as well as a discussion about
the usability and the advantages of the application of a hypercube-based topology. It presents
the algorithms for the construction and maintenance of a hypercube topology.

This section is mainly based on [10]. It is recapitulated here to give a short and concise view
on the concepts and ideas of the hypercube topology applied for a peer-to-peer environment.

3.1 Definition of Terms

Hypercube A hypercube is a cube of more than three dimensions. A single (20 = 1) point (or
node) can be considered as a zero-dimensional cube, two (21) nodes joined by a line (or ”edge”)
are a one-dimensional cube, four (22) nodes arranged in a square are a two dimensional cube and
eight (23) nodes are an ordinary three dimensional cube. Continuing this geometric progression,
the first hypercube has 24 = 16 nodes and is a four-dimensional shape (”four-cube”) and an
d-dimensional cube has 2d nodes (”d−cube”).

To make an d + 1-dimensional cube, take two d-dimensional cubes and connect each node
on one cube to the corresponding node on the other. A four-dimensional cube can be visualized
as a three-cube with a smaller three-cube centered inside it, with edges radiating diagonally out
(in the fourth dimension) from each node on the inner cube to the corresponding node on the
outer cube, or with two three-dimensional cubes connected by parallel edges.

A (complete) d-dimensional cube has 2d nodes, and 2d−1d edges. Each node in a d- dimen-
sional cube is directly connected to d other nodes.

Figure 3.1 shows the construction steps from a 0-dimensional to a 4-dimensional hypercube.
In every step, the number of nodes is doubled.
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n = 0 n = 1 n = 2 n = 3 n = 4 n = 4

Figure 3.1: Construction of a hypercube

Coordinates and Dimensions We can identify each node by a set of d Cartesian coordinates
where each coordinate is either zero or one. Two nodes will be directly connected if they differ
in only one coordinate, in other words, they have a Hamming distance (see below) of 1. In this
report, we will identify the dimensions of a hypercube starting with 0, and denote the number
of dimensions with dmax, so a 3-dimensional cube (dmax = 3) will have dimensions 0, 1 and 2,
and will have 2dmax = 8 nodes. The coordinates are identified from left to right, so the first
position identifies the position along dimension 0, the second position identifies the position
along dimension 1, and so on. The numbering schema for a 3-dimensional hypercube, as well as
the arrangement of dimensions, is shown in figure 3.2.

0
000

001

010

011

100

101

110

111
1

2

Figure 3.2: Identifying the nodes and the dimensions of a hypercube

We will denote the coordinate vector of node i as ~pi.

Hamming Distance The Hamming distance between two Cartesian coordinates is the min-
imum number of bits that must be changed in order to convert one coordinate string into the
other one. Note that adjacent nodes, or direct neighbours in the hypercube, have always a
Hamming distance of 1. The Hamming distance can be formulated as

H(~px, ~py) = ‖~px ⊕ ~py‖

where x⊕ y denotes the bitwise XOR of binary fields x and y, and ‖~z‖ denotes the weight of
the binary vector ~z, i.e. the number of positions that are set to 1. One could also interpret the
Hamming distance between two nodes as the number of hops that traveling from one node to
the other one requires. Note that in an dmax-dimensional hypercube, the maximum Hamming
distance between two nodes is dmax.
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Link Dimensionality The link dimensionality L(~x, ~y) between two nodes, identified by their
coordinates ~x and ~y is expressed by

L(~px, ~py) = f(~px ⊕ ~py)

where f(~b) returns the position of the most significant bit set to 1 in the binary vector ~b.
As stated above, and depicted in figure 3.2, the most significant bit is the leftmost bit, and the
enumeration of bits starts with index (or dimension) 0. For example, the link dimensionality
between the node on position 000 and the node on position 010 would be L(000, 010) = f(000⊕
010) = f(010) = 1.

One important aspect concerning link dimensionality is the dimensionality ordering : Lower
dimensions correspond to larger distances. Two nodes that are connected by a link of dimen-
sionality 2 are considered closer than two nodes connected by link of dimensionality 1. This
definition of distance is used later in the description of node integration and departure.
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Figure 3.3: A hypercube graph

3.2 Hypercube Applications for Network Topology - Motiva-
tions

The simple, regular geometrical structure and the close relationship between the cube’s coor-
dinate system and binary numbers make the hypercube an appropriate topology for a parallel
computer interconnection network. The fact that the number of directly connected, ”nearest
neighbour”, nodes increases with the total size of the network is also highly desirable for a
parallel computer.

What makes the hypercube highly interesting for the application of data distribution, are
the following facts[10]:

• The maximum Hamming distance between any two nodes (the network diameter) in the
hypercube is dmax. This implies that every message does, presumed an appropriate routing
algorithm, in no case require more than dmax hops to reach its final destination node.

13



• The network structure is symmetric. In terms of the network’s topology, no node incor-
porates a more prominent position than others, which is crucial for load balancing in the
network: Every node can become the source of a broadcast (i.e. the root of a spanning
tree of the network), yet the load will always be shared equally.

• The topology allows to create an optimal spanning tree in terms of messages sent. Crucial
for an efficient broadcasting algorithm, it is always possible to create a spanning tree,
starting with any node of the hypercube, so that the maximum number of message trans-
missions (the edges in the spanning tree) is 2dmax −1, and every node receives the message
exactly once (see figure 3.4). The drawback of this spanning tree is that the workload dis-
tribution is imbalanced: the number of messages sent during a broadcast varies between 1
and dmax from node to node, depending to its distance to the broadcast originator. How-
ever, there exist algorithms that can construct a balanced spanning tree as described in
[26].
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Figure 3.4: 3-cube and two spanning trees

• The topology provides redundancy. The connectivity (the minimum number of nodes to be
removed in order to partition the graph) is optimal, i.e. equal to dmax.

• The network is scalable. The number of dimensions, dmax, can be chosen to adjust the
network diameter according to the requirements of the application. As we will see later, it
is also possible to create incomplete hypercubes, where the number of nodes is not exactly
2dmax . This allows the creation of networks with any number of nodes ranging from 1 to
2dmax . Additionally, dmax can be increased at any time to further enlarge the network.

3.3 Algorithms

3.3.1 Broadcast

As mentioned above, an optimal broadcast can be formulated. The algorithm presented below
guarantees that in an hypercube with dmax dimensions and n = 2dmax nodes:

• Any node receives the broadcast message exactly once.
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• Exactly n− 1 message transmissions are required to reach all nodes in the hypercube.

• The last nodes are reached after log n steps.

As the ordering of dimensions in the hypercube is unambiguous, it can be used to formulate
a broadcast algorithm. The originator of a broadcast (call it O) sends the message to all its
neighbours. As stated above, the link dimensionality between two peers can be calculated from
their position vectors. Every peer receiving a message to be broadcast forwards it to neighbours
along higher dimensions than it received the message on. As an example, refer to figure 3.4,
which shows two forwarding trees for broadcasts originated by two different peers.

3.3.2 Search

A search in the hypercube may be understood as a broadcast and a subsequent response to the
originator. To limit the search, so that not the whole hypercube is affected, two possibilities
exist:

• The search broadcast may be endorsed by a time-to-live field to restrict the searching to
nodes whose distance to the searching node is smaller than a given value.

• The search broadcast may initially be sent not to all neighbours of the originator, but only
to neighbours along dimensions d ≥ dsearch > 0. In this case, not all nodes get aware of
the search, because forwarding of broadcast messages is always bound to higher dimen-
sions. This method has the disadvantage that some of the searching peer’s neighbours are
excluded from searching.

The reply to the search (the search result) can be sent to the origin node either by contacting
it directly (out of the scope of the hypercube) using its physical network address, or with a
simple message addressed to the node’s hypercube position, which can be forwarded through
the hypercube by the routing algorithm.

3.3.3 Routing

A message from a node I at position ~pi, addressed to node J at position ~pj , can be routed
through the network as follows: I sends the message to its neighbour on any dimension which
is marked as 1 in ~pi ⊕ ~pj . Any following node K compares the destination address with its own
address and forwards the message along a dimension marked as 1 in ~pk⊕~pj , gradually matching
the destination address. For instance, if node I at position 0111 is to send a message to node J
at position 1001, the routing path may be 0111 → 1111 → 1011 → 1001. The maximum length
of a routing path through the hypercube is equal to the maximum Hamming distance between
two nodes, dmax.
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3.4 Incomplete Hypercubes

For the algorithms described in section 3.3, the hypercube must be complete, i.e. all positions
must be vacated. Any ”hole” in the cube would cause the process to stop or not to finalize
successfully. Even under the assumption that the hypercube may grow indefinitely in terms
of dimensionality, this implies that the hypercube can only contain exactly 2dmax nodes, where
dmax is the number of dimensions.

It is obvious that this is a restriction which is not acceptable for practical applications
of the hypercube topology. A network should be able to incorporate any number of nodes,
possibly bounded by a maximum number. To accomplish this, the following construction and
maintenance algorithm is based on the notion that nodes in the evolving hypercube graph take
over responsibility for more than one position.

To keep the cube consistent and symmetric up to a certain degree, nodes are not allowed to
cover any combination of positions, but only sub-cubes of the whole hypercube. The positions
that a node covers in addition to its ”own” position can be expressed by a cover map: a set of
dmax bits, each bit representing whether the node ”expands” to this dimension (1) or not (0).
So a node covering the whole hypercube has a cover map containing only 1s, a node covering no
additional positions has a cover map containing only 0s. We will denote the cover map vector
of node I with ~ci.

The idea of nodes covering multiple positions leads us to a new definition of the term immedi-
ate neighbour : Immediate neighbours are nodes which would also be neighbours if the hypercube
topology was complete, i.e. all nodes were present. A node V is an immediate neighbour of node
W if and only if

H(~pv, ~pw) = 1

This definition implies that each node may have exactly one immediate neighbour per di-
mension.

3.5 Randomization

To ensure an even distribution of nodes over the hypercube, three steps of randomization are
executed when a node enters the hypercube.

Contact Node Selection A node which wants to join the hypercube may contact any peer
which is already integrated. If a sufficient number of nodes is publicly known, the workload of
the ”first contact” is distributed equally amongst them.
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Integration Position Selection A node contacted by a newcomer node does not immediately
integrate the node by itself, but randomly selects a position, ~pdest, on which the new node is
to be integrated. Thus, every position of the hypercube may be the destination position with
equal probability. Then, the integration request is routed through the network until the first
integration champion1 is found.

This routing procedure adds a maximum delay of dmax (worst case) messages to be sent
to the integration process. As, in incomplete hypercubes, certain nodes may cover more than
one position, these nodes have a higher probability to be selected as integration champion. On
the other hand, this approach helps to distribute workload among nodes: the more positions a
node covers, the earlier it will be selected as integration champion, thus reducing its number of
covered positions.

Routing Path Shortening To shorten the procedure of routing the integration request to
the first integration champion, any node which receives the request on its way may pick it and
immediately become the integration champion instead of continuing to forward the request to its
primary destination. The probability that a node V receiving an integration message to forward
becomes the integration champion is set to

p = 1− H(~pv, ~pdest)
H(~psrc, ~pdest)

= 1− ‖~pv ⊕ ~pdest‖
‖~psrc ⊕ ~pdest‖

where ~psrc is the position of the node that initially issued the integration message (the ”first
contact” node) and ~pdest is the integration position for the new node. So the probability for
picking the message depends on the length of the path that the integration request has travelled
so far: the longer the travel did last, the higher the probability that it will be truncated.

Simulation results for this randomization scheme can be found in [10].

3.6 Distributed Construction and Maintenance of a Hypercube

In a distributed topology, integration and departure of nodes must be executed so that the
hypercube topology is always consistent. So, nodes are required to perform well-defined steps
in order to keep the consistency of the network.

After the first integration champion has been selected according to the rules described in
section 3.5, the first integration champion carries out the following steps:

1. Integration dimension selection. This is the dimension along which the new peer will be
integrated by the integration champion.

1We denote a node as integration champion if its set of covered positions is changed during the integration of
a newly arriving node.
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2. Integration champion node appointment. If necessary, the integration responsibility is
passed over to the appropriate node(s).

3. Node integration The positions which are covered by the node are assigned, the new node
is notified, and connections to its neighbours are established.

3.6.1 Integration Dimension Selection

The node which currently covers the integration position - selected by the randomization process
described above (call it V ) - checks if it covers any additional positions. If this is the case, the
integration dimension, dint, is set to the position of the most significant 1 in its cover map.

If the dimension can not be defined because V does not cover any additional positions, it looks
for non-immediate neighbours in its set of known peers: if a node W has a Hamming distance
> 1 to node V , it may be a candidate to be selected as actual integration champion, since this
node must cover additional positions near to ~pint. Let Nv denote the set of non-immediate
neighbours of V : the integration dimension is set as

dint = minw∈Nv(L(~pv, ~pw))

where L(·) denotes the link dimensionality between two nodes. This rule implies that lower
dimensions are filled up prior to higher dimensions, keeping the number of ”partially fractured”
dimensions low. As an example, if the network consists of four nodes, there is no need to establish
a 3-dimensional cube: a 2-dimensional cube is able to accommodate all nodes. However, the goal
of building the most ”dense” hypercube (for n nodes, the dimensionality should never exceed
log n), cannot always be satisfied, as shown in [10].

Now, the integration position for the new node is updated by flipping the bit on position dint

of the integration champions own position ~pv:

~pint = (p0
v, p

1
v, . . . , p

dint−1
v , pdint

v , pdint+1
v , . . . , pdmax−1

v )

3.6.2 Integration Champion Node Appointment

If V is not the actual integration champion, it forwards the request to the selected node. Oth-
erwise, it executes the following algorithm by itself.

3.6.3 Node Integration

The new node will be integrated in the network, and existing nodes which are affected by the
integration may be classified by two groups:
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Integration champions are nodes which covered additional positions that will be covered
by the new node after integration.

Prospective neighbours are nodes which do not transfer positions to the new node, but will
be neighbours of the new node.

The first step that the integration champion performs is to identify other integration cham-
pions: if V at position ~pv is integrating a new node at position ~pint, any node W is integration
champion if it is closer to V than V is to ~pint, formally if

H(~pw, ~pv) < H(~pint, ~pv)

It is clear that node V is closest to the integration position ~pint since it is currently covering
this position. Neighbours W of V may cover positions that are closes to ~pint than to ~pw and
thus will be transferred to the new node. All these nodes will become integration champions
and have to be informed that they are to abandon these positions.

The initial cover map for the new node will be a modified copy of V ’s cover map ~cv: for
dimensions lower than dint, it is the same as ~cv. The bit at dint will be a 0 since V will be the
new node’s neighbour along dimension dint. For dimensions higher than dint, the cover map is
filled with 1s:

~cint = (c0
v, c

1
v, . . . , c

dint−1
v , 0, 1, 1, . . .)

As V did now compute the integration data for the new peer, it confirms the request by
sending the peer its position, its cover map, and the list of integration champions. The new peer
now registers itself at every integration champion.

An integration champion receiving the integration request from the new peer firstly calculates
its ”local” dint as the dimensionality of the link between the new peer and itself, then it flips its
cover map on bit dint, as the new peer is its neighbour along this dimension from now on. As
positions have to be transferred to the new peer, links to neighbours have also to be transferred:
the integration champion computes the list Lchampions of positions that remain covered by the
integration champion node, and the list Lnew of positions that will be covered by the new node
after the integration has been carried out2.

Firstly, the integration champion node V calculates its list of positions: each 1 in V ’s cover
map ~cv means that the node covers additional positions along this dimension. Thus, the length
of the list Lv is determined by the weight ‖~cv‖ of its cover map: If a node’s position is ~pv = 011

2The computation of the lists may cause problems due to the fact that a full list of covered positions may have
a length of 2dmax , and the algorithm that creates a full enumeration of covered positions presented in [10] also
has a complexity of O(2dmax). We will discuss this problem in section 5.1.6 and present a possible solution in
section 5.1.7.
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and its cover map is ~cv = 101, its list of covered positions is Lv = (011, 111, 010, 110). We spell
this operation as

Lv = ~pv × ~cv

The lists Lchampion and Lnew are calculated using V ’s position vector and its cover map with
the flipped bit dint, respectively the position vector of the new node and the new node’s cover
map.

Then, for each position ~pi ∈ Lnew, the integration champion must identify neighbour posi-
tions along dimensions 0 ≤ d < dint where the cover map is 0, i.e. where an immediate neighbour
node exists:

~pneighbour(p) = ~p⊕ ~d

(where ~d is a vector consisting of 0 and a single 1 at position d. For each of these positions
the node which currently covers this position is identified out of V ’s set of neighbours; this node
(call it W ) will be a neighbour of the new node.

In the next step, the integration champion V must determine if W remains to be V ’s neigh-
bour, or if the new node will be located ”between” them and thus V can abandon its link to
W . This is accomplished by carrying out the same algorithm with positions ~pi ∈ Lchampion:
any node which is no closest node to any of V ’s remaining positions may be abandoned; any
node which has the smallest Hamming distance to a position covered by V must remain V ’s
neighbour.

In both cases, W becomes a new neighbour of the new node, so V notifies the new node
which then registers itself at W ; W then executes the integration algorithm on its part.

Using this algorithm, the new node gradually is informed about integration champions and
prospective neighbours, which it collects in temporary lists. For each node it is notified about,
it registers itself with its hypercube position coordinates and its network address. After the
integration champion, or respectively, the prospective neighbour, has carried out the integration
algorithm, it commits this execution to the new node. After all participating nodes have com-
mitted their work, the new node, in return, commits the finalization of the integration to all its
partner nodes. This message finalizes the integration algorithm.

3.7 Node Departure

A node wanting to leave the network must execute a departure protocol since the topology must
always be kept in a consistent state. All nodes must be able to rely on this consistency to carry
out the algorithms independently of each other to minimize communications overhead.
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The positions that the departing node (call it V ) has covered must be handed over to other
peers which are neighbours of the departing peer. To select the nodes to transfer the positions,
V selects the buffering dimension dbuf , which is set to the highest dimension where V has
neighbours on:

dbuf = max
W∈Nv

(L(~pv, ~pw))

In the binary hypercube, one or two nodes will thus become the buffering nodes of V , since
a node may have two neighbours along one dimension. The reason that V selects node(s) along
the highest dimension is related to the definition of link dimensionality: neighbours along higher
dimensions are considered to be closer than neighbours along lower dimensions. The buffering
nodes are assembled in the list Lbuf :

W ∈ Lbuf ⇔ W ∈ Nv ∧ L(~pv, ~pw) = dbuf

where Nv denotes the set of neighbours of node V . The positions of nodes W ∈ Lbuf are
known, but it is also necessary to estimate the cover maps ~cw because the buffering nodes are not
necessarily aware of each other: for dimensions 0 ≤ d < dbuf , the buffering nodes’ cover maps
are identical to that of V , ~cv, because nodes see the same neighbour situation along dimensions
lower than the link dimensionality between each other. For dimensions d > dbuf , the cover map
bits are set to 1, and are then modified by pairwise comparing all node positions in Lbuf :

∀~pi, ~pj ∈ Lbuf : cx
i , cx

j = 0 ⇔ L(~pi, ~pj) = x

which reads: the cover maps of nodes I and J are set to 0 on position x, iff the link
dimensionality between these two nodes is x.

Using the position vector and the estimated cover map of nodes in Lbuf , a list of positions Lw

which will be transferred to this node can be calculated: the root position for the list calculation
is the position that W will take over:

~pcover
w = (p0

w, p1
w, . . . , p

dbuf−1
w , p

dbuf
w , p

dbuf+1
w , . . . , pdmax−1

w )

Using this root position and the cover map as described above, the list can be calculated:
Lw = ~pcover

w × ~cw.3

As the last step, for each position ~pi ∈ Lw which is transferred to node W , the neighbour
positions along dimensions d < L(~pw, ~pi) on which the cover map is 0 are iterated, in order to
find the neighbour which is closest to this position, and thus is to be handed over to W .

3A computation which again is of complexity O(2dmax).
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After the information for all buffering nodes has been assembled that way, the departing
node informs all its buffering nodes of the departure. The buffering nodes update their cover
map as required and connect to their new neighbours, then send a confirmation to the departing
peer. After the confirmation from all buffering nodes have been collected, the departing peer
sends its finalization message to all participants and leaves the network.

3.8 Construction Example

We will demonstrate the ideas stated above on an example. Consider a 3-dimensional hypercube,
the maximum number of dimensions of the hypercube, dmax, is set to 3. All position vectors
and cover maps thus consist of three digits.

Note that we use the terms node and peer mixed in this paper. The reason is that they are
synonymous when talking about one certain hypercube. The difference between the two terms
in the context of OPAX is that a peer may act as several nodes in different hypercubes. This
does not affect the fact that a peer may act as exactly one node in one hypercube.

In the beginning, only peer 0 populates the network. The first node is always set to be at
position 000, and has, as it vacates all positions, a cover map consisting only of 1s (see figure
3.5a).
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Figure 3.5: Construction example (1)

~p0 = 000
~c0 = 111

A white bullet indicates the actual position of a peer, gray bullets indicate positions that
are covered by a peer in addition to its root position.

Now, peer 1 joins the network. After having contacted peer 0, it will be assigned position 100,
as dimension 0 is the lowest dimension where peer 0 has no neighbour. As peer 0 now transfers
positions to peer 1, the situation is as shown in figure 3.5b, with the following coordinates and
cover maps:
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~p0 = 000 ~p1 = 100
~c0 = 011 ~c1 = 011

Peer 2 contacts peer 0, which again selects the lowest dimension whereon it has no neighbour,
dimension 1, and integrates peer 2 as its new 1-neighbour. It also selects peer 1 as integration
champion, because peer 1 will be the 0-neighbour of peer 2. Now, the 2-dimensional cube that
was occupied by peer 0 is split to be covered by peer 0 and peer 2 from now on (figure 3.5c).

~p0 = 000 ~p1 = 100 ~p2 = 010
~c0 = 001 ~c1 = 011 ~c2 = 001

Two more peers, 3 and 4, join the network. For peer 3, peer 0 transfers its last additionally
covered position, 001, to be peer 3’s position, so both peers 0 and 3 have now a cover map of
000, covering no additional positions. Peer 4 is integrated on position 110, causing peer 1 to give
up its position covering along dimension 1, and becoming peer 2’s 0-neighbour (figure 3.6a).
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Figure 3.6: Construction example (2)

~p0 = 000 ~p1 = 100 ~p2 = 010 ~p3 = 001 ~p4 = 110
~c0 = 000 ~c1 = 001 ~c2 = 001 ~c3 = 000 ~c4 = 001

Imagine peer 1 leaves the network right now: its positions will be taken by peer 4, as it was
the nearest neighbour of peer 1; dimension 1 is the buffering dimension for this departure. This
situation is depicted in figure 3.6b.

~p0 = 000 ~p2 = 010 ~p3 = 001 ~p4 = 110
~c0 = 000 ~c2 = 001 ~c3 = 000 ~c4 = 011

If now peer 5 would join the network, it will possibly be assigned peer 1’s former position,
111. Peer 6 will be integrated on position 110, and both of them are 1-neighbours of peer 4,
since this peer covers one position along dimension 2 (figure 3.6c).
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~p0 = 000 ~p2 = 010 ~p3 = 001 ~p4 = 110 ~p5 = 100 ~p6 = 101
~c0 = 000 ~c2 = 001 ~c3 = 000 ~c4 = 001 ~c5 = 000 ~c6 = 000

Finally, peers 7 and 8 join the network. Peer 7, which gets peer 4 as integration champion,
will be positioned at 111; peer 8, being integrated by peer 2, is set to position 011. The complete
hypercube, shown in figure 3.7, accommodates now 8 peers, each of them covering exactly one
position. In order to integrate more peers, an additional dimension would have to be opened:
all peers would then have to add one digit to their cover map set and set this new digit to 1.
Then, 8 more peers could be integrated into the network.

0

3

2

8

5

6

4

7

Figure 3.7: Construction example (3)

~p0 = 000 ~p2 = 010 ~p3 = 001 ~p4 = 110 ~p5 = 100 ~p6 = 101 ~p7 = 111 ~p8 = 011
~c0 = 000 ~c2 = 000 ~c3 = 000 ~c4 = 000 ~c5 = 000 ~c6 = 000 ~p7 = 000 ~p8 = 000
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Chapter 4

The OPAX Framework

This section describes OPAX, an Open Peer-to-Peer Architecture for XML Message Exchange.
OPAX is an open, modular framework which allows the creation of P2P messaging networks.
One key feature of OPAX is its ability to use any topology for the construction of the network,
which allows the application to optimize the network structure according to its requirements.
The requirements, basic architecture, and used message types are depicted.

4.1 Terms

In this section, we describe the main terms that are used in the OPAX framework.

Peer An OPAX peer is an entity which is able to participate an OPAX network. It must have
the capability to send and receive OPAX messages. A peer may become member of multiple
networks at the same time.

Space In OPAX, networks are called spaces. A space is an agglomeration of peers, which are
arranged in a well-defined topology. A space can be uniquely identified by its space URI. A
space is created (opened) by one peer, other peers participate the space by joining, and later
leaving (or departing from) it.

Message An OPAX message is an XML document which is valid against the OPAX message
schema (see appendix A). There exist several types of messages, which are defined in section
4.5.
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4.2 Requirements

4.2.1 Openness

To allow the integration of and communication between heterogeneous systems and networks,
the framework should be open in a way that allows the implementation of the specification on
various platforms.

4.2.2 Extensibility

As requirements to a P2P network may change over time, it is important to allow the framework
to grow with its requirements, without the need to reject previous efforts. Implementations of
OPAX should be designed taking into consideration this requirement.

4.2.3 Modularity

To satisfy different applications’ requirements, the main components of an OPAX instance should
be easy to remove, ideally, they should be replaceable or switchable by configuration without the
need to restart a running instance. Additionally, a modular concept allows the easy implemen-
tation, integration and evaluation of different concepts without the need to rewrite non-affected
parts of the system. Parts of the framework that should be replaceable include:

• Topology management - To allow the creation, maintenance and management of different
network topologies, the appropriate component should be switchable. In OPAX, this
component is called topology manager. As probing and evolution of peer-to-peer topologies
evolves, it should be possible to create and integrate new topology managers.

• Network communication - The physical communication layer of the OPAX framework
may be exchanged to select the XML message transfer mechanism. Currently, messages
are exchanged using a straightforward, TCP-socket-based XML document transferring
protocol. As requirements to the framework may increase, HTTP[12, 13]-based protocols
or other transfer protocols may be introduced.

It is desired that switching between different implementations of a component should be
accomplished using widely accepted standards. One such standard is the usage of Uniform
Resource Identifiers[11], or URIs, to identify implementations in a platform-independent way.

4.2.4 Convenience

As OPAX is a framework for P2P-based applications, it should provide an easy-to-use interface
to the application. A software developer creating an application using OPAX should not be
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overloaded with internal details of the OPAX implementation. The implementation must provide
simple API calls for the following operations:

• Peer Creation - The first step is the creation of a peer instance. On creation, the peer
starts to listen for incoming OPAX messages, and is ready to perform the operations stated
below.

• Opening / Joining - To enable the exchange of XML messages with other peers, a peer
must open or join an arbitrary number of OPAX spaces.

• Message Broadcast - Applications may broadcast messages into a space. The framework
must guarantee that all participating peers will receive the broadcast message.

• Message Receipt - If other peers broadcast messages, the framework must inform the
application about the received messages.

• Leave - After a peer has left a space, no communication with other peers within this space
is possible.

• Peer Destruction - Quitting the application may require some finalization actions for the
implementation.

4.2.5 Further Functional Requirements

Synchronization In peer-to-peer networks, it is common behavior that peers are temporarily
offline. OPAX provides a mechanism to ensure that messages that have been broadcast during
a peer’s offline period will be transferred to the peer as soon as it is back online. In OPAX,
this mechanism is called synchronization. The specification for the synchronization protocol is
described in appendix C.

Space Directory Service A space directory is a database of known spaces, as well as a
dendriform taxonomy of spaces. Using this database, peers may lookup spaces according to
criteria like keywords. The database resides on well-known peers whose network address is
made public to enable peers that join an OPAX network for the first time to establish contact.
The functionalities of a space directory include:

• space lookup - allows peers to find spaces using mechanisms like keyword search, or to
retrieve a list of spaces that match a given path within a space categorization tree.

• peers lookup - allows peers to retrieve addresses of peers that are potential members of a
space in order to contact them for sending a join request.

• topology manager lookup - allows a peer to retrieve the URI of the topology manager that
is used in a space. This is required because different topologies may require different types
of join requests.
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4.3 Architecture
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Figure 4.1: The basic architecture of an OPAX instance

Figure 4.1 shows the architecture of an OPAX system. An application may create multiple
peers, called local peers, running in parallel. Using a local peer, an application may open or join
spaces. One local peer may join one space exactly once, but one application is enabled to join
a space repeatedly using different local peers.

Each local peer administers several components, each of them operating independently of
the corresponding components of other local peers. These components are:

• Configuration - Each local peer manages its own set of configuration information. The
configuration component includes the local peer configuration (network address, logging)
as well as lists of well-known other peers, spaces, and topology managers.

• Logging - A local peer owns a logging component, whereby all peer components are enabled
to log their activities to enable debugging and the retracing of workflows.

• Synchronization - After a peer temporarily left a space, it is the task of this component to
synchronize it with remote peers in order to make good for delivery of missed messages.

• Topology Manager - As stated above, the topology manager is responsible for carrying out
peer integration and departure protocols and forwarding of broadcast messages.

For each local peer, there exists a network communication component which provides the
functionality to send messages to and receive messages from other peers. Each peer component
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may communicate with other peers directly through the network communication component.
Incoming messages are buffered, parsed and validated against the message schema. Subsequently,
they are delivered to the local peer which then sets adequate actions and dispatches the messages
to the appropriate components.

4.4 Protocol

OPAX uses a simple, straightforward, asynchronous message transfer protocol. Each message
is transferred with no response. A peer sends a message to another peer in the form of the
header, followed by a newline and the actual message (which is an XML document). The data
is transferred using UTF-8 encoding.

OPAX 0.2 541
<Message from= . . . </Message>

Listing 4.1: Message transmission

The header line contains three fields, separated by one white space:

• Identifier - identifies the transmission as standard OPAX transmission. Must be OPAX.

• Protocol version - OPAX uses a <major>.<minor> numbering scheme to indicate versions
of the protocol. The current (and only) version number which is allowed is 0.2.

• Message length - the length of the following XML document in characters.

The OPAX protocol envisages no handshake or direct reply for message transmission. Trans-
mission control functionality must be provided by the underlying transport layer. Therefore, it is
not recommended to use unreliable protocols like UDP[18]. Instead, a protocol that guarantees
transmission (like TCP[19] or any protocol on top of it) should be used.

4.5 Message Types

In general, an OPAX message is an XML document that complies with the OPAX message
schema, which is in its full text reproduced in appendix A. A simple OPAX message could look
as follows:

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message from=” 62 . 1 78 . 0 . 2 08 :9875 ”

space=”opax: //www. somebody . net / t e s t spa c e2 ”
timestamp=”1084781639703”
uuid=”267042b0−a7da−11d8−8fb3−ec f caeed9c12 ”
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xmlns=” ht tp : //www. mminf . un iv i e . ac . at /opax/message/namespace”
>

<Ping/>
</Message>

Listing 4.2: Exemplary Ping message

As you can see, <Message> is the root element for all messages, whereas the actual message
element, <Ping> in this case, is a direct sub-element of <Message>. Currently, OPAX defines
the following message types:

• Ping

• Application

• ApplicationConfiguration

• Topology

• Synchronize

• Directory

• Unknown

In the following, we will discuss these types in more detail. For each message, the syntax
is described, together with a enumeration of the message type’s fields and their meanings. As
OPAX defines messages in terms of XML documents, there exist fields in the form of elements
as well as attributes. We will use these terms here in the sense they have in XML context.

4.5.1 Common Fields

Table 4.1 shows the fields that are common for all message types. Thus, they are defined to be
attributes of the Message element.

Name Type Notes
from A network address
space A URI may be the internal space, see below
timestamp A long in milliseconds from Jan. 1, 1970 UTC
uuid A UUID time-based
xmlns A URI fixed, see below

Table 4.1: Common attributes for all message types
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from - contains the network address of the peer that sent the message. This address must
be in a format that is recognized by the peers. Currently, only a network address of the type
host:port is supported.

space - identifies the space that the message is bound to, using its URI[11]. Certain types of
messages may require to be sent using the internal space, which has the URI
opax://www.mminf.univie.ac.at/opax/space/internal. OPAX uses the schema prefix opax
to identify spaces.

timestamp - marks the time that this message was created, expressed in milliseconds, since
midnight of January 1, 1970 UTC.

uuid - the 128-bit Universally Unique Identifier (UUID) that is used to identify the message.
Each message must be assigned an time-based UUID as specified in section 3.2 in [14].

xmlns - specifies the XML namespace[17] to be used for this message. OPAX defines
http://www.mminf.univie.ac.at/opax/message/namespace as the XML namespace for its
messages.

4.5.2 Ping

The Ping message is used to test connectivity between peers. If a peer accepts a Ping message,
it can be excepted to accept other message types as well. The space attribute must be set to
the internal space (see above). No further attributes are required for the Ping message type.

4.5.3 Application

The Application message is used to transport application data. The parameters specified in
table 4.2 are attributes of the Application element (A), or a sub-element of this element (E).

Name Type Notes
originator A network address
routing-control A string interpretation depends on topology-manager
valid-from A timestamp in milliseconds from Jan. 1, 1970 UTC
valid-to A timestamp
Data E N/A the root element for the application data

Table 4.2: Attributes and elements for Application message type

originator - identifies the application message’s originator. Note that this must not neces-
sarily be equal to the from field of the Message element, because the sender of the message may
already be a relay peer for the broadcast. Unlike the from field, the originator field does not
change through the forwarding of the message.
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routing-control - allows the topology manager to transport routing information. There is
no fixed syntax for this field, as the requirements for the routing control data is dependent on
the network topology and the used topology manager. Nevertheless, there are some predefined
values of routing-control that have special meaning.

• http://www.mminf.univie.ac.at/message/application/routing-control/RC-NOT-ROUTED

identifies that the message should not be routed through the network

• http://www.mm . . . trol/RC-SYNCH-LOCAL

identifies a message that was received through a local synchronization and should therefore
not be forwarded

• http://www.mm . . . trol/RC-SYNCH-REMOTE

identifies a message that was received through a remote synchronization and should there-
fore not be forwarded

The latter two codes identify messages that are received via the synchronization subsystem.
From the peer’s point of view, an application message received by virtue of synchronization is
not distinguishable from a ”regular” broadcast message. The difference is that ”synchronized”
application messages are not to be forward to other peers, which is indicated by setting the
routing-control field to the appropriate value.

OPAX implementations must ensure that during the forwarding, the Message’s uuid and
timestamp fields may not change in order to preserve the message’s original information.

valid-from and valid-to - Application messages in OPAX have a validity period which is
defined by the values of the valid-from and valid-to fields. Messages that have expired may
be discarded and do not have to be processed furtherly. Also, expired messages should not be
delivered to the application.

Data - As application data in OPAX is always valid XML, the Application element contains
a Data sub-element which acts as the root element for the application-dependent elements. Thus,
an Application message may look as follows1:

<Appl i ca t ion o r i g i n a t o r=” 192 . 1 6 8 . 1 . 2 :9871 ”
rout ing−c on t r o l=”000000”
va l id−from=”1089042614437”
va l id−to=”1089042754547”>

<Data>
<aTestMessage a t t r i bu t e=” attr−value ”>

<OneSubNode/>
<TwoSubNode/>

</aTestMessage>

1Note: In the following message listings, the encapsulating Message element is omitted to shorten the listings.
Nevertheless, in a real message transmission, this element may never be omitted as this would cause the message
to be invalid against the OPAX message schema.
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</Data>
</ Appl i ca t ion>

Listing 4.3: Exemplary Application message

4.5.4 ApplicationConfiguration

Similar to Application messages’ Data field, the application’s configuration set is also depen-
dent to the application. OPAX defines ApplicationConfiguration messages, which are used to
inform an application about the current configuration. These messages consist of a set of prop-
erties (pairs of name / value), encapsulated in an element called Properties. Usually, a peer
receives an ApplicationConfiguration message when it joins a space, or when the application’s
configuration set is updated by any authority. ApplicationConfiguration messages are not to
be forwarded to other peers. The OPAX specification does not define policies about which peers
are allowed to send ApplicationConfiguration messages and how to solve contradictions that
may occur when multiple ApplicationConfiguration messages are received.

OPAX does not define a convention for property name fields, nor a syntax for the value
fields.

<Appl i ca t i onCon f i gura t i on>
<Prope r t i e s>

<Property name=”applRunAsService ” value=” true ” />
<Property name=”applRunOnStartup” value=” f a l s e ” />
<Property name=”applMinimize ” value=” f a l s e ” />
<Property name=” app lSe rv i c ePor t ” value=”8200” />

</ Prope r t i e s>
</ App l i ca t i onCon f i gura t i on>

Listing 4.4: Exemplary ApplicationConfiguration message

4.5.5 Topology

Topology messages are used by the space’s topology manager to transfer ”administrative” mes-
sages. Topology messages are required every time a peer joins or leaves the network, or when
the topology of the network is changed because of any other reason. Topology messages are
never directly forwarded to other peers, although they may cause further Topology messages to
be sent.

<Topology type=” ht tp : //www. mminf . un iv i e . ac . at /opax/message/ topology /
type/hypercube2/ Execute Integra t i on ”>
<Prope r t i e s>

<Property name=” Dest inat ionPeer ” value=” 183 . 112 . 14 . 212 :9800 ” />
<Property name=” Dest inat ionPeerCoord inates ” value=”00010011” />
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<Property name=”DestinationPeerCoverMap” value=”00000100” />
<Property name=”MinControlForwardingDim” value=”0” />

</ Prope r t i e s>
</Topology>

Listing 4.5: Exemplary Topology message

The structure of the Topology message is very similar to the one of
ApplicationConfiguration: mainly, it is a set of properties (pairs of name / value), together
with a type attribute, identifying the topology manager-dependent function of the message.

Name Type Notes
type A URI
Properties E set of <Property> elements interpretation depends

on topology manager

Table 4.3: Attributes and elements for Topology message type

type - the type fields uniquely identifies the type of a message. As the used message types
differ dependent on the topology manager used, an URI is used to prevent naming conflicts.

Note that the Topology message type serves as a generic for all messages that the space’s
topology manager uses. It is left to the specification of a certain topology manager to define
the valid sub-types and the properties that are valid for each sub-type. As different topologies
require different types of messages, these definitions can not be generalized for OPAX.

4.5.6 Synchronize

OPAX is designed to allow peers that were temporarily out of a space to synchronize them-
selves with other peers. Synchronization in this context means that a peer belatedly receives
Application messages that it missed during its off-line period. Usually, synchronization is
initiated after the re-joining of a peer is finalized.

Name Type Notes
type A URI message sub-type
UUID E UUID multiple entries allowed

Table 4.4: Attributes and elements for Synchronize message type

For a detailed description of the OPAX synchronization protocol, refer to appendix C.
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4.5.7 Directory

The communication between a peer and a space directory is processed using a special message
type, Directory. The meaning of a Directory message is defined using the type attribute. See
appendix D for more details on the directory lookup protocol.

Name Type Notes
type A URI message sub-type
reference-message A UUID identifies the message to which this message is a reply
Item E N/A list of items, meaning depends on type

Table 4.5: Attributes and elements for Directory message type

4.5.8 Unknown

The Unknown message may only be sent in reply to a received message, identifying that the
message could not be processed. Note that there is a distinction between not delivering and not
processing a message: The sender of a message can assume that the message was successfully
delivered when there was no network error during the transmission. This does not imply that
the message could successfully processed. Imagine a peer which is ready to accept message
receives an Application message for a space that it is not member of. At first, it will accept
the message, but it will respond with an Unknown message to inform the sender of the message
about the problem.

Name Type Notes
reason A string the reason of the problem
text A string an optional detailed description
reference-message A UUID the message that could not be processed

Table 4.6: Attributes and elements for Unknown message type

Note that although OPAX does define the data type of the text attribute as string, the
usage of an URI is recommended to avoid misinterpretation.
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Chapter 5

Implementation of Hypercube
Topology Types in OPAX

5.1 A Distributed Hypercube

5.1.1 Overview

One of the major goals of this thesis is to evaluate the concept of the hypercube topology for
a P2P network. The characteristics of a hypercube, described in section 3, makes this idea
interesting for the field of P2P networking. In section 4, we described the basic structure
of OPAX as well as the different message types. Now, we describe the hypercube2 topology
manager, a fully distributed hypercube topology upon that a P2P network can be built. The
name hypercube2 is a reverence to the HyperCuP system, an JXTA[24]-based implementation
of a hypercube as part of the edutella project, which can be found at [25]. The hypercube2
topology manager basically reproduces the algorithms of the JXTA-based implementation using
the mechanisms of OPAX.

The workflow for the main operations is described in section 5.1.5. Similar to the JXTA-
based implementation, this implementation firstly does not deal with the case of peer or link
failures. Section 5.1.6 describes why such failures may cause the hypercube2 topology to collapse
under certain circumstances. Consequently, section 5.1.7, as a key section of this paper, offers
extensions to the hypercube2 topology that may solve some of the mentioned problems.

The hypercube2 topology manager is identified within OPAX as http://www.mminf.
univie.ac.at/opax/topology/hypercube2.
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5.1.2 Data Structures

The data structure that is required for each instance of the hypercube2 topology manager must
accommodate the information described in section 3. As stated there, a node V stores its
position vector ~pv and its cover map vector ~cv. Usually, this data structure will be implemented
using two binary arrays. Additionally, for each of its neighbour nodes W , the node stores a
tuple W = ( ~pw, addrw), where ~pw denotes the neighbour node’s position vector, and addrw

the neighbour node’s network address to which it can be sent messages. This data will be
represented by a collection of binary arrays (for the node positions) and a collection of a data
type representing the network address (depending on the underlying network system).

In addition to the data structures that represent the network topology, each peer needs to
hold its current state, a value indicating the current situation the peer is in. Depending on this
state, a peer may only process certain message types. The states and their valid transitions are
depicted in figure 5.1.

5.1.3 Message Types

The hypercube2 topology manager defines the following sub-types of the Topology message.

Message Description
Join Sent by a peer which wants to join the space to a randomly

selected peer which potentially is member of the space
RouteIntegration Used to route the integration request through the hypercube

until the first integration champion is found
ConnectNeighbours Sent by an integration champion or a prospective neighbour

containing topology data for the new peer
ExecuteIntegration Sent by a new peer to its integration partners to initiate

the actual integration
FinalizeIntegration Sent by the new peer to its integration or departure partners

(integration champions, prospective neighbours) to indicate
the completion or abruption of the topology modification

StartBuffer Sent by a peer which wants to depart to its neighbours
ConfirmBuffer Sent by a peer which is a buffering node (i.e. taking over

positions from a departing peer) to confirm its buffering

Table 5.1: hypercube2 message types

More message types are defined by the peer watch protocol, described in appendix E.
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5.1.4 Peer States

Before we can describe the workflow of the topology manipulation operations, we have to define
the states that a peer can be in. In addition to the self-explanatory states of INTEGRATED and
OUT, the distributed trait of the hypercube2 topology requires the introduction of ”transaction”
states, i.e. states that are entered temporarily during the execution of topology manipulation
operations. hypercube2 defines the states that are given in table 5.2, the valid state transitions
and the events that cause the transitions are depicted in figure 5.1.

Name Description
OUT the peer is not member of the space and has no connections with

any other peer, thus it is not ready to broadcast or receive
Application messages or to perform topology manipulation
operations

CONTACTING the peer is not member of the space, but is trying to establish
a connection to a member in order to kick off the integration process

JOINING the peer did successfully contact a peer and is waiting for the
integration confirmation

INTEGRATED the peer is member of the space and ready to receive messages
and to perform topology manipulation operations

INTEGRATING the peer is member of the space and is currently busy with integrating
a new peer within its neighbourhood

BUFFERING the peer is member of the space and is currently busy with removing a
departing peer out of its neighbourhood

DEPARTING the peer is member of the space but is departing and thus waiting
for the departure confirmation

Table 5.2: hypercube2 peer states

Note that a peer’s state is always related to a certain space. One and the same peer may
be OUT of space A, JOINING space B and INTEGRATED into space C simultaneously. We de-
nominate the INTEGRATING and BUFFERING states as transitional states because they are slight
modifications of the IN state and can only be entered from and left to the INTEGRATED state.

5.1.5 Workflow

OPAX provides the Topology message type for administrative messages between instances of
a topology manager on different peers. The Topology message is consciously designed to be
flexible for the needs of different topology managers. The hypercube2 topology manager defines
several sub-types of the Topology message. This section describes the flow of messages for every
transaction that affects the topology of the network.

The following operations are supported by the hypercube2 topology manager:
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BUFFERING

application request
to join space
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receipt of all new neighbours

request to integrate a new peer
in the neighbourhood

no peer reachable

integration not possible

integration finished

request to remove a peer from the neighbourhood

removal finished

application request to leave space

departure protocol finished

peer creation peer destruction

Figure 5.1: Valid state transitions of hypercube2 peers

• Peer Integration - Integration is the key operation for constructing a hypercube-based
topology. This section describes the process of contacting already integrated peers, meth-
ods to forward the integration request, different approaches of randomization to provide
a balanced distribution of load, and finalization messages that commit the integration to
the new member peer.

• Peer Departure - When a peer wants to leave the network, it must carry out a departure
protocol in order to guarantee that the topology is in a consistent state after the departure.
This includes the selection of buffering nodes, the assignment of positions to the nodes,
and the commitment of the transaction.

• Message Broadcast - As the key feature of OPAX is broadcast of messages into the network,
this section describes the implementation of the broadcast algorithm described in section
3.3.

Obviously, the implementation of topology operations in a distributed environment is non-
trivial. Every operation requires a number of steps, a sequence of messages to be sent, and the
collection of acknowledgement messages from neighbour peers. It must be stated again in this
context that the this protocol was designed without consideration of peer or link failures. A
lost message causes the participating peers to remain in an inconsistent state. As the OPAX
protocol in general is asynchronous, this may result in peers no more accepting messages or
replying to requests.
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In this section, the terms network and space are used synonymously, as every space has its
own topology which is totally independent of other spaces. Also, joining a space may in no case
affect the peer’s membership to other spaces.

Peer Integration

The integration of a new peer into the space is the fundamental operation of the hypercube
construction process. The integration algorithm is performed once for every peer that joins the
network. Naturally, the first peer in the network (the peer that opens the space) does not have
to perform any joining algorithm. It sets its state to INTEGRATED and is from now on member
of the space.

Figure 5.2 shows the sequence of messages that are sent during a ”normal”, i.e. error-free
integration process.

The integration process can be divided into three phases: approach, integration, and final-
ization. During these phases, the contacting peer and all participating peers repeatedly change
their states and adjust their data sets to the new situation.

Phase 1 - Approach The joining process is initiated by a peer that is not part of the network
(i.e. the space). It sets its state to CONTACTING, indicating that it is demanding incorporation
into a space. It sends a Join message to its first contact peer1 and waits for reply.

As described above, the first contact peer randomly selects an integration position and initi-
ates the routing of the integration request. Actually, a RouteIntegration message is forwarded,
holding all necessary data to carry out the integration process.

Note that if a peer cannot accept a Join request, it must reply using an
FinalizeIntegration message with the success field set to false in order to indicate that
the request was not handled properly. Thus, the joining peer must restart the joining process
by searching a different first contact peer. This exception is not depicted in figure 5.2.

Phase 2 - Integration After the joining request reaches its final recipient (the peer that will
become the integration champion), this peer carries out the steps according to the algorithm
described in section 3.6. During the execution of this algorithm, the integration champion
identifies other integration champion and/or prospective neighbours for the new peer. Thus, it
will send a ConnectNeighbours message to the joining peer, handing it the positions network
addresses of these peers, and causing the new peer to enter the JOINING state, indicating that
the integration is in process.

It is up to the new peer to register itself at the new integration champions and prospective
neighbours, in order for them to carry out the integration algorithm on their own and possible

1It is out of the scope of this section to define how the peer became aware of its first contact peer. This is the
task of the space directory service, described in appendix D.
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sending ConnectNeighbours messages to the new peer, too. All participating peers temporar-
ily enter the INTEGRATING state to indicate that they currently can accept no other topology
manipulation request. This loop is executed until no new integration champions or prospective
neighbours are identified, and this marks the end of the integration phase.

Phase 3 - Finalization Now, the new peer has registered itself at all its new neighbours.
After it collected the ConnectNeighbours replies from all its integration partners, it finalizes
the integration by sending a FinalizeIntegration message with the success field set to true
to all its partners. This message transmission marks the end of the integration process, and all
peers now can return to the ”normal” JOINED state.

Peer Departure

As stated in section 3.6, peers which want to leave the hypercube must carry out a departure
protocol in order to keep the topology in a consistent state. This includes the selection of peers
that take over positions that become vacant and the assignment of these positions to their new
occupier. Similar to peer integration, if a peer has no neighbours, it can expect to be the last
peer in the network and can therefore ”leave” it without performing any protocol.

Although the departure protocol is slightly less complex than the integration protocol, we can
divide the departure into three phases: initialization, departure, and finalization. The phases,
the messages that are exchanged, and the state transitions that peers perform during these
phases, are depicted in figure 5.3.

Phase 1 - Initialization The peer that wants to leave the network (it must be in INTEGRATED
state) selects buffering nodes that will take over positions from the departing peer and selects
positions from its set of covered positions that this nodes will cover after the departure. Then
the peer sends StartBuffer messages to all buffering nodes and sets its state to DEPARTING,
indicating that is to leave the network.

Phase 2 - Departure A peer that receives a StartBuffer message becomes a buffering node,
and sets its state to BUFFERING in order to indicate this. It checks whether to connect to new
neighbours; if not, it directly commits to the departing peer by sending the ConfirmBuffer
message to this peer. If there are new neighbours for the buffering node, it registers at them by
sending a ConfirmBuffer message to every one of its new neighbours. It is then up to the new
neighbours (which, on their part, change their state to BUFFERING) to update their neighbour set
and to confirm the departure to the departing peer by sending another ConfirmBuffer message.

Phase 3 - Finalization Similar to the peer integration protocol, the departing peer waits for
all participating peers to confirm the departure. Upon reception of the appropriate
ConfirmBuffer messages, the departing peer sends a FinalizeIntegration message to all
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its partner peers, thus finalizing the departure protocol. Then, it sets its state to OUT, indicat-
ing that it is no more member of the network. All participating peers which are currently in
BUFFERING state fix their neighbour sets and return to the INTEGRATED state.

Message Broadcast

If peers carry out the integration and departure protocol as described above, they can always
expect the topology in a state that allows the application of the message broadcast algorithm
described in section 3.3. OPAX provides the routing-control field of the Application mes-
sage type to allow topology managers to control the forwarding of application messages. The
hypercube2 topology manager populates this field with a binary vector ~r indicating on which
positions the messages has already been forwarded.

The first peer, call it V , which is called the originator of an application message sends the
message to every peer W which is a direct neighbour of V , with a routing-control field set
to 1 for all dimensions d ≤ L(~pv, ~pw) and 0 for all dimensions d > L(~pv, ~pw). Note if there are
two nodes that have the same link dimensionality relative to V , the message is sent only to the
direct neighbour, ensuring that the message is forwarded only once per dimension.

A peer X that receives an application with a routing control vector ~rm message must check all
of its neighbours: for every neighbour W , it computes the link dimension dw to that neighbour:
dw = L(~px, ~pw). If rd

m = 0 and no message has yet been sent along dimension dw, the peer
creates a new routing control vector ~rt with all field set to 1 for dimensions d ≤ dw and 0 for
all dimensions d > dw and forwards the message to its neighbour W with the routing-control
field set to ~rt.

Thus, every peer

• forwards a message only to dimensions higher than the dimension on which the message
was received

• forwards a message only once per dimension, and

• forwards a message at most once per neighbour peer

gaining a broadcast procedure which is optimal in terms of messages sent - it is always n−1,
the number of peers in the hypercube minus one.

It must be stated again that this broadcast algorithm is not optimal in terms of symmetry.
As every node forwards messages only to dimensions the message has not yet been forward, the
number of messages a node sends in the course of broadcasting is inversely proportional to its
distance to the message’s originator node.
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5.1.6 Disadvantages and Weaknessess

Although the hypercube topology is a good solution for the problem of broadcasting, several
problems arise when an actual implementation has to be made. In this section, we will describe
some problems.

Algorithm Complexity

As described in [10], the integration and departure algorithms have a complexity of O(dmax) in
terms of messages sent during the algorithm. However, in terms of local execution, algorithms
may have a complexity which make them infeasible for the construction of hypercubes of higher
dimensions. Consider the following code:

1 procedure computeCoveredPosit ions (IN Bi tF i e ld rootPos , IN Integer
cur rentDig i t , IN L i s t numericalCoverMap , OUT L i s t po sL i s t )

2 begin
3 i f numericalCoverMap . l ength = 0 then
4 posL i s t . add ( rootPos )
5 else
6 begin
7 B i tF i e ld zeroRootPos = rootPos . copy ( )
8 zeroRootPos . set ( numericalCoverMap . get ( cu r r en tD ig i t ) , 0)
9 B i tF i e ld oneRootPos = rootPos . copy ( )

10 oneRootPos . set ( numericalCoverMap . get ( cu r r en tD ig i t ) , 1)
11
12 i f ( cu r r en tD ig i t < numericalCoverMap . l ength − 1) then
13 begin
14 computeCoveredPosit ions ( zeroRootPos , cu r r en tD ig i t + 1 ,

numericalCoverMap , posL i s t )
15 computeCoveredPosit ions ( oneRootPos , cu r r en tD ig i t + 1 ,

numericalCoverMap , posL i s t )
16 end
17 else
18 begin
19 posL i s t . add ( zeroRootPos )
20 posL i s t . add ( oneRootPos )
21 end
22 end
23 end

Listing 5.1: Computation of covered positions

The code shown in the listing above depicts the calculation of a node’s covered positions,
as described in section 3.6.3. Here, the node’s cover map is not represented by a binary vector,
but by its numerical representation, called numerical cover map: a list of integer values, one for
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each position in the cover map being set to 1. So, a cover map ~cv of 011010 would result in a
numerical cover map of num(~cv) = {1, 2, 4}.

For every element in the numerical cover map, the algorithm creates two new root positions,
one with a 0 and one with a 1 at the cover map position in question. Then, the algorithm
recursively iterates through the elements of the numerical cover map. If the recursion reaches
its end (by reaching the end of the numerical cover map list, decided by the if query in line 12),
the two resulting positions are added to the list.

This results in a list of the length 2‖~cv‖, which is a problem especially in the ”beginning
phase” of the hypercube. Consider the first node that opens the hypercube: as it covers all
positions, its cover map consists only of 1s, and thus this list would have a length of 2dmax .

dmax, on the other hand, must be selected high enough so that the hypercube can accom-
modate the desired number of nodes, as this capacity is also delimited by 2dmax .

Peer and Link Failures

In a straightforward implementation, a sudden failure of a peer or a link between two peers may
lead to the loss of messages. An abortive delivery of messages may cause peers to remain in a
state where it is no more able to continue its algorithms.

Topology Manipulation Consider the case of peer integration, depicted in figure 5.2 on
page 41: after having sent ExecuteIntegration messages to all its integration champions and
prospective neighbours, a joining peer waits for ConnectNeighbours messages from all those
peers in order to get a confirmation to its request. If one of the integration champion or
prospective neighbour peers crashes during or after receipt of the message, it is no more able
to send the reply. Thus, the joining peer waits indefinitely, and so do the other participating
peers, which stay in their INTEGRATING state until they would receive the FinalizeIntegration
message.

A similar effect may occur during the execution of a peer departure, as shown in figure 5.3
on page 43. Peers may stay in BUFFERING state if communication is broken during the second
phase of a peer departure.

So, one crashed peer or one faulting link may cause a ”deadlock” on many peers in the
network. As peers being in a transitional state (INTEGRATING, BUFFERING) should not accept
and/or forward Application or ApplicationConfiguration messages, this may result in a
”black hole” where no application messages can be transferred over. Also, while being in a
transitional state, peers should not accept join or departure requests from other peers, as those
requests could not be executed on a hypercube being in an inconsistent state.

Message Broadcast In addition to topology inconsistencies, a peer failure may cause
Application messages not to be reliably forwarded over the whole hypercube. Consider the
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situations depicted in figure 5.4: the figure shows the forwarding of a message originated by
node 0.
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Figure 5.4: Peer or link failure effects to a message broadcast

In figure 5.4a, all nodes and links work, so the broadcast can be executed according to the
broadcast algorithm specified above. In figure 5.4b, node 5 fails prior to receiving the message.
In this case, this has no direct impact on other peers, as node 5 does not act as relay in this
constellation, as it has no neighbours in higher dimensions than the one over which it received
the message. In figure 5.4c, the failure of node 1 prior or during the receipt of the message
has fatal effects on the message transmission: as nodes 2, 5 and 7 are ”behind” node 1 in the
message forwarding tree, they are not able to receive the message originated by node 0.

Even worse, nodes 3, 4, and 6, which could stand in for node 1 in order to deliver the message
to nodes 2, 5, and 7, have no chance to identify node 1 as faulty, because they do not even know
about node 1, as every node in the hypercube only knows about its direct neighbours. Only
node 0, as originator of the message, could get aware of node 1’s failure and perform eventual
operations to fix the situation. Additionally, node 7 has no chance to detect the failure of node
1 as it does not know its physical address since it is no direct neighbour.

Multiple Peer or Link Failures

As we see in the following section, there exist methods to solve the problem of a single peer or
link failing up to a certain degree of contentment. However, the problem of multiple peers or link
failing simultaneously may lead to an irrecoverable loss of the hypercube topology and, in the
worst case, cause the hypercube to break apart, as every peer has only local knowledge about
the hypercube topology (i.e. only its direct neighbours). Most solution approaches are only able
to cover the failure of one peer and fail by themselves when multiple peers fail simultaneously.

5.1.7 Methods of Resolution

In the previous section, some problems that arise in a distributed hypercube topology were
stated. With the following approaches, some of these problems can be solved. Some of these
ideas have been implemented and tested in the reference implementation, partly they have only
been considered and are to be evaluated in further work.
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Dimension Increase

The problem of calculating a peer’s covered position list has complexity O(2dmax). When dmax,
the number of dimensions the hypercube can have at most, is set to higher numbers in order to
accommodate high numbers of peers, the calculation of the list is infeasible.

To address this problem, a maximum used dimension, duse is introduced. duse denotes the
highest dimension that a peer must consider when calculating its covered positions in order to
integrate a new peer. duse is defined to be the maximum of (1) the index of the last 0 in a peer’s
cover map ~cv, and (2) the index of the last 1 in the peer’s position vector ~pv.

The first peer in the network sets duse to -1, as its cover map does not contain any 0, and its
coordinate vector does not contain any 1. Every time the peer needs to integrate a new peer, it
checks if it has positions along dimensions d ≤ duse to select as integration dimension. If this is
the case, it integrates the peer as described. If not, it increases the maximum used dimension
by 1, thus ”opening” a new dimension in the hypercube, as long as duse < dmax. The dimension
duse must be passed along to all the integration champions and prospective neighbours, in order
for them to adapt their local duse.

After departure of a peer, each participating peer may calculate its local duse independently
by the rule stated above, to possibly ”close” unneeded dimensions.

The computeCoveredPositions procedure stated above does not have to be changed. In-
stead, the definition of the numerical cover map num(~cv) has to be reformulated to num(~cv, duse):
instead of adding all cover map positions that are set to 1, only those positions p ≤ duse are
added to the numerical cover map. So a cover map ~cv of 01001111 and duse = 3 would lead to
num(~cv) = {1, 4, 5, 6, 7}, but num(~cv, duse) = 1.

The dimension increase algorithm has been integrated into the OPAX reference implemen-
tation in the hypercube2 topology manager. A field maxDimension holds the currently highest
dimension duse. This field is added to each message during a topology manipulation, and peers
which are affected of a topology change update their maxDimension field after every such oper-
ation.

Topology Modification Rollback

To prevent the emergence of deadlocks, caused by peers or links failing during an topology
modification, peers being in a transitional state (INTEGRATING or BUFFERING) may fall back to
the INTEGRATED state - and thus ignore all modifications caused by the integration or departure
of a peer - after a certain period of not receiving a commitment message (timeout). This
potential problem resolution has the drawback of not being able to cope with peers that reply
to a message belatedly, because of overload or other (local) reasons. The length of the timeout
has to be selected with care, and has to be equal for all peers. However, we discourage the
use of this mechanism because peers may fall back independently or delayed, and thus causing
situations where peer states are mixed (transitional and non-transitional).
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The rollback mechanism is improved when one peer acts as transaction principal which then
coordinates an eventual rollback. The selection of one peer as principal is straightforward: when
integrating, the new peer is the only one that gets aware of all participating peers and thus can
act as principal. When departing, it is up to the departing peer to inform all its neighbour nodes
and to commit (or rollback) the departure procedure.

This implicates problems when the principal peer fails during the transaction or when a link
failure causes a finalization message not to be transmitted. So it is crucial for the system to use
a protocol which guarantees the delivery of messages, like TCP[19].

Currently, the rollback mechanism is not implemented in the OPAX reference implementa-
tion.

Stale Peer Ignoring

Another approach, albeit not actually being a solution of the problem of peer failures, is to
ignore peers that are not reachable. ”Ignoring” in this context means that

1. the peer is not expected to forward Application messages,

2. the peer is ignored in topology modification operations (i.e. it is not expected to reply to
Topology messages, and

3. after a certain period of absence, the peer is dropped from the topology.

Message Broadcast (1.) implies that a modified broadcasting algorithm is required. As the
originator of a broadcast may not know about the failure, the peer that attempts to forward
the message to the faulty peer must carry out modified broadcast rules: if a peer V forwards a
message along dimension dfail to peer W , and this transmission fails, V must ask its neighbour
along dimension dfail +1 (if it has such), call it X, to forward the message to dimension dfail on
behalf of V . X, if it has a neighbour along dimension dfail, starts a limited broadcast which it
only sends to this neighbour, which, on his part, handles this message as ”ordinary” broadcast
message and handles it according to the rules of the (extended) broadcast algorithm. This
algorithm is to be performed for every broadcast, including the ”limited” ones.

We will demonstrate this modified broadcast with an example. Consider figure 5.5a, where
peer 0 is the originator of a broadcast, and peer 1 (which is neighbour of peer 0 along dimension
0) fails to accept the message. As peer 0 detects the failure of peer 1, it requests the peer on the
next highest dimension (peer 3) to forward the message to dimension 0 on behalf of peer 0 (this
request is indicated by a double arrow along the corresponding link). So peer 3 starts a limited
broadcast which it sends only to peer 2 along its dimension 0 (figure 5.5b). Peer 2 receives the
message along dimension 0 and thus forwards it to dimensions 1 (peer 1) and 2 (peer 7).

Now peer 2 detects that peer 1 fails, and again asks its neighbour along the next highest
dimension (2), peer 7, to carry out the broadcast to dimension 1 on behalf of peer 2 (figure
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Figure 5.5: Modified broadcast algorithm for peer failures

5.5c). Peer 7, originally receiving the broadcast message along dimension 2 (which is dmax in
this case) and thus not forwarding it, starts the broadcast on all dimensions higher than 1 and
so, finally, sends the message to peer 5. Peer 5, receiving the message along dimension 1 and
thus having it to forward to dimension 2, detects that its 2-neighbour, peer 1, is faulty. As dmax

in this example is 3 (the cube’s dimensions are 0, 1, and 2), there exists no neighbour along
dimensions higher than 2, and so peer 5 can ignore the fact that peer 1 fails because peer 1
would not act as an relay for the broadcast originated by peer 5.

Figure 5.6, as a further example, shows the modified broadcast algorithm in a 4-dimensional
hypercube. O marks the originator of the broadcast, F marks the faulty peer.

O

F

a

O

b

O

c

F F

Figure 5.6: Modified broadcast algorithm in a 4-dimensional hypercube

By introducing another slight modification, a broadcast algorithm may eventually cover
situations where multiple peers fail. Consider figure 5.7a, which shows a broadcast similar to
the one above, with the exception that now two peers are faulty, marked with F1 and F2.
Similar to before, the originator, after recognizing peer F1 along dfail = 1 as faulty, requests its
2-neighbour (marked A) to limitedly forward the message to dimension 1 (figure 5.7b). Peer A
attempts to do so, but its 1-neighbour, peer F2, is also faulty, thus it sets dfail = 1. If it would
execute the modified broadcast algorithm stated before, it would now ask its neighbour along
dimension dfail + 1 = 2 to forward the message. But this would be peer O, the one that A
received the forwarding request from. Selecting peer O would result in an endless loop.

Thus, peer A now has to increase dimensions from dfail up to dmax − 1 until it finds a
neighbour to send the forwarding request to. In this case, peer B is the one to be selected,
although it did receive the broadcast message yet. Nevertheless, B is requested to forward
the message. After B’s 1-neighbour, peer C, receives the message, it performs the broadcast
forwarding algorithm - forwarding messages to all neighbours along dimensions heigher than the
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Figure 5.7: Broadcast algorithm with multiple nodes failing

dimension along the message was received. The message was received along dimension 1, so C
forwards it to dimension 2 (peer D), and dimension 3 - again detecting that its 3-neighbour, peer
F2, is faulty. As this results in a dfail = 3 = dmax − 1, there is no need to execute the modified
broadcast algorithm: peer F2 would not act as relay for a message broadcast. The same for peer
D, which does not need to take action upon detection of the faultiness of its 3-neighbour, peer
F1.

It is still to be proved if, using this algorithm, any peer failure may be covered, presumed
that every non-faulty peer V is still ”reachable” in the sense that there is a path from the
broadcast originator to V . It is still to be determined how many peers simultaneously failing
the algorithm may cope and how faulty peers may distributed over the hypercube.

Topology Manipulation For topology manipulation operations, it can currently not be
clearly stated if (temporarily) ignoring a stale peer may affect the overall state of the topol-
ogy. It seems that ignoring a faulty peer during a topology manipulation operation is possible
at first glance: positions that the stale peer would cover are no more assigned to newly arriving
peers, and covered positions which would have to be transferred to the stale peer by a departing
peer expire. But, with increasing number of topology operations, more and more positions get
lost to the stale peer, in the worst case causing the loss of connectivity.

The idea of ignoring stale peers has been tentatively integrated in the reference implemen-
tation (hypercube4 topology manager), but no satisfying results have been achieved up to now.

Peer Watch

The idea of the peer watch concept is to designate one substitute, the monitor peer, for each
peer in the network. It is up to each peer to find a substitute in its neighbourhood, usually the
closest peer, after its joining, and every time its local topology changes. This substitute initially
gets a copy of the watched peer’s local topology information. Every time the local view of the
topology changed (because a peer joined or left the network), every peer must again select a
neighbour to be its monitor.

The information that each monitor must receive from its monitored peer V consists of
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1. its cover map,

2. its list of neighbour positions, and

3. their network addresses.

It is the task of the monitor peer to regularly check if its monitored peer is still reachable,
and to initiate a departure on behalf if the monitored peer is lost. The protocol of a ”departure
on behalf” is similar to the one of the regular departure, as depicted in figure 5.3 on page 43,
with the difference that all messages from and to the departing peer is sent from and to the
monitor peer. So any peer may be removed of the topology if it is not reachable for a certain
period of time.

Naturally, this workaround fails if both the monitored and the monitor peer fail simultane-
ously, or if a monitored peer and one of its neighbours fail, as then it is no longer possible to
process the departure protocol as a whole.

In the reference implementation, the monitor concept has successfully been integrated, intro-
ducing four new Topology message types that control the selection and notification of monitor
peers. These messages are described in appendix E. Additionally, respective hypercube2 message
types have been extended a boolean field OnBehalf, which indicates that the departure process
is carried out by a monitor peer instead of its charge. Each peer receiving a message with the
OnBehalf field set to true must reply not to the departing peer as indicated in the message,
but to the sender of the message, which is the monitor peer.

Global Shutdown

The simultaneous loss of several peers may cause the hypercube to ”break apart” and because
of the limited topology knowledge of each peer, it may be impossible to locally reconstruct the
adjustment of peers. One possible approach addressing this would be a global shutdown: initiated
by a shutdown authority, and transparent to the application, peers leave the network suddenly
(without executing a clean departure protocol) and re-join after a short period. The re-joining is
performed according to the integration protocol, resulting in a different but consistent topology.

Problems that arise with this proceeding include:

• Shutdown Authority Question - One basic principle of a distributed hypercube is its sym-
metry: all peers are completely equal. The global shutdown command must be issued
by some authority, to avoid overlapping of multiple shutdown commands. The only peer
that is prominent is the network’s opener. So one could implement a global shutdown as
follows: the opener of a space is known to all peers, and a peer recognizing a multiple
peer failure in its neighbourhood must report this to the opener, which then issues the
shutdown command via a broadcast and, after this, re-opens the hypercube immediately.

• Opener Failure - Obviously, if the network’s opener fails, there exists no authority to issue
the global shutdown command. By combining the global shutdown with the peer watch
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concept described above, the concept could be saved as long as not both, the opener and
its monitor, fail.

• Shutdown Broadcast Loss - It is the purpose of the global shutdown command to abandon
a broken hypercube topology and create a new one instead. Actually, the shutdown com-
mand must be broadcast through the network. As the topology may already be broken or
divided into parts, it is not guaranteed that the broadcast receives all participants of the
network, resulting in some peers leaving the cube and establishing a new one, and some
not.

• Permanent Shutdown - Together with the number of peers in the hypercube, the number of
multiple peer failures increases. A big network with a certain probability of failing causes
peers to issue a global shutdown too often, retarding any productive work.

Implicit Coordinates

Another approach is to use a value which is out of the scope of OPAX as foundation for the
peer’s coordinate vector, thus making the topology of the hypercube inherent to the physical
conditions of the network. Verdy considers the calculation of a hash value of a peer’s IP address
and port number[42]. Another approach would be to use IPv6[43] as the basis for hypercube
addresses.

Fallback Topology

It would be an option for a hypercube network to maintain a fallback topology to which the
system could switch in case of a breakdown of the ”main” hypercube topology. The problems
stated for a global shutdown apply to the fallback topology concept as well. Additional overhead
is produced because the fallback topology must be maintained and updated every time a node
joins or leaves the network. Consequently, a fallback broadcast mechanism is required because
the hypercube broadcast algorithm can not be applied to any topology.

The Global Shutdown, Implicit Coordinates, and Fallback Topology mechanisms have not
been integrated into the reference implementation.

Centralized Approach

In a centralized approach, the topology is not maintained by distributed peers, but by a central
instance which controls join and departure operations. A centralized hypercube is described in
more details in the following section.
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5.2 A Centralized Hypercube

5.2.1 Overview

Opposite to the decentralized hypercube, where the topology was managed in a distributed way
by the participating peers, in the centralized approach there exists a server which manages the
topology. Each peer joining or leaving the network does this by sending the appropriate request
message to the server. The server then informs the peer about its position and its neighbours.
The transfer of broadcast messages continues to be executed completely distributed, without
any need for the server to intervent.

The problems that a symmetrically managed hypercube causes, led to the idea of centralizing
the topology administration and a simplification of topology recovery in the case of faulty peers.
Although this step means averting from the decentralized but structured concept to a centralized
system, and thus introducing the big disadvantage of a single point of failure, it may be an
alternative to a distributed management.

The centralized management of a hypercube implies significant changes in the peers’ data
structures and procedures: instead of implicitly storing the topology on distributed peers,
whereof every one has only limited knowledge about the overall topology (i.e. only its position,
cover map, and direct neighbours), the hypercube must explicitly be stored at the manager, and
all topology manipulation operations have to be performed on this data structures.

5.2.2 Peer States

As the idea of a centralized hypercube introduces asymmetry into the P2P network, a peer may
be started as managing server or as ”stupid” peer. In the first case, no peer states are required,
as the managing server is not part of an OPAX space. In the latter case, the peer states and
transitions are depicted in figure 5.8 and listed in table 5.3:

Name Description
OUT the peer is not member of the space and has no connections with

any other peer, thus it is not ready to broadcast or receive
Application messages or to perform topology manipulation
operations

JOINING the peer did successfully contact the managing server and is
receiving neighbours from the server

INTEGRATED the peer is member of the space and ready to receive and forward
messages

DEPARTING the peer has sent a departure request to the server and waiting
for the departure confirmation

Table 5.3: hypercube4 peer states
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Figure 5.8: State transitions for a centralized hypercube

As you can see, the transitional states BUFFERING and INTEGRATING were discarded. As
”normal” peers are not involved in topology manipulation operations, there is no need to keep
these states.

5.2.3 A Hypercube Tree Structure

A data structure to accommodate the topology of a hypercube is required. The following criteria
may be formulated for such a data structure:

• The data structure must formally be equal to a hypercube: the mapping function from
the topology to the data structure must be one-to-one.

• All aspects of the topology must be represented in the data structure.

• The data structure must adapt to an arbitrary number of dimensions.

• No aspect should be represented multiply.

• Topology manipulation operations should execute with good performance, ideally O(log n)
in a hypercube with at most n peers.

• The data structure should easily be divisible to enable the distribution of the centralized
topology to enable load-balancing.

A possible representation for a hypercube is a tree structure. Recall the construction of the
hypercube, as depicted in figure 3.1 on page 12. For the tree structure, every dimension of the
hypercube is represented as one level of the tree, enabling the tree to grow indefinitely. In each
node, neighbourship relations between peers are stored for one sub-cube of the hypercube. The
construction of such a tree, confronted with the construction of the hypercube, is depicted in
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figure 5.9: initially, the hypercube consists of 8 0-dimensional sub-cubes (a). The tree nodes
on level 0 represent the four 1-dimensional subcubes of the hypercube (b), the nodes on level
1 represent the two 2-dimensional subcubes (c), and the node on level 3 represents the 3-
dimensional cube as a whole (d).

In this data structure, every node consists of a list of mappings, whereof each one (called
a ”slot”) represents one edge of the cube. By traversing the tree from the bottom to the top,
one can determine the coordinates for each peer by simply concatenating the 0 or 1 along all
traversed edges.

This tree structure is also suitable for accommodating hypercubes that are not fully popu-
lated: similar to the decentralized approach, peers may occupy multiple positions along dimen-
sions that they have no neighbour on. Figure 5.10 shows a partially populated hypercube and
its tree representation.

As we will see below, the idea of centrally constructing the hypercube from its sub-cubes leads
to a slightly different construction algorithm and a different alignment of peers if the hypercube
is not fully populated. The reason for this is that - contrary to the decentralized approach
where neighbours along higher dimensions are considered as closer as neighbours along lower
dimensions, and dimensions along which a peer has to cover additional positions are determined
at the beginning of the integration - in the centralized approach additional positions to be covered
are designated as late as possible, as soon as necessary. We will further describe this idea in the
workflow section below. The hypercube from figure 5.10 would, if constructed centrally, look like
the one in figure 5.11. Note that the positions of the peer remain equal, only the additionally
covered positions change.

In figure 5.11, slots marked with an X are non-populated positions of the hypercube. For
every mapping entry, peers that have an X as opposite are covering the appropriate position.
On higher dimensions, fields that are gray indicate that the position is not occupied by a peer,
but additionally covered. By taking this into account, one can calculate a peer’s cover map
again by traversing the tree: for every dimension where a peer has an opposite, the cover map
position is set to 0, otherwise - if the peer has no opposite - it is set to 1.

The neighbour set, i.e. the list of neighbours for a peer V can be determined by traversing
all nodes from the top (root) node, and adding each opposite of V in each mapping to the list.
In figure 5.11, the neighbours of peer 1 would be peers 4 and 5 along dimension 2, and peers 2
and 3 along dimension 1. Along dimension 0, peer 1 has no neighbour, as it covers the position
by itself.

In the following description of the integration and departure workflow, we will denote the
ith mapping list on dimension d as Mi

d, and its jth entry with Mi
d[j].

Peer Integration

A peer which wants to join the network contacts the topology manager server by sending a
Topology / Join message. The server executes the following steps:
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Figure 5.9: Construction of a hypercube’s tree representation
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Figure 5.10: A partially populated hypercube and its (hypothetical) tree representation
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Figure 5.11: A centrally constructed, partially populated hypercube and its tree representation
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1. Position Selection - The server, aware of a list of vacant positions, selects one position
randomly and designates it to the new peer.

2. Neighbour Collection - The server now traverses the topology tree from the position that
the new peer was assigned (which is a leaf at the bottom of the tree) up. For every
dimension, the peer is charted into the mapping table on the appropriate positions. On
every dimension, a number of opposites (neighbours) for the peer is identified and sent to
the new peer. This step is repeated for each dimension, up to dmax − 1.

Formally: To integrate peer V , for every mapping list Mi
d along the traversing path from

the peer’s leaf to the root of the tree, the following rules apply:

• If Mi
d is empty, all slots on the integration side are occuppied by V , and for all slots,

the opposite side is set to X .

• Otherwise, V is put on positions according to its positions in M2i−1
d−1 resp. M2i

d−1:
for all positions M2i−1

d−1 [j] resp. M2i
d−1[j] that are occupied by V , V also occupies the

left resp. the right side of Mi
d[j] if V covers the left side of M2i−1

d−1 [j] resp. M2i
d−1, or

Mi
d[2

d−1 + j] if V covers the right side of M2i−1
d−1 [j] resp. M2i

d−1.

3. Finalization - After having traversed all dimensions, the new peer is fully integrated into
the hypercube and may start to send and forward Application messages.

We will demonstrate the integration process with an example. Consider a centralized hyper-
cube with dmax = 3. Initially, the cube is empty, there are no peers, thus all slots in the tree
are empty. This situation is depicted in figure 5.12a.

Now, peer 0 contacts the server, wishing to be integrated into the cube. The manager
randomly selects position 011 and assigns peer 0 to it. Then, the tree is traversed upwards. As
there are no other peers in the tree, peer 0 occupies all positions without having any opposite.
For instance, on dimension 0, the opposite field for peer 0 is empty. This means that peer 0
must additionally cover a position along dimension 0, now marked with an X . This situation is
depicted in figure 5.12b.

Next, peer 1 is integrated. The server selects 010 as the position and again traverses the tree,
similar as with peer 0, up to dimension 2, where it is the first time that a peer has an opposite.
Both peers 0 and 1 are notified about their new opposites, and the integration is finished (figure
5.12c).

As now peer 2 joins the space, it is designated position 001. Peer 2 will have two neighbours:
on dimension 1, it will become neighbour of peer 0, and on dimension 2, it will become neighbour
of peer 1 (although they are not immediate neighbours, i.e. their Hamming distance is 6= 1).
After integrating peer 2, the hypercube looks as in figure 5.13. Note that along dimension 1,
peer 0 did not have a neighbour (and thus covering additional positions). Now, as peer 2 is peer
0’s 1-neighbour, peer 0 did hand over the positions along dimension 1 to peer 2.

As one can see, the cube topology can exactly be matched with the tree representation:
for every immediate connection (i.e. Hamming distance = 1) between peers (indicated by a
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Figure 5.12: Centralized hypercube construction example
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Figure 5.13: Centralized hypercube construction example continued

black edge in the cube), there exists one ”white-white” mapping entry between two peers. For
every dimension where a peer covers positions, there is a mapping between this peer and an X .
For every non-immediate connection (i.e. Hamming distance > 1), there exists a ”white-gray”
mapping entry between the corresponding peers.

Peer Departure

A peer wishing to leave the network must also send a Leave message to the topology manager
server. The server removes the peer from its occupied position and traverses the tree upwards.
For each dimension, another peer must adopt the positions that the departing peer was covering.
For every matching table entry, two cases must be distinguished:

1. There exists one or more peer(s) on the same side of the table: those peers must take over
the positions of the departing peer and thus may get new neighbours.

2. There exists no peers on the same side: the position(s) that the departing peer was covering
are marked with an X and thus overtaken by its former opposite peer.

Formally: To remove peer V , for every mapping list Mi
d along the traversing path from the

peer’s leaf to the root of the tree, and for every mapping entry Mi
d[j] which is occupied by V

on the left resp. right side, the following rules apply:

1. If there are entries Mi
d[k], k 6= j occupied by a peer W , W 6= V on the same side as V in

Mi
d[j], W occupies the left resp. right side of Mi

d[j].

2. If there are no such entries, the left resp. right side of Mi
d[j] is set to X .

Consider the hypercube depicted in figure 5.14a. When peer 4 wants to leave, it is first
removed from its position at the leaf of the tree. On dimension 0, as peer 4 had no opposite, the
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corresponding mapping list is cleared in its entirety. On dimension 1, as peer 4 covered positions
along dimension 0, peer 4 had two opposites: peers 1 and 3. As there is no other peer on the
left side of the mapping list, the positions that were covered by peer 4 are marked with an X ,
peers 1 and 3 loose their neighbour and, from now on, cover a position along dimension 1. On
dimension 2, peer 4 is substituted by peers 1 and 3, as they now cover its positions, thus peer 1
gets one new neighbour (peer 2) and peer 3 gets one new neighbour (peer 5). Now the root of
the tree is reached, and the departure is completed. The data structures after the departure is
depicted in figure 5.14b.
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Figure 5.14: Centralized hypercube - peer departure

Broadcast

A message broadcast can be performed exactly as in a distributed hypercube, as the centralized
hypercube is also complete and compliant to all demands that the broadcast algorithm makes.

5.2.4 Reduced Hypercube Tree Structure

The tree presented in the previous section has one big disadvantage: its memory requirements.
Consider a hypercube with dmax dimensions: to represent dimension d, 2dmax−d tree nodes, each
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of them with capacity 2d, are required: there are 2dmax−d−1 · 2d = 2dmax−d−1+d = 2dmax−1 links
per dimension.

To store the whole hypercube topology, we can derive the number of slots (i.e. the number
of edges in the cube) by considering the procedure to construct a hypercube from a point (as
depicted in figure 3.1 on page 12). For a 0-dimensional cube, the number of edges is 0. For a
1-dimensional cube, it is 1. For higher dimensions, the number of edges can be calculated as
follows: in every step, the hypercube (and all its edges) is doubled, and every node of the ”old”
hypercube is connected to its counterpart in the ”new” hypercube. For the number of edges of
a cube of dimension d, e(d), we get (with d > 1)

e(d) = 2e(d− 1) + 2d−1

e(d + 1) = 2e(d) + 2d

The solution of this difference equation leads to

e(d) =
d−1∑
k=0

2d−1−k · 2k

=
d−1∑
k=0

2d−1

= 2d−1 · d

which is also the number of slots required to fully represent the hypercube topology. So, the
number of edges grows with O(2d).

To address this problem, we can construct a reduced tree structure: for all dimensions d ≥
dred, 0 < dred < dmax, the number of slots per tree node is set to 2d

red. Consider figure 5.15,
which shows a tree structure for a hypercube with dmax = 4 and dred = 1.

Using such a data structure, we can now calculate the memory requirements as follows:
disregarding the lowest dimensions d < dred, and setting c = 2dred , the number of edges for
dimension d with d > dred in a reduced hypercube, ered(d), is

ered(d) = 2ered(d− 1) + c

ered(d + 1) = 2ered(d) + c

which leads to

ered(d) = (2d − 1)c
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Figure 5.15: Data structure for a reduced tree representation

or, expressed as function of the number of peers, n = 2d,

ered(n) = (n− 1)c

This is a much better consumption than the full hypercube: adding one dimension (i.e.
doubling the hypercube’s capacity) causes a doubling plus a constant increase of memory re-
quirements, viz. the memory consumption for a cube for n nodes is O(n).

Naturally, this data structure is not suitable to hold a full representation of the hypercube.
The reduced capacity of higher-dimensional levels only allows the representation of a degener-
ated hypercube, i.e. a hypercube wherein not all edges are present. Two possible degenerated
hypercubes are depicted in figure 5.16.

ba

Figure 5.16: Two degenerated hypercubes

Peer Integration

As the reduced tree can not accommodate all edges for dimensions higher than dred, it is required
to cancel the up-traversing of a new peer on a dimension between dred and dmax − 1. Actually,
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the dimension on which the propagation stops will depend on the filling degree of a tree node
- when it is full, no new neighbours can be assigned to the newly arriving peer. Note that,
to ensure a minimal connectivity of the cube, a new peer must be up-propagated as long as
possible.

A new peer becomes opposite of all peers in a mapping list if the appropriate side of the list
is empty. It takes over entries from a peer on ”its” side if this peer has multiple opposites.

We can again express this rule formally: to integrate node V , for every mapping list Mi
d

along the path from V ’s leaf to the tree’s root leaf, V is added to Mi
d if there is capacity in this

list. Let the index of the new entry be j. V is added to the left side of Mi
d[j] if V was added

to M2i−1
d−1 before, or to the right side if it was added to M2i

d−1 before.

The opposite of V in Mi
d[j] can be determined as follows: if the new entry, Mi

d[j], is now
the only entry in Mi

d, the opposite is set to X . Otherwise, one peer from the side on that V
was not added is selected to be the opposite of V in entry Mi

d[j].

Peer Departure

The departure of a peer is critical because the hypercube is no more complete in terms of edges,
and thus removing a peer without properly ”replacing” the subsequently vanishing edges may
cause the hypercube to be split. To prevent this, a departing peer must be substituted by
another peer when the departure is propagated through the tree nodes. As soon as there is one
candidate for substituting (i.e. as soon as the departing peer has an opposite in one mapping
list), the departing peer must be processed in combination with its substitute.

Formally: to remove node V , for every mapping list Mi
d along the path from V ’s leaf to the

tree’s root leaf, and for every mapping entry Mi
d[j] which is occupied by V on the left resp.

right side, the following rules apply:

1. If V ’s opposite in entry j was X , the entry is removed, and V is propagated up to M
i
2
d+1

with no substitute.

2. If V was juxtaposed by peer W , two cases must be distinguished:

• If there are entries Mi
d[k], k 6= j with a peer U , U 6= V on the left resp. right side,

V is replaced by U in entry Mi
d[j]. From all the peers U , one is randomly selected

to be propagated up as substitute for V .

• If there are no such entries, V is removed, leaving W with no opposite, and V ’s former
opposite, W , is propagated up as substitute for V .

3. If, after removing all occurrences of V in Mi
d, any entry which occurs repeatedly is re-

moved.
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Example

We will construct a hypercube using the integration and departure rules from above. Figure
5.17a shows the situation when only one peer, peer 0, is in the hypercube. Its randomly selected
position is 100, and as there exists no other peer, and all positions of all mapping tables are
empty, it is propagated up to the highest dimension, 2.
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Figure 5.17: Reduced hypercube construction example

When peer 1 arrives, its position is randomly set to 011. It is propagated up and becomes
2-neighbour of peer 0. This is the first abnormality in the hypercube since the edge between
coordinates 100 and 011 is a diagonal, as (100⊕ 011) = 0.

The same procedure takes place with peer 2, which is put on position 110 and becomes
1-neighbour of peer 0 and 2-neighbour of peer 1, whose entry in the mapping table of dimension
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2 is doubled in order to become opposite of both peers 0 and 2. This situation is depicted in
figure 5.17b.

Now three more peers join the space, peer 3 on 010 (causing peer 0 to cover two entries on
the left table on dimension 1), peer 4 on 000 (peer 4 takes over one position of the two that were
covered by peer 0 on dimension 1), and peer 5 on 001 (taking over one position on the mapping
list on dimension 2 from peer 1). After the integration of the three peers, the degenerated
hypercube looks as in figure 5.17c.

Broadcast

As a set of edges is missing in the hypercube, and there may exist non-orthogonal edges, the
broadcast mechanism must be reformulated as follows:

• The originator of a message sends the message to all its neighbours.

• Any peer V receiving an Application message from peer W performs the following steps
on it:

1. If it has received and processed this message already, it does no further processing
and discards it.

2. Otherwise:

– If the message was received through an orthogonal link (this can be calculated
by calculating the Hamming distance between the coordinate vectors of V and
W , ~pv and ~pw - a link is orthogonal if H(~pv, ~pw) = 1), the message is forwarded
”as usual” to all dimensions higher than the link dimensionality L(~pv, ~pw).

– If the message was received through an non-orthogonal link, the peer initiates a
limited broadcast by forwarding the message to all its neighbours except W .

This broadcast is no more efficient in terms of messages sent, as the last case (the limited
broadcast) causes more messages than required to be sent. Nevertheless, this increase of messages
sent makes up for the decrease in edges of the cube.

Search

Similar to a distributed hypercube, the search can be expressed as a broadcast and a subse-
quent sending of results to the originator. The non-optimal broadcast presented above may
be modified, if it is not required that every node in the network receives the broadcast, hence
introducing a ”limited” search, by ignoring the fact that there are non-orthogonal links and
forward the search broadcast according to the rules of a complete hypercube.
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5.2.5 Load Sharing

The centralized management of the hypercube’s topology causes considerable workload on the
server, especially for cubes with higher dimensions and increasing peer numbers. The tree
representation of the hypercube makes it easy to distribute this workload onto several servers
without reducing the functionality of the system.

A

B C

Figure 5.18: Distributing a centralized hypercube topology

Figure 5.18 shows how a reduced hypercube tree can be distributed amongst three servers,
A, B, and C, to achieve equal disposition of workload. For this reduced tree, dred is set to 1: all
tree nodes on dimensions d ≥ 1 have a capacity of 2dred = 21 = 2. Assumed an equal distribution
of peers to the position range, if the network has a capacity of n, both peers B and C have to
process n

2 integrations, and so does A, as after n
2 its mapping table is full: it may process only

n
2 requests from B and n

2 requests from C.

A

G

D

B EC F

Figure 5.19: The doubled hypercube tree

In figure 5.19, the network is doubled to accommodate 2n peers. Servers B, C, E, and F
have the responsibility to integrate 2n

4 = n
2 peers each, and so do the servers A, D, and G: from

every one of their two ”children servers”, they receive n
4 requests, which totals n

2 .
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Communication between the servers is of low effort: each subsystem only must propagate
joining or departing peer to its ”parent” server. No communication between servers on the same
layer is required; nor communication from a server on a higher level to a server on a lower level.

This concept is scalable if the hypercube has to be extended to accommodate higher peer
numbers: the system can be doubled, and a new level can be set to be the parent of the two old
systems.

5.2.6 Fault Tolerance

Centralized Manager

As the centralized topology manager is a ”normal” server, well-known mechanisms can be applied
to provide redundancy, recovery, and backup strategies.

Peers

A failing peer will be detected by its neighbours when they try to forward a broadcast message
to it. In this case, neighbours must hold the message to be forwarded and notify the centralized
topology manager of the failed peer, which then will remove it from the topology. After the
topology has been transferred back to a consistent state, the broadcast may continue.
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Chapter 6

JIO - Java-based Implementation of
OPAX

6.1 Introduction

This section presents an implementation of OPAX in the Java[44] programming language. This
implementation has been made with the goals of OPAX stated in section 1.2. Its purpose is to
verify and further examine the concepts and ideas that arose in the context of applying using
a hypercube as the topology for a P2P network. Although the hypercube topology is the main
field of interest for this paper, some aspects of the implementation which are specific to Java
are illustrated. In the last section, we present some classes which may be of interest for usage
in other context, as they are not directly related to the fields of OPAX or the hypercube.

This implementation has been developed using the Eclipse IDE[45], version 2.1, on a Win-
dows XP machine, and was compiled and tested using the Sun Java SDK, Version 1.4.2 03.

6.2 Required Libraries

JIO, in the available version, uses several open-source libraries. Those libraries have to be
installed according to their installation guide prior to using JIO.

• Java UUID Generator [47] - by Tatu Saloranta, enables the creation and manipulation of
UUID[14] objects

• Xerces2 XML Parser [48] - a XML[15] parser with support for XML Schema[16]

• JGoodies Forms[49] and JGoodies Looks[50] - by Karsten Lentzsch, libraries to for GUI
layout
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6.3 Application Programming Interface

6.3.1 API Overview

This section gives a short introduction into the JIO API. An application wishing to use OPAX
must do the following:

1. Create a configurator. The configurator is a class that provides configuration data to
the OPAX system. Any configurator must implement the at.ac.univie.mminf.opax.
config.Configurator interface. JIO already provides XMLConfigurator, which uses
XML configuration files to configure the OPAX framework.

For more information on how to use the Configurator interface, see section 6.3.4.

2. Import JIO classes. The following classes are required for the application to be imported:

import at . ac . un iv i e . mminf . opax . App l i ca t ion ;
import at . ac . un iv i e . mminf . opax . NetworkAddress ;
import at . ac . un iv i e . mminf . opax . Peer ;
import at . ac . un iv i e . mminf . opax . message . Appl icat ionMessage ;

If the XMLConfigurator is to be used, the following line has to be added, too:

import at . ac . un iv i e . mminf . opax . c on f i g . xml . XMLConfigurator ;

3. Create an Application instance. JIO uses callback methods to notify the application of
events that are caused by the OPAX network. The callback methods that an application
must provide are defined in the at.ac.univie.mminf.opax.Application interface. The
application must provide one implementation of this interface to JIO. For more information
on the Application interface, see section 6.3.3.

4. Create a Peer instance. The application communicates to the OPAX network using an
instance of at.ac.univie.mminf.opax.Peer. To create a peer instance, use the following
code:

try {
Peer aPeer = new Peer ( con f i gu ra to r , NetworkAddress .

getNetworkAddress ( ” 62 . 1 78 . 0 . 2 08 : 9 870 ” ) , null ) ;
}
catch ( Exception e ) { /∗ do excep t i on hand l ing here ∗/ }

The parameters for the constructor of Peer are:

• Configurator configurator - the configurator to be used for this peer
• NetworkAddress address - the network address that this peer should use. To obtain

an instance of NetworkAddress from its textual representation, use the static method
NetworkAddress.getNetworkAddress(String text). Note that this address must
be bound to a local network interface, otherwise the peer can not be created.
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• KeyPair keys - the public/private key pair to be used for this peer. Currently, no
security features are implemented, so this parameter should be set to null.

From now on, the peer is alive, i.e. it is listening for incoming messages. As it is not yet
member of any space, all messages (except Ping messages) will be ignored.

As an application may create several peers, it is possible to repeat this step as often as
desired. Note that one instance of Configurator may serve many Peer instances. Note
also that there may not be two or more peers with the same network address.

5. Open a space. To open a space, you must prepare two objects prior to calling the open()
method:

• Create an instance of java.net.URI containing the URI of the space to open:

URI spaceUri = new URI( ”opax ://www. mminf . un iv i e . ac . at / space /
aTestSpace ” ) ;

• Create and populate an instance of java.util.Properties containing the applica-
tion configuration set for the space:

P rope r t i e s prop = new Prope r t i e s ( ) ;
prop . se tProper ty ( ” space−owner” , ” Un ive r s i ty o f Vienna ,

Department o f Computer Sc i ence and Bus iness In fo rmat i c s ,
Multimedia In format ion Systems Group” ) ;

prop . se tProper ty ( ” space−owner−address ” , ” http ://www. mminf .
un iv i e . ac . at ” ) ;

prop . se tProper ty ( ” space−c r e a t o r ” , ”Bernhard Schandl <bes@aon .
at>” ) ;

Now, the space can be opened:

aPeer . open ( spaceUri , this , prop ) ;

assuming that this call is made within a class that implements the Application interface.
If not, an instance of such a class must be specified as second parameter.

6. Join a space. Alternatively, an existing space can be joined:

aPeer . j o i n ( spaceUri , this , true ) ;

The third parameter, boolean lookup, indicates whether the peer should lookup potential
members of the space to contact on a space directory or not. If yes, the configurator must
supply the network address of at least one space directory server. If no, the configurator
must supply at least one peer which may be member of the space to send the join request
to.

As a peer may open and/or join multiple spaces, steps 5 and 6 may be executed as often as
desired. Note that one peer may open or join one space (identified by its URI) only once.
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7. Broadcast messages into the space. After a spaces has been opened or joined, the appli-
cation may broadcast XML documents into this space. OPAX uses the Document Object
Model [46] to represent XML documents, so the document to be sent must be stored in
an instance of the org.w3c.dom.Document interface. Two instances of java.util.Date,
which mark the beginning and the end of the message’s validity period, have to be supplied.

org . w3c .dom. Document message = . . . // c rea t e the document
java . u t i l . Date fromDate = new Date ( ) ; // now
java . u t i l . Date toDate = fromDate + ( 20 ∗ 60 ∗ 1000 ) ; // 20

minutes
aPeer . broadcast ( spaceUri , fromDate , toDate , message ) ;

8. Receive messages from the space. The receipt of a message is passed to the application by
the messageReceived() method of the Application interface. See section 6.3.3 for more
details about this interface.

9. Shutdown the peer. A clean shutdown procedure is required mainly because of two reasons:
(1) As spaces may be organized in distributed topologies, other peers have to be notified
that a peer shutdown (and thus leaves the space) in order to keep the topology data in a
consistent state. (2) As JIO works with multiple threads running during a peer’s lifetime,
those threads have to be quit orderly.

To cleanly finish working in the OPAX network, shutdown all instances of Peer as follows:

aPeer . shutdown ( ) ;

Any spaces that the peer is still member of are left during the peer shutdown. This method
blocks until all spaces have been left.

To get an overview of the processing sequence in as a whole, refer to the source code of the
demo application, described in the following section.

6.3.2 OPAX Demo Application

The class at.ac.univie.mminf.opax.demo.Demo is a demonstration of how to use OPAX within
an application. Using the appropriate GUI elements, the user may create and destroy peers,
open, join, or leave spaces, and broadcast a test message into a space. Furthermore, the appli-
cation displays internal information on the peer instances and their sub-components.

The Demo application uses the XML configurator described below. Figure 6.1 shows a screen
shot of the demo application.

The OPAX Demo Application GUI is divided into four groups:

• Display - Use the ”Refresh display” button to update all display elements.
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Figure 6.1: OPAX Demo Application

• Peer - Use the ”Lookup on join” checkbox to enable/disable the lookup of space informa-
tion on a space directory server. Use the ”Accept incoming connections” to temporarily
disconnect the peer from the network (only for debugging purposes). Use the ”Open” and
”Close” buttons to create and destroy peer instances, which then can be selected from the
drop-down list.

• Space - After selecting a peer from the drop-down list, use the ”Open” or ”Join” buttons
to make the peer member of a space. All spaces that the peer is member of are displayed
in the list below these buttons. Selecting one space enables the ”Leave” and ”Broadcast”
buttons, and information about the space, like the peer’s address and its neighbours, is
displayed in the field to the right of the list.

• Messages - In the list under ”Messages”, all application messages that have been received
from the space are displayed, together with their validity period, and (not visible) their
UUID.

6.3.3 Callback Interface

JIO uses the at.ac.univie.mminf.opax.Application interface to forward events to the ap-
plication. An application using OPAX must provide an instance of Application to the OPAX
system. The following methods are defined in this interface:
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• public void applicationMessageReceived ( Peer peer, ApplicationMessage
msg );

Called every time an broadcast message is received from a space. peer identifies the peer
instance that received the message. More information about the message, like the space
wherein it was broadcast, and its validity period, can be obtained from the msg object.

• public void applicationConfigurationUpdate ( Peer peer, URI spaceUri,
Properties configuration );

Called when a peer peer receives an update of the application configuration set for the
space identified by spaceUri. The set of properties is passed to the application by the
configuration parameter.

• public void spaceJoined ( Peer peer, URI spaceUri );
public void spaceLeft ( Peer peer, URI spaceUri );

These methods notify the application that peer peer successfully joined resp. left the
space identified by spaceUri. Note that these methods are called not only due activities
initiated by the application (e.g. by calling the Peer.leave() method), but also because
of ”external” events, e.g. the space is shut down by its authority and thus forcing the peer
to leave the space.

6.3.4 Configurator

It is the purpose of the Configurator interface to provide a pluggable configuration infras-
tructure for an application using OPAX. As OPAX requires extensive configuration data, the
configurator concept provides the feasibility to fetch configuration data from any source, like files,
databases, or remote servers. The Configurator interface contains methods to retrieve config-
uration properties, and to retrieve a set of classes which are responsible for managing groups
of configuration information, called registries, each of them defined in a separate interface. All
configuration interfaces can be found in the package at.ac.univie.mminf.opax.config. The
following registries must be provided:

• PeerRegistry - provides methods to verify messages using public/private key encryption
and signature methods, and to register new peers with their public key. (Note: as security
features are not yet implemented, this registry should behave as if security requirements
are fulfilled.)

• SpaceRegistry - stores information about spaces, like the list of a space’s potential mem-
ber peers, and the topology manager which is used for a space.

• SpaceDirectoryRegistry - maintains a list of space directory servers to be queried for
retrieving up-to-date information about OPAX networks.

• TopologyManagerRegistry - maps topology managers, identified by their URI, to Java
classes which implement these topology managers.
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6.4 Internals

6.4.1 Message Processing

The most important task of the JIO implementation is to handle incoming and outgoing mes-
sages. As outgoing messages may be created by various sources, and incoming messages are
received and distributed to various destination objects, all messaging is centralized within the
Peer class. Peer utilizes several helper classes to manage message sending and receiving. Classes
which are used to send or receive messages are grouped in the at.ac.univie.mminf.opax.
message.io package. In the JIO implementation, these classes are designed to work with TCP
connections for incoming and outgoing messages; currently, there exists no support for any other
transportation layer like UDP.

Outgoing

Any component which wants to send a message into the OPAX network does this by calling the
Peer.send(NetworkAddress recipient, Message msg) method. Each Peer instance holds
one instance of NetworkSender, with which it is connected through the messageOutboxQueue,
an instance of the queue class described below. NetworkSender is a class derived from Thread;
it permanently reads messages from the queue and sends them to their recipients. As all com-
ponents (Peer, the Queue, and NetworkSender) are fully synchronized, it is guaranteed that the
ordering of sent messages is kept until the message is transmitted by the physical layer.

Figure 6.2 schematically shows the workflow when a message is to be sent.

Peer NetworkSender

Application

Topology Manager

Message Logger

send()

messageOutboxQueue

PeerA

Peer B

Peer n

ApplicationMessage

TopologyMessage

SynchronizeMessage

Figure 6.2: Components involved in sending messages

NetworkSender writes messages to a socket using a MessageOutputStream, which buffers
the XML source of any message (obtained by the Message.toXML() method. After the header
(see section 4.4 on page 29) and the message source is written to the socket, the output stream
is closed.
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Incoming

Receipt of messages is more difficult to accomplish in a distributed system where message trans-
mission is asynchronous and stateless. To ensure the ordering of incoming messages, and, at
the same time, avoiding blocking of the ”server port” by voluminous message transmissions,
a buffering mechanism must be established. The usage of future objects and a future object
queue (see below) in combination with a multi-threaded ”server” component ensures that mes-
sages that were sent from peer V to peer B in a certain order are processed by peer B in exactly
the same order.

NetworkListener

NetworkDispatcher

MessageRegistry

NetworkWorker

NetworkWorker

NetworkWorker

Topology Manager

Message Logger

ApplicationNotifier

add()

messageInboxQueue

Peer A

Peer B

Peer n

NetworkListener hands
connections over to

NetworkWorker

NetworkListener gets
FutureObjects fromthe
FutureObjectQueue and
hands themover to
NetworkWorker

Figure 6.3: Components involved in receiving messages

NetworkListener is a thread which is listening for incoming connections on a java.net.
ServerSocket. NetworkListener owns the ”in-opening” of a FutureObjectQueue where all
incoming messages are put into. For every accepted connection, a FutureObject is created by
calling FutureObjectQueue.add(). Then, a NetworkWorker thread is started, and the input
stream of the socket as well as the future object returned by the future object queue are passed
to the network worker.

While the network listener has done its job and is waiting for the next incoming connection,
it is now the task of the network worker to read the message from the socket and create an
instance of the appropriate sub-class of Message, depending on the XML source of the message
transmission (this work is performed by an instance of MessageInputStream, which, on its part,
engages one instance of MessageFactory to create the message object.

After the message object has been created, the corresponding future object is cleared by
assigning the message object to it, using the FutureObject.set() method. Now, the object
may leave the future object queue, ready to be processed by the MessageDispatcher. This
class uses a MessageRegistry, where components may register themselves (if they implement
the MessageHandler interface) as destination for incoming messages, based on the space URI
and the type of the message. The message dispatcher gets all message handlers for the incoming
messages and subsequently calls the appropriate method. Now it is up to each message handler
to process the incoming message.

77



6.4.2 Utility Classes

This section describes classes that were developed in context of OPAX and JIO but are not
directly related to these applications and thus may be of interest for other applications and use
cases. These classes have been grouped in the package at.ac.univie.mminf.opax.util. For
more information on the detailed usage and syntax, refer to the OPAX javadoc pages.

BitField

BitField implements a binary vector, which can also be interpreted as an array of boolean
values. Instead of actually using an boolean[] or Boolean[] array, BitField internally uses
an array of byte values, so the memory consumption for a BitField of size n is dn

b e if b is the
size of the byte data type, which is usually 8 bit.

BitField objects can be constructed ”from scratch”, by copying an existing object, by
parsing the content of a String consisting only of ”0” and ”1”, and by converting a long value
into its binary representation using little endian or big endian representation.

BitField provides methods to set and get bits identified by their index, to set blocks of
bits, to compare two BitField instances, to calculate the Hamming distance and the XOR
combination of two binary arrays, and many more. Most of these operations have a runtime of
O(n) for arrays of length n.

Queue

Java provides no FIFO Queue, so the class Queue implements such one. Queue is synchronized,
in order to be used in multithreaded environments, and provides the standard methods add(),
which adds an object to the end of the queue, and get(), which returns the first element in the
queue.

FutureObject / FutureObjectQueue

FutureObject is a concept to create a reference on an object that does not yet exist. In other
words, it is a synchronization mechanism which can be used when one thread is waiting for an
object that is yet to be created by another thread. In this case, the common Java synchronization
fails because using the synchronize keyword always requires an instance of an object as monitor.

Using a FutureObject, threads may create such an object and pass a reference to it instead of
passing a reference to the actual object. After a future object has been created, the receiver of the
object may query the object by calling the FutureObject.get() method. This method blocks
until the creator ”fills in” the actual object into the wrapper by calling FutureObject.set().
Immediately, the get() method returns with a reference to the actual object. The data flow is
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depicted in figure 6.4.

creator: Thread

monitor : FutureObject

receiver : Thread

create()

set()

get()

destroy()

hand overthemonitor

the get() call blocks until
the FutureObject is populated

by calling set()

x

Figure 6.4: Sequence diagram for usage of FutureObject

If multiple future objects have to be passed between two threads, and the ordering of the
objects is important, they may establish a FutureObjectQueue, which ensures that a set of
future objects is passed according to the FIFO method.

Randomizer

Often, applications need to process the elements of a collection in random order. The
Randomizer class wraps a Java Collection, and by calling get(), objects from the collection
are returned in random order. Doing so, Randomizer guarantees that each object from the
collection is returned exactly once; after all objects have been processed, null is returned. The
randomizer may be reset using the reset() method.

XMLProperties

The java.util.Properties class is widely used to store configuration data. To provide a
means of easily storing and retrieving properties in XML format, the XMLProperties class
wraps a Properties instance and enables reading and writing of XML property files using the
Xerces XML parser. A property file written and read by XMLProperties looks as follows:

<Prope r t i e s>
<Property name=”name1” value=”abc” />
<Property name=”name2” value=” de f ” />

</ Prope r t i e s>

Listing 6.1: A sample XMLProperties file
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SimpleDialog

As Java does not provide a ”standard” message box, the SimpleDialog has been introduced. It
provides a window which can be populated with any java.awt.Component, and adds a prompt
message as well as ”OK” and ”Cancel” buttons to the window. The user may close the window
by pressing either ”OK” or ”Cancel”, and the selection can be queried by the application using
the isOKPressed() and isCancelPressed() methods.

Figure 6.5: A SimpleDialog
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Chapter 7

Future Work

7.1 Topology

Topology Stabilization As described in sections 5.1, the distributed topology has the disad-
vantage of being fault-prone because of the lack of knowledge about the overall peer situation.
To enable the network to cope with multiple peer failures, further work has to be done in the
field of topology stabilization.

Fallback Topology A different approach to make the network more resistant against errors
is the introduction of a fallback topology, as described in section 5.1.7 on page 53. This feature,
maintained parallel to the hypercube topology, may lead to higher robustness; together with
alternative broadcast modes, it may allow efficient broadcast event when the network hypercube
is degenerated.

Switchable Broadcast Modes If a fallback topology is being introduced, alternative algo-
rithms for broadcasting messages have to be implemented, and the network must switch over to
the alternative broadcast if it switches over to the fallback topology. To switch the network in
a consistent way, and to prevent the intersection of different topologies or broadcast algorithms,
a protocol must be introduced which ensures synchronization over all peers in the network. As
the network may grow up to an arbitrary number of peers, this may lead to a highly complex
algorithm.

7.2 Security

OPAX currently does not specify mechanisms to provide security aspects like message signing or
authentication. To prevent attacks on the network and to make message transmission confident,
such mechanisms have to be introduced.
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7.3 Network Layer and Addressing Support

Currently, OPAX requires a network layer which guarantees the transportation of messages, and
the only supported addressing system is the IP hostname:port system. To make OPAX suitable
for heterogeneous environments, support for different protocols and addressing systems has to
be implemented.

7.4 Directory Integration

The space directory lookup mechanism (described in appendix D) is planned to be rewritten
to implement the Configurator interface, thus making it easier for peers to retrieve all their
configuration information from remote sources.
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Chapter 8

Conclusion

Peer-to-peer networks are one means to establish a messaging infrastructure for applications.
OPAX serves as a network infrastructure which hides the details of network organization from the
application and allows it to communicate with remote peers through XML message broadcasts.

In OPAX, the topology, which defines the arrangement and connections of network member
peers, may be freely selected. By this, OPAX allows to adopt the topology to the application’s
requirements and allows designers to develop and integrate their own topology managers.

A hypercube, as one possible network topology, has been implemented. The approach pre-
sented in this work demonstrated that the applicability of a distributed hypercube topology
for a structured P2P network is questionable. In the distributed variant, the networks lacks of
stability. High efforts have to be invested to protect the network against peer or link failures,
especially if they incidence in larger numbers.

The strategies presented in this work are still workarounds, as they do not solve the underly-
ing problem: the distribution of topology knowledge amongst peers, and the inelastic structure
of the hypercube which does not forgive any topological irregularity. Single local failures (fail-
ures where one peer fails, while all of its neighbours are still fully functional) may be caught
and the topology may be ascribed to a consistent state. In cases where multiple failures occur,
it may be impossible to return to a stable state: peers have mutual knowledge of their topology
data, and if a set of peers fail, peers outside this set have no possibility to reconstruct the inner
structure of this set.

A second approach, whereby the topology is managed by a central instance implicates the
disadvantages of a single point of failure. Together with an adequate load balancing mechanism,
this idea may serve well as topology infrastructure for networks with smaller amounts of nodes.
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Appendix A

Message Schema

This section describes the OPAX message schema, an XML Schema that all OPAX messages
must be valid to. Each implementation of OPAX should perform a validation of incoming
messages against this schema.

1 <?xml version="1.0"?>

2
3 <xsd:schema xmlns:xsd="http: //www.w3.org /2001/ XMLSchema"

4 xmlns:opax="http: //www.mminf.univie.ac.at/opax/message/namespace"

5 targetNamespace="http: //www.mminf.univie.ac.at/opax/message/namespace"

6 elementFormDefault="unqualified"

7 attributeFormDefault="unqualified"

8 >

9
10 <xsd:element name="Message" type="opax:tMessage" />

11
12 <xsd:complexType name="tMessage">

13
14 <xsd:sequence >

15
16 <xsd:choice >

17
18 <xsd:element name="Unknown">

19 <xsd:complexType >

20 <xsd:attribute name="text" type="xsd:string" />

21 </xsd:complexType >

22 </xsd:element >

23
24 <xsd:element name="Ping" />

25
26 <xsd:element name="Application">

27 <xsd:complexType >

28
29 <xsd:sequence >

30 <xsd:element name="Data">

31 <xsd:complexType >

32 <xsd:sequence >

33 <xsd:any />

34 </xsd:sequence >

35 </xsd:complexType >

36 </xsd:element >

37 </xsd:sequence >

38
39 <xsd:attribute name="originator" type="xsd:string" />
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40 <xsd:attribute name="valid -from" type="xsd:string" />

41 <xsd:attribute name="valid -to" type="xsd:string" />

42 <xsd:attribute name="routing -control" type="xsd:string" />

43
44 </xsd:complexType >

45 </xsd:element >

46
47 <xsd:element name="Topology">

48 <xsd:complexType >

49
50 <xsd:sequence >

51 <xsd:element name="Properties">

52 <xsd:complexType >

53
54 <xsd:sequence >

55 <xsd:element name="Property" maxOccurs="unbounded" >

56 <xsd:complexType >

57 <xsd:attribute name="name" type="xsd:string" />

58 <xsd:attribute name="value" type="xsd:string" />

59 </xsd:complexType >

60 </xsd:element >

61 </xsd:sequence >

62
63 </xsd:complexType >

64 </xsd:element >

65
66 </xsd:sequence >

67
68 <xsd:attribute name="type" type="xsd:string" />

69
70 </xsd:complexType >

71 </xsd:element >

72
73 <xsd:element name="Directory">

74 <xsd:complexType >

75
76 <xsd:sequence >

77 <xsd:element name="Item" minOccurs="0" maxOccurs="unbounded">

78 <xsd:complexType >

79 <xsd:attribute name="data" type="xsd:string" />

80 </xsd:complexType >

81 </xsd:element >

82 </xsd:sequence >

83
84 <xsd:attribute name="type" type="xsd:string" />

85 <xsd:attribute name="reference -message" type="xsd:string" use="optional" /

>

86
87 </xsd:complexType >

88 </xsd:element >

89
90 <xsd:element name="ApplicationConfiguration">

91 <xsd:complexType >

92
93 <xsd:sequence >

94 <xsd:element name="Properties">

95 <xsd:complexType >

96
97 <xsd:sequence >

98
99 <xsd:element name="Property" minOccurs="0" maxOccurs="unbounded">

100 <xsd:complexType >

101 <xsd:attribute name="name" type="xsd:string" />

102 <xsd:attribute name="value" type="xsd:string" />

103 </xsd:complexType >

85



104 </xsd:element >

105
106 </xsd:sequence >

107
108 </xsd:complexType >

109 </xsd:element >

110 </xsd:sequence >

111
112 </xsd:complexType >

113 </xsd:element >

114
115 <xsd:element name="Synchronize">

116 <xsd:complexType >

117
118 <xsd:sequence >

119 <xsd:element name="UUID" minOccurs="0" maxOccurs="unbounded" />

120 </xsd:sequence >

121
122 <xsd:attribute name="type" type="xsd:string" />

123
124 </xsd:complexType >

125 </xsd:element >

126
127 </xsd:choice >

128
129 <xsd:element name="Signature" type="xsd:string" minOccurs="0" />

130
131 </xsd:sequence >

132
133 <xsd:attribute name="uuid" type="xsd:string" />

134 <xsd:attribute name="timestamp" type="xsd:string" />

135 <xsd:attribute name="from" type="xsd:string" />

136 <xsd:attribute name="space" type="xsd:string" />

137
138 </xsd:complexType >

139
140
141 </xsd:schema >

Listing A.1: XML Schema for OPAX messages

86



Appendix B

Used URIs

Spaces

Spaces are identified by an URI with opax as prefix. The identifier for the internal space is
opax://www.mminf.univie.ac.at/space/internal.

Messages

The root URI for all identifiers specified in this section is http://www.mminf.univie.ac.at/
opax/message and is abbreviated as [ROOT] in the following. The following fields are used to
identify message related information.

Namespace

The XML namespace for OPAX message documents is [ROOT]/namespace.

Message types

ApplicationConfiguration

Used to identify the routing control information for ApplicationConfiguration messages.

[ROOT]/application/routing-control/RC-NOT-ROUTED
[ROOT]/application/routing-control/RC-SYNCH-LOCAL
[ROOT]/application/routing-control/RC-SYNCH-REMOTE
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Directory

Used to identify the sub-type of Directory messages.

[ROOT]/directory/type/unknown
[ROOT]/directory/type/get-spaces
[ROOT]/directory/type/search-spaces
[ROOT]/directory/type/get-peers
[ROOT]/directory/type/get-topmgr

Synchronize

Used to identify the sub-type of Synchronize messages.

[ROOT]/synchronize/type/get-uuid-list
[ROOT]/synchronize/type/send-uuid-list
[ROOT]/synchronize/type/get-message
[ROOT]/synchronize/type/msg-unavailable

Topology

Used to identify the sub-type of Topology messages.

[ROOT]/topology/type/UNKNOWN

[ROOT]/topology/type/hypercube2/0.1.3/ConfirmBuffer
[ROOT]/topology/type/hypercube2/0.1.3/ConnectNeighbours
[ROOT]/topology/type/hypercube2/0.1.3/ExecuteIntegration
[ROOT]/topology/type/hypercube2/0.1.3/FinalizeIntegration
[ROOT]/topology/type/hypercube2/0.1.3/Join
[ROOT]/topology/type/hypercube2/0.1.3/RouteIntegration
[ROOT]/topology/type/hypercube2/0.1.3/StartBuffer
[ROOT]/topology/type/hypercube2/0.1.3/MonitorMe
[ROOT]/topology/type/hypercube2/0.1.3/NoMoreMonitorMe
[ROOT]/topology/type/hypercube2/0.1.3/MonitorYou
[ROOT]/topology/type/hypercube2/0.1.3/NoMoreMonitorYou

[ROOT]/topology/type/hypercube3/0.1.1/ConfirmBuffer
[ROOT]/topology/type/hypercube3/0.1.1/ConnectNeighbours
[ROOT]/topology/type/hypercube3/0.1.1/ExecuteIntegration
[ROOT]/topology/type/hypercube3/0.1.1/FinalizeIntegration
[ROOT]/topology/type/hypercube3/0.1.1/Join
[ROOT]/topology/type/hypercube3/0.1.1/RouteIntegration
[ROOT]/topology/type/hypercube3/0.1.1/StartBuffer
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[ROOT]/topology/type/hypercube3/0.1.1/TransferOwnership

[ROOT]/topology/type/hypercube4/0.1.1/NewNeighbour
[ROOT]/topology/type/hypercube4/0.1.1/ReplaceNeighbour
[ROOT]/topology/type/hypercube4/0.1.1/ForgetNeighbour
[ROOT]/topology/type/hypercube4/0.1.1/Join
[ROOT]/topology/type/hypercube4/0.1.1/JoinAccept
[ROOT]/topology/type/hypercube4/0.1.1/Leave
[ROOT]/topology/type/hypercube4/0.1.1/LeaveAccept
[ROOT]/topology/type/hypercube4/0.1.1/PeerUnreachable
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Appendix C

Synchronization Protocol

Introduction

The OPAX synchronization protocol enables peers that join a space to make up the receipt of
Application messages that were broadcast into the space during their absence, and to notify
the application of messages that have been received in previous sessions but are still valid. Thus,
two types of synchronization are distinguished: local and remote synchronization.

Local Synchronization

It is the goal of the local synchronization to keep applications up-to-date as soon as they join
a space. As each application message has a validity period, OPAX releases applications from
managing this, instead it provides the feature that messages which have been received in previous
sessions are stored and automatically re-sent to the application. This happens transparently to
the application, as ”cached” application messages are transmitted to the application in the same
way as messages which are received from the network.

Remote Synchronization

A peer joining a network must become aware of Application messages that have been broadcast
during its absence. The remote synchronization protocol allows a peer to query its neighbours
for messages that it did not yet receive. It must be initiated by the joining peer after the
successful completion of the joining procedure.

The synchronization is performed in four steps:
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1. Synchronize Request Initiation - At first, the peer wishing to synchronize sends a
Synchronize / get-uuid-list message to its neighbours, together with the UUID of
the last message that the peer did receive before its departure of the space.

2. UUID Announcement - A peer receiving a get-uuid-list message checks its message
cache and constructs a list containing UUIDs of messages that (1) have been broadcast
after the one that was sent by the peer to be synchronized, and (2) are still valid. Then, it
sends a Synchronize / send-uuid-list message, together with the list of UUIDs, back
to the requesting peer.

3. Peer Selection - The peer wishing to synchronize, after having received a set of
send-uuid-list messages, selects one peer to synchronize for each message that it has
not yet received. A Synchronize / get-message message, together with the UUID of the
required message, is sent for each message that must be synchronized.

4. Message Transmission - Any peer receiving a get-message message reads the Application
message with the given UUID from its cache and sends it, using a ”normal” Application
message, to the peer. The routing-control field of this message must be set to
SYNCH-REMOTE in order to indicate that this message is sent for synchronization purposes
and thus is not to be forwarded to other peers.

If the peer can not satisfy the message request (because maybe the message expired in the
meantime), it sends back a Synchronize / msg-unavailable message.

newPeer : P eer neighbourA : Peer neighbourB : Peer neighbourC : Peer

Synchronize
get-uuid-list

Synchronize
send-uuid-list

Synchronize
get-message( )A

Application A

Application B

Application E

Application C

Application D

Synchronize
get-message( )E

Synchronize
get-message( )C

Synchronize
get-message( )B

Synchronize
get-message( )D

Figure C.1: Sequence diagram for the synchronization protocol
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Synchronize Message Type Synchronization requests are transmitted by Synchronize mes-
sages. This message has one attribute, type, which indicates the type of the request. The exact
URIs for this field are to be found in appendix B.

Furthermore, Synchronize may have an arbitrary (0 to many) number of UUID elements.
UUID has no attributes and no sub-elements, instead may contain one UUID as text content.
The set of UUID elements is referred to as UUID list. The exact meaning of the UUID list
depends on the message’s type attribute:

Type # UUID elements Meaning
get-uuid-list 0 to be ignored
send-uuid-list 0 . . . n messages that the sending peer holds in its

local cache
get-message 1 the message to be sent to the sending peer
msg-unavailable 1 the message is not available at the sending peer

Table C.1: Meaning of a Synchronize message’s UUID list

<Message from=” 192 . 1 6 8 . 1 . 2 :9870 ” space=”opax: //www. opax . net /
t e s t spa c e3 ” timestamp=”1091173710328” uuid=”d96da80d−e1 fc −11d8−
b241−e6c8d709d640” xmlns=” ht tp : //www. mminf . un iv i e . ac . at /opax/
message/namespace”>

<Synchronize type=” ht tp : //www. mminf . un iv i e . ac . at /opax/message/
synchron ize / type/get−message”>

<UUID>db860055−e1 fc −11d8−9973−c2748d1f5d88</UUID
</Synchronize>

</Message>

Listing C.1: A sample Synchronize message

JIO Implementation

In JIO, synchronization is accomplished by the at.ac.univie.mminf.opax.logging.
MessageLogger class. Initialized for each space, it uses the local file system to store messages
(one file per message) and the index file.

MessageLogger receives incoming Application and Synchronize messages from its Peer
instance. Application messages are being written on disk, while Synchronize messages are
evaluated and the appropriate actions are taken. MessageLogger sends outgoing Synchronize
messages through its Peer instance.

For local synchronization, Peer calls MessageLogger.synchronizeLocal() after a space
has been joined. MessageLogger then scans its message cache for messages that are still valid.
Those messages are sent with the routing-control field set to rc-sync-local through the
Peer.messageReceived() method, which then forwards the message to the application.
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For remote synchronization, Peer calls MessageLogger.synchronizeRemote() with the
UUID of the last received message and a list of peers that the MessageLogger should syn-
chronize with. MessageLogger then initiates the synchronization protocol as described in the
previous section.
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Appendix D

Space Directory Lookup Protocol

Introduction

A space directory is a public server which keeps information about existing OPAX networks in
order for peers to find their way in larger environments, and for users and applications to learn
about which OPAX spaces exist, which configuration properties they have, and which peers to
contact in order to join a certain space.

To accomplish this, a space directory server holds a tree structure of spaces that it knows.
This tree is organized to reflect the semantic properties of the spaces; the tree is comparable to a
web directory service, where web pages are grouped based on their topic. In the space directory
tree, the nodes which form the ”folders” of the directory are called space groups.

Although OPAX messaging is used for the interaction between a space directory server and
”normal” OPAX peers, a space directory server is not part of a particular OPAX space; the
internal space is used for all Directory messages.

A space directory server can be queried to obtain the following information; the corresponding
sub-type of the Directory message is also listed:

• a list of spaces that are registered in a given space group (get-spaces)

• a list of spaces that are registered in a space group whose name matches a given search
string (search-spaces)

• a list of peers which are potential members of a given space; those peers may be contacted
in order to integrate a new peer (get-peers)

• the URI of a topology manager which is used in a given space; as different topology man-
agers exist, and the topology manager must be known to the peer prior to integration, this
information is required for a peer that wants to be integrated into a space (get-topmgr)
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Messaging

To accommodate the requirements of the different sub-types (as enumerated before), and to
ease later extensions, the Directory message type is kept very generic. It is similar to the
Topology message type: it has one attribute type, indicating the sub-type, one attribute
reference-message which holds the UUID of the message that this message is a reply to
(if such one exists), and an arbitrary number of data item elements Item whereof each one has
an attribute data holding the actual information.

Each talk of a peer to a space directory server consists of two messages: First, the peer
sends the desired request message with the type field according to the request, an empty
reference-message field and no Item elements. Then, the directory server processes the
request using its data base and replies with a Directory message of the same type, the
reference-message field filled with the UUID of the original request message, and Item el-
ements containing the data from the data base.

Implementation

In JIO, classes for directory services are grouped in the at.ac.univie.mminf.opax.directory
package. JIO provides a class SpaceDirectoryPeer which extends the Peer class and pro-
vides functionality to serve directory requests from other peers. On creation, it initializes its
database (a tree constructed of the classes ManagedSpaceGroup and ManagedSpace) with data
from the supplied configuration file. The SpaceDirectoryPeer registers itself as listener for
Directory messages and processes the requests using its database. SpaceDirectoryPeer may
be instantiated by any application similar to the ”normal” Peer class.

On client side, space directory lookup is currently implemented in the Peer.join() method.
This method has a boolean parameter lookup, which is set to true if the peer should lookup
space data. The actual lookup is performed by the DirectoryClient class, which encapsulates
the asynchronous communication to a space directory server in its methods. The appropriate
methods are called from the owning Peer instance during the join process.

In future, it is planned to integrate the space directory lookup in one implementation of the
Configurator interface, thus making it possible to retrieve every aspect of configuration from
a directory server, including public key lists and actual topology manager implementations.
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Figure D.1: Space directory demo application
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Appendix E

Peer Watch Protocol

Introduction

The peer watch concept has been introduced to enable the consistent, over-directed departure
of peers in case of a failure. Without peer watch, in case of a failure, there is no means for
the neighbours of the failing node to reconstruct the distributed topology, because they lack
knowledge about the failing peer’s neighbourhood. The idea of the peer watch concept is to
designate one deputy (or monitor) per peer which supervises this peer and carries out the
departure protocol on its behalf if the peer fails. The peer watch protocol is able to recover the
loss of one peer, but it does not succeed if multiple peers - e.g. one peer and its monitor - fail
simultaneously.

In the hypercube, to remove one peer on behalf of itself, it is neccessary for its deputy to
know all its local topology data, i.e. its position vector, its cover map vector, and the list of its
neighbours and their position vectors. Four sub-types of the Topology message type have been
introduced for the peer watch protocol (for a detailled description see below) which topology
manager instances can use to designate or release a peer monitoring responsibility, to inform the
monitor of a monitor’s local topology knowledge, and to notify a monitored peer in case of its
monitor is no more able to keep the responsibility, e.g. because it is to leave the space.

A peer’s monitor is required to regularily check the liveliness of its protege, and to initiate
the departure on behalf if it detects that the peer failed. The liveliness check is carried out using
standard OPAX Ping messages.

The peer watch protocol has successfully been implemented within the hypercube2 topology
manager.
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Message Types

• MonitorMe - is sent by a peer which is to be monitored to its designated monitor as a
request to take over the monitoring responsibility.

• NoMoreMonitorMe - is sent by a protege to its monitor notifying it that it is to release
the responsibility. This message may be sent because of a change of the protege’s neigh-
bourhood which causes it to select a new monitor.

• MonitorYou - is the reply of the monitor which received a MonitorMe message; using this,
the peer confirms its responsibility and is from now on monitoring its protege.

• NoMoreMonitorYou - is sent by a monitor to its protege to indicate that it does no longer
own the monitoring responsibility. This may be because of a protege’s NoMoreMonitorMe
message sent, or because the monitor is to leave the space and therefore is no longer able
to be the peer’s monitor.

The messages of the peer watch protocol use the Properties list of the Topology message
type to pass information which further describes the monitor requests: the MonitorMe and
NoMoreMonitorMe messages have a field MonitoredPeer which contains the network address of
the monitored peer; the MonitorYou and NoMoreMonitorYou messages have a field MonitorPeer,
containing the network address of the monitor peer.

Additionally, MonitorMe has the following fields:

• MonitoredPeerCoordinates - contains the position vector of the monitored peer

• MonitoredPeerCoverMap - contains the (binary) cover map of the monitored peer

• MonitoredPeerNeighbours - contains a space-separated list of the monitored peer’s neigh-
bour peers in no particular order

• MonitoredPeerNeighboursCoordinates - contains a space-separated list of the monitored
peer’s neighbours’ position vectors, in the same order as the MonitoredPeerNeighbours
list

The monitor peer must keep all this data as long as it keeps the monitoring responsibility.
A change in the protege’s local view of the topology causes the deselection of the monitor and
the election of a new one, so there is no need for any ”update” message.

Heartbeat

A peer having the responsibility to monitor another peer has to regularily check the availability
of its protege by sending Ping messages. In case of a failure it has to initiate the departure
on behalf, as described below. It is up to the implementation if the departure is initiated
immediately after a failed Ping, or even after a certain number of failed heartbeats.
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Departure on Behalf

The protocol for the departure on behalf is exactly the same as the common departure protocol
as described in section 5.1.5 on page 42. To indicate the fact that the departure is carried
out on behalf of the departing peer, a boolean field called OnBehalf is added to all concerned
messages (StartBuffer, ConfirmBuffer, FinalizeIntegration. This field set to true indi-
cates that any communication should not be directed to the departing peer (whose network
address is transmitted in the DepartingPeer field), but to the sender of the message, which is
the monitoring peer.
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