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Fakult ät für Wirtschaftswissenschaften und Informatik,
Universit ät Wien
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Abstract

Developments in the last years, brought changes in the distribution and user
interaction with music. Increased computational power and higher bandwidth on
transmission networks made digital music libraries popular for commercial and
non-commercial purposes. This created the demand for new applications for ac-
cessing music in different ways. Music information retrieval systems aim to satisfy
these requirements. To successfully implement music information systems, music
content analysis is used to index music pieces in collections. This thesis introduces
topics from related scientific domains which have influence on the design of music
content analysis approaches. It compares the performance of three different state of
the art prototypes in terms of recall and precision values. Evaluation is also done by
conducting a user survey.

ii



Kurzfassung

Der technische Fortschritt in den letzten Jahren hat die Verbreitung und die
Interaktion von Benutzern mit Musik stark verändert. Durch die Steigerung von
Rechenleistung und Bandbreite in Netzwerken sind digital Musikarchive populär
geworden. Diese Umstände f̈uhrten zur Nachfrage nach neuen Anwendungen die
Benutzer im Zugriff auf Musiksẗucke in verschiedenster Weise unterstützen. Die
Implementierung von Anwendungen für die Musiksuche wird unter dem Einsatz
von Systemen zur Analyse von Musikstücken basierend auf ihrem Inhalt realisiert.
Es wird versucht Musikstücke aufgrund ihres Aufbaus und Inhalts zu identifizieren.
Diese Diplomarbeit beschäftigt sich mit Themen die Einfluss auf das Design eines
solchen Systems haben und vergleicht die Leistungsfähigkeit dreier verschiedener
Ansätze zur inhaltsbasierten Indizierung von Musikstücken. Die Leistungsfähigkeit
wird anhand von Genauigkeit und Vollständigkeit (Recall, Precision) der Ergebnisse
bewertet. Eine weitere Evaluierung der Ergebnisse erfolgt durch eine Benutzerbe-
fragung.
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Chapter 1

Introduction

Common words to introduce the reader in works related to digital music libraries

and music content analysis for music information retrieval (MIR) systems are about

the problematic of retrieving certain music pieces out of a huge digital music collec-

tion. The first digital revolution in the music storage domain was the introduction of

the Compact Disc (CD). A medium enhancing the playback quality of music and al-

lowing easy random access to music content on it. The second digital revolution are

the possibilities arising through the increase of computational power combined with

reduction in size, allowing the construction of portable devices as well as personal

computers and computation intensive applications dealing with music content, as

well as the existence of new distribution channels through increasing channel band-

width in the internet and mobile radio services. These circumstances empowered

the need for new applications of content processing of music and therefore new ap-

proaches for music content analysis to enable the realization of these applications.

The main idea of music content analysis is to find a way to extract characteristic fea-

tures out of the music input to index music pieces and determine similarity between

different music pieces. Similarity can serve to determine a certain music piece by a

fragment or to find similar music pieces for example in the terms of musical genre.

Chapter 2gives an overview of work recently done in the field of music content

1



CHAPTER 1. INTRODUCTION 2

analysis.

To understand what factors influence the design and work upon music content anal-

ysis systems,Chapter 3gives insights in different domains. An overview of general

music content processing technologies is given and their impacts on music related

activities. Since music information retrieval systems are designed to aid human

activities related to music it is important to know about human behavior in these

activities. This knowledge makes it possible to define criteria for the design of

MIR applications. Looking at rules, which apply for the establishment of musical

genre, it gets clear, music genre recognition will be hardly solved perfectly by a

straightforward signal processing approach. The emergence of musical genres un-

der musicology and sociology aspects are very difficult processes and have a lot of

different influences. The last section in this chapter considers the anatomy of the

human ear and psychoacoustic effects the human aural perception owns.

After covering these domains and their effects on the music genre recognition in

common the topic gets more technical. InChapter 4its all about signal processing.

Two different signal transformation possibilities are shown, the Fourier transforma-

tion and the Wavelet transformation. These transformation build the basis for the

extraction of specific features out of the music signal. Features to characterize a

music piece are manifold and focus mainly on spectral shape, texture, rhythmic or

pitch content characteristic of music pieces.

Subsequent to the theoretical discussion of music content analysis related domains

as well as signal processing techniques for feature extraction, the experiments con-

ducted with three prototypes are illustrated inChapter 5. The three different proto-

types, the music collections the experiments are based upon and the way of distance

determination are described and the evaluation results are presented. Evaluation is

not done by using the computed feature vectors to algorithmically classify the an-

alyzed music pieces into musical genres. It is done by calculating precision and

recall values in two different test settings. In the first case the quality of the query

results is measured as how good the system performs in finding different segments

of the same music piece. The second test case is about a genre precategorized music
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collection and evaluates the recall and precision values for genre recognition. As

a total different evaluation the answer sets are presented to users asking them to

evaluate the answer set in their perception of musical genre.

The finalChapter 6contains insights of the theoretical discussion as well as of the

conducted experiments.



Chapter 2

Related Work

The research field spanning the topic - music genre classification - could be ref-

erenced as audio signal classification. This consists of extracting relevant features

from a sound and using these features to figure out which class this sound is prob-

ably most similar to. Thereby research domains like signal processing, spectral

analysis, psychoacoustics and machine learning algorithms are encountered. For

this thesis it is assumed that the input signal will be music, so there is no need to

distinguish between silence, noise, speech or music. A not irrelevant simplification,

although there are already promising results in speech recognition or music classifi-

cation, would be a general classification system, which could route the input signal

to the appropriate sound processing application [16].

Music as the input signal can be described by technical or semantic features [24].

As a technical feature would be referred a feature, calculated out of the information

representing the musical piece itself. Such an feature would be for example the

energy of the signal. Energy is used to discover silence in a signal, as well as

dynamic range. It is typically calculated on a short-time window of the signal,

squaring the samples and taking the average [19]. Semantic features are annotated

meta information about the music piece. This features would be represented by

information like title, artist, album or year of production.

4



CHAPTER 2. RELATED WORK 5

Digital stored music can be represented in different ways. Either sample values of

the analog signal are coded and stored or a notation containing the kind of instru-

ment, begin/end of a note, pitch and volume is used to encode the musical data. The

latter for example would beMusic InstrumentDigital Interface (MIDI) notation.

These different music information representations give different possibilities of pro-

cessing. The features of the MIDI notation used the research team around Rudi

Calibrisi for example, in their work [7] using compression algorithms for music

genre classification. The idea behind is, roughly speaking, that two objects are

deemed close if it is possible to significantlycompressone given the information

in the other. This concept is used to compute the distance between all pairs of

music pieces and building a tree containing this pieces in a way, that is consistent

with those distances. Experiments have shown, that a discrimination between three

broader musical genres (classical music, rock and jazz) works well, but is not per-

fect. Other experiments using exclusively classical music show, that the method

works really well on smaller sample sets. Sets increasing in size contain pieces of

artists, which are scattered all over the tree. This could be because (i) the distances

estimated are less accurate; (ii) the number of allocation conflicts in the tree ren-

dering process increases; (iii) the computation time rises to such an extent that the

value of correctness turns into a victim of the set time limit. Applications of this re-

search work could be the determination of plagiarism or honest influences between

composers or to figure out who is the creator of discovered sheets of music.

Concern of this thesis is, music genre classification based on music as input signal

in form of discrete values over time. Scientific publications considering this case

are mentioned below.

A good overview of technical features used in music genre recognition and clas-

sification is given by George Tzanetakis who concentrates his scientific work on

this issue. In his PhD thesis, called, -Manipulation, Analysis and Retrieval Sys-

tems for Audio Signals[43] -, he does not only list and evaluate technical features

used for music genre classification, additionally he presents user interaction varia-

tions, which are made possible through applications using such features. He also
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developed a framework,Music AI ResearchSYstem forAnalysis andSynthesis

(MARSYAS)1 [45] for experimenting, evaluating and integrating common audio

content analysis in restricted domains. It consists of a server application, written in

C++ and a client done in JAVATM. The server contains all the the signal processing

and pattern recognition modules optimized for performance. The client provides a

GraphicalUserInterface (GUI) and communicates the requests for computation to

the server and retrieves the results. This breakdown has the advantage of separating

computation from interface, so that it is possible to easily implement new frontends

for individual demands.

A prototypical music classification system calledMusic Genre Recognition by

Analysis ofTexture (MUGRAT) is presented by Karin Kosina in her thesis -Music

Genre Recognition[25]. Classification is done by using technical features, in detail

so called musical surface features and features related to the beat of the song. The

feature set is based upon the feature set originally proposed by George Tzanetakis

in [48]. Musical surface features are derived from the spectral distribution, from

the instrumentation, the timbre and the musical texture. The second category of

features used in MUGRAT are beat related features. This contains the calculation

of the main beat of a song as well as the second strongest beat, and a number of

features concerning the relationship between the first and second beat. A in deep

explanation of the here or below mentioned different technical features will be given

in the feature extraction section of this thesis.

Due to the fact, that important organizations already worked on standards to pro-

vide a framework for describing multimedia data it stands to reason to use these

frameworks for their intended purpose. So it was done by theMotion Picture

Expert Group (MPEG) Organization which defined the MPEG-7 standard [23].

An eXtensibleMarkup Language (XML) like language which already comes up

with predefined description schemes for describing multimedia data with meta in-

formation as well has the potential to define new description schemes as required

for future applications. A classification done with the help of the audio part of

1Thename is derived from the name of a greek mythology figure.
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MPEG-7 [22] is shown by Holger Crysandt and Jens Wellhausen in their paper

- Music classification with MPEG-7[9]. The predefined features of the standard

were used to arrange music pieces of the data set, which consisted of the Top 100

Single Charts of Germany from March 2002, via theself-organizingmap (SOM)

algorithm. Not all of the features of the vector are able to help a classification, so

the most important ones are weighted stronger (mean ofAudio Power- separates

soft, quiet songs from louder ones; mean ofAudio Spectrum Flatness- separates

harmonic from inharmonic songs;Clearness of Beat- determine if there is a strong

or weak beat). The mean of theAudio Spectrum Centroiddescribes whether the

signal is dominated by low or high frequencies and is weighted with zero because

music pieces of the same genre are defined not similar, if, for example, one is sung

by a female artist and another one by a male artist. Visualization is done by the

SOM algorithm, feature vectors with a short (euclidian) distance are placed on the

same point or close to each other. It was shown that with the MPEG-7 description

of songs a rough classification is possible.

Francois Pachet, head of the music research team at the SonyComputerScience

Laboratory (CSL) Paris, mentions in his paper -Content Management for Elec-

tronic Music Distribution[31] - requirements, arising from the actual music market

changes, on music content management systems and different programs concerning

such needs. TheContent-basedUnified Interfaces andDescriptors forAudio/music

Databases availableOnline (Cuidado) music browser is one of his examples and

was developed in the Cuidado European project. This browser combines features

extracted from the signal with semantic features in form of information about a

song and user ratings. The Cuidado Music Browser offers a unique opportunity to

compare and assess quality and relevance of this features. It is practical oriented

and offers functionality like search through a music database by sound similarity,

create musical compilations, build audio summaries from titles and retrieve music

according to personal taste.

An already on market application, created and distributed by a company called Mus-
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cle Fish2 is their product SoundFisher. Muscle Fish is a cooperation of a group

of engineers who had worked together on electronic musical instrument research

and development for Yamaha Music Technologies USA, Inc. The Soundfisher is

intended to be used as an sound effects database management system. It calcu-

lates technical features to determine the distance between the sound samples in

its database. The attributes it extracts are not musically oriented rather than for

speech - or speaker recognition, they do not address sound at the level of the musi-

cal phrase, melody, rhythm or tempo. Used features are loudness as the root-mean

square (RMS) level in decibels, pitch, brightness as the higher frequency content

and bandwidth of the signal [52].

An interesting paper entitled -A comparative Study on Content-Based Music Genre

Classification[27] -, introduces automatic music genre classification via feature

extraction throughDaubechiesWaveletCoefficientHistograms (DWCHs). Using

two datasets, Dataset A containing 1000 songs over ten genres (this dataset is orig-

inally used by Tzanetakis in [48]) and Dataset B containing 756 sound files over 5

genres, music genre classification is evaluated by extracting features like DWCHs,

Mel-FrequencyCesptralCoefficients (MFCC),FastFourierTransformation (FFT)

coefficients, beat related features, pitch related features and combinations of this

features. The classification accuracy on any single feature set is significantly better

than random guess. The four sets (mentioned above exclusive DWCHs) were com-

bined in every possible way and it could be observed that FFT and MFCC perform

best if combined and classification accuracy cannot be considerably improved by

adding pitch or beat related features. Main issue of the paper is the comparison of

this methods with the DWCH method. The accuracy achieved through the wavelet

method exceeds each other feature combination. Classification algorithms used in

this paper were Support Vector Machines, K-Nearest Neighbors, Gaussian Mixture

Models and Linear Discriminant Analysis.

In 2001 Andreas Rauber and Markus Frühwirth published their work [35][15] about

music genre classification. They extracted features from audio signals to enable a

2http://www.musclefish.com



CHAPTER 2. RELATED WORK 9

SOM to display the relations ie. distances of similarity, between the several music

pieces. Their approach is based on the SOMLib Digital Library Project [36] which

is capable of automatically organizing digital text documents according to their con-

tent. Through adapting the feature extraction process in respect to the audio signal

as input values the same principal is used to organize musical content. The audio

signal is transformed into the frequency domain using a FFT with about 20 millisec-

ond windows. 17 different frequency bands are used, with each of them represented

by 256 coefficients in the frequency domain. Combining these values to a feature

vector, 5 seconds of analyzed music are represented by a 4352-dimensional feature

vector. Organization in two dimensional space is done in two steps, by first orga-

nizing the vectors for the 5 seconds samples of the music pieces on a SOM. The

segments are scattered across the map according to their mutual similarity. This

makes it possible to find music pieces which have similarity to multiple genres to

be located in more than one cluster on the map. As a second step another feature

vector is built upon the location of the segments on the first SOM. Counting the

segments of a piece of music located in a specific cluster, weighted by the distance

to the clusters centroid assembles this feature vector. Training a second SOM using

these feature vectors a clustering is obtained, where each piece of music is located

in one single location on the output map.

Elias Pampalk continued in his masterthesis, -Islands of Music; Analysis, Orga-

nization and Visualization of Music Archives[32] -, this work. This work is also

published as an article in the New Music Research Journal [37]. He extended the

work of Rauber and Frühwirth in respect to psychoacoustical methods to improve

the performance. Psychoacoustics is about characteristics of the human perception

of sounds, a good overview is given in -Psychoacoustics, Facts and Models[53].

Pampalks work gives thought to critical frequency bands we perceive (bark bands3)

and how the acoustical perception is influenced from each other, this effect is called

masking. Further on loudness sensation is considered, the perceived loudness of a

tone is depended on its frequency. The human ear is most sensitive to frequencies

3in memory of Barkhausen, a scientist who introduced the ”phon”, a value describing loudness
level for which the critical band plays an important role.
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between 2kHz and 5kHz. Below and above our hearing threshold rises towards to

our natural frequency perception limits of 20Hz and 16kHz. He also improved the

visualization of the results. The clustered music pieces formerly displayed in table

form are now rendered in a two-dimensional map with color coded contour lines.

He uses the metaphor contained in the thesis title to visualize the organized music

collection. Islands on the map represent groups of similar data items. In the sur-

rounding sea located data items do not belong to specific clusters. Mountain peeks

on a Island correspond to the centers of islands. For easy exploration and evaluation

of the results, the interface is realized in Hyper Text Markup Language (HTML).

The psychoacoustic modifications lead to encouraging results, but are not sufficient

for a perfect music genre classification.

In my thesis I try now to further improve the music genre classification results

through modifications of the feature extraction process.



Chapter 3

Music Content Analysis

This chapter is meant to give a non technical insight to related aspects of music

content analysis. How has this topic evolved through modern digital music storage

technologies? Digital processing of music has been a reality for quite a long time

now, from studio production to home reproduction and so there is also the logical

consequence, that there has to be an impact on music distribution. Although the

music industry was not willing to accept this fact at the beginning, problems like il-

legal music spreading over the internet resulted in heavy losses for them. Right now

a rethinking happens and the possibilities of new distribution channels are taken in

consideration. This results in the need for supporting technologies. Existing on-

line platforms for direct marketing of songs are for example iTunes1 and the legal

reinstallation of Napster2.

But now what makes humans capable to differ between different pieces of music or

musical genres? A lot of approaches exist for determining the difference between

single pieces of music. An important aid for creating such systems is to understand

how human beings create such symbols like literal denominations for musical gen-

res and how our auditory perceptive system works. In the sections below answers

to the following questions are tried to be given. What kind of information can be

1http://www.apple.com/itunes
2http://www.napster.com

11
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extracted out of music? What are important criteria for the design of user interfaces

through studying human behavior? How are musical genre systems established?

What are the important characteristics of the human auditory system?

3.1 Content Processing of Music

The digital revolution on audio did not make that big differences in everyone’s mu-

sic world. Main changes only led to better sound quality and denser distribution

carriers and a digital storage of music, while the playback remained in a way the

same like using analogue audio carriers. From a sociological view it would be men-

tioned that the listening process got increasing segmentation, because of a much

easier access to single tracks and segments of tracks through the compact disc (CD)

technology. This only looks at the consumer sector, in the production environment

a lot of changes happened because of new technologies, but this is not of concern

here. Through the ongoing progress of increasing computational power, complex

mathematical analysis can be done in an reasonable amount of time and so the pos-

sibility for new methods of determining and calculating features arises.

3.1.1 Overview content processing technologies

Before mentioning which kind of new applications are possible, because of these

changes it is necessary to identify what technologies are available, like described

in [1]. The following techniques were developed by ethnomusicologists, specialists

of psycho-acoustics, electro-acoustical music composers and sound analysis/syn-

thesis engineers or adapted from other scientific fields to work in a music related

area. Some of these techniques are intended to work as real-time application, others

are designed to be processed off-line. A future perspective could be that recording

or publishing formats already contain meaningful additional non-playback related

information for processing applications.
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Pitch recognition

Although already successfully done by analogue devices as well as in the digital

domain, it is still an active field while trying to achieve higher accuracy. The step

from monophonic3 to polyphonic4 case has proven to be difficult, multiple pitch

recognition in polyphonic contexts delivers results in an single instrument score per

detected instrument with errors limited to cases a naive listener would also be chal-

lenged. There are still ongoing developments in topics like temporal segmentation

associated with pitches.

Beats, rhythm, and dynamics

Time/energy events are an important characteristic in the musical genre recogni-

tion field. This concerns attacks, beats, rhythmical structure and phrasing. Beat

tracking in real time has received much attention and is today successfully achieved

in reasonably complex rhythmical environments. The recognition of full rhythmi-

cal or metrical structures is still a challenge but not directly necessary for genre or

similarity determination between musical pieces.

Automatic score following

First dealt with through the context of interactive performance, automatic score

following is primarily a matching of pitches of music against scores.

Timbre classification

Artificial sound synthesis had the biggest problem in achieving acceptable timbre

quality in the beginning. This is the reason why a lot of work has already been done

3Melodyhaving a single unaccompanied line [11].
4Music comprising two or more relatively autonomous lines [11].
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in this field. Studies in psychoacoustics brought scientific results which can be used

to develop automatic timbre classifiers.

Temporal segmentation

This is the breakdown of musical content into discrete time segments. Rules were

defined, how listeners segment music not only for tonal music, but also in general.

Proposals have been done based upon dynamics or on recognized pitches.

Melody extraction and melody matching

Melody information extraction is often called the holy grail of content-based access

to music. Querying for melodies (query by humming) is a very popular field at the

moment. Promising results are achieved, but a perfect solution does not exist right

now. The dominant matching model is contour-based rather than interval-based.

This means the matching is done by determining similarities between the query and

the dataset in the general form of melody and not by equal tonal intervals. Matching

should work in the presence of modifications to the sought melody or being con-

fronted with some non-western music perception models, but these circumstances

are really challenging.

Chords, harmony and chord prediction

Assisted analysis of harmony for tonal music can be achieved based on sophisticated

pitch detection or of course a score. The challenge lies in determining the right

time scale which can easily be done by a human, but it is not easy to figure out

the correct basis rhythm of a song by signal processing. Music chord prediction

systems specialized upon certain genres of music are working, but a wider set of

real music would overextend these systems.
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Streams and voices

The ability of the human auditory system to separate different streams or voices

in a musical or just acoustic signal and track them over time is very impressive

from a technical point of view. Understanding or modeling it has been a key re-

search agenda for the auditory scene analysis community. The approach to achieve

a stream-based analysis in the time-frequency domain has proved to be very diffi-

cult because of computational complexity and the problem whether and where is

the right point in the analysis process to recognize discrete musical objects.

Multifeature classification and retrieval

The content processing topic is the topic this thesis is dedicated to, in the way of

indexing whole pieces of music for a retrieval task. But also in a movie production

environment, where often specific sounds are searched, or in music productions

navigating within a recording multifeature classification and retrieval is used. To

see which specific features and bundles are used for such tasks and what they stand

for please refer to Chapter 4.2. Although different approaches exist and promising

results are achieved this topic is still hot and the demand for applicable solutions is

big.

Sonic spaces

A more art related access to the topic are sonic spaces. The idea is to analyze sound

documents and calculate multiple features, which are used to give the sound piece

coordinates in an three dimensional space (mention that a similar approach is used

in [37] as a 2D approach while using the self organizing map algorithm to visualize

the output of their Islands of Music application). The user is then enabled to browse

through this space using a sound spatializer to perceive the different pieces of music

according to their distance.
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3.1.2 Impacts on some music activities

If there are new possibilities to analyze music and extract information out of its

signal so there have to be new emerging applications. A short overview is given

of potentially wide usage and different fields from a consumer’s point of view, the

broad field of music production excluded again.

Listening and interacting with music

Listening is only at first sight a passive activity. It will be also always the simple

perception of oscillating air, but through a technical mediation the listener gets con-

trol over what he is listening by choosing and sequencing. The listening experience

will get more active for example by extending the acoustic perception with a visual

component on a sophisticated level. Lyrics, simplified scores adapted to real time

reading and graphical scores which can aid in a pedagogical perspective would be

such applications. The main challenge is in the production of new graphical repre-

sentations that effectively support listening. Interactive listening in its original form

happens, if the listener builds the auditory contents he is listening to. At this point

the line between perceiving and performing is fading. For such experiments dif-

ferent interfaces exist, ranging from classic mixing consoles to music objects in an

abstract version reacting on different obstacles or even interpreting text on a musical

alphabet.

Finding, exchanging and selling music

Content-based indexing and retrieval is not only the application this thesis aims at,

its also the field receiving most attention (explicit references to work in this area

can be found in the Chapter 2). Its appliance ranges from retrieval tasks in large

musical repositories like libraries or music catalogs of major labels for music on

demand services to the navigation within a single musical recording for navigation

from one extract to another similar one. Finding of the right features for effective
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classification and distance determination between songs is not the only challenge.

A reasonable application also needs a user interface which supports content-based

visualization, summarization and auditory browsing. George Tzanetakis focused

his PhD-thesis on this whole field, see [43].

Music teaching and critic

The educational aid, audio content processing systems can give, is often underesti-

mated. It has attracted special attention as a practice support for the pupil between

his teacher-delivered courses. When trying to develop instrument tuition systems

that analyze pupil production and recommend adequate modification or practice,

some difficult issues must be addressed. The recorded input signal is of poor qual-

ity (no special or high quality equipment should be necessary to make such systems

affordable) in maybe noisy environments and simultaneously the features should be

processable to compute adequate music pedagogical advice.

Music analysis

Ethnomusicologists are the pioneers of content processing techniques with regard

to music transcription. They are faced with the need for a common non-musical

notation to analyze all the different musical styles and concepts over the world. So

they have an insight to a broad range of different notation models. A system with the

ability to transform for instance feature-based signal representations in a score-like

representation would be of great interest.

For explicit examples and their references please refer to the original article [1].

3.2 Music information retrieval - Human interaction

The human behavior of seeking music titles someone prefers, creates the require-

ments on the design of digital library systems. A study dedicated to this topic was
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done by Sally Jo Cunningham [10] described in more detail below. In the sound do-

main an experimental prototype, called ”Sonic Browser” [4] was implemented by

Eoin Brazil and Mikael Fernström to test user behavior and elicit the effectiveness

of different representation of relations between sounds. Also Tzanetakis deals with

this topic in the interaction chapter of his PhD-thesis [43]. It is important to find

profound knowledge about human behavior in music retrieval situations, because

the risk is high that music information retrieval systems are developed without con-

cerning the requirements of their eventual users.

3.2.1 Human behavior patterns

The following points are the results of a study done by Sally Jo Cunningham [10].

This study was done by using instruments of the empirical social research [40]. The

social research knows qualitative and quantitative methods. Quantitative methods

are used to ”measure” the accuracy of propositions in a sense of creditableness

and objectivity. Here a quantitative method was used, because these methods are

suitable for acquiring new insights to a situation. Participating observation and

think-aloud protocols were used to attend the test persons in a shopping environment

and led to the following results.

Searching

Searching for music - the locating of a desired music media in a collection environ-

ment like a shop or a library. The process of searching and browsing figures out to be

a casually interleaved activity. Searching for a known-item can easily be followed

by relatively unoriented browsing. This behavior is likely encouraged through the

disposition of articles, which itself is adjusted through marketing techniques based

on studies of human behavior. Music retrieval systems can use multifeature clas-

sifications on one hand to give correct answers to explicit defined search queries

or on the other also enable the user to browse by presenting objects of low dis-

tance at once, based on different features. Features guiding the search are mainly
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bibliographic (artist/group name, album name, track title), this indicates the impor-

tance of quality bibliographic metadata in a music digital library. The enhance-

ment against the ”real-world” situation should be to give the user the possibility

of different search interfaces, like bibliographic or acoustical in terms of query-by-

humming, and to give fuzzy answers, because the queries are also formulated with

high fuzziness. Different possibilities of sorting for fuzzy answers are also impor-

tant, because of the partial information of the searcher about his desired items, the

manual search through query results can be simplified. Results of a query should

not be only explorable in textual format, but also by streamed sound examples.

Through the, for bandwidth issues, diminished audio quality and the fragmentary

nature of these examples the copyright issues of delivering music samples is solved

and it is convenient for customers, because there is no long time delay between the

request for a sample and the playback. An important advantage of a digital library

also is the information about the availability of searched items. In a shop or library

the customer can only infer of not finding a desired item that it is not available, but

it gives no information about, if the item is in catalog at all.

Browsing

Browsing in general is differentiated from searching, in that the browsing process is

more exploratory and less directed than searching. Browsing is like search by ran-

dom, walking through a shop or library flipping CD’s and being influenced by what

the customer can see. The only clue for customers for browsing seems to be the

genre classification of the music catalog in a shop or library. The topic of musical

genre definition and classification is discussed later, but the point of classification is

of importance for the browsing process as well. Customers prefer a genre classifi-

cation which suits their needs and own personal view. The loose boundary between

different genres makes it difficult but in a physical shop or library environment nec-

essary to assign an item to specific genre, because an CD is an object and can only

be displayed on one location at once. A general genre classification scheme would

make thinks easier but as noted in [2] this not an straightforward process (more in
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Sec. 3.3). The use of a music information retrieval system can or should incorporate

aspects like assigning more than one genre to a CD and eventually using more than

one genre scheme in its system. Supporting a good browsing function has to be

based upon understanding how users define, perceive and describe musical genres.

Collaborative Aspects

Music Shopping is not a task attended by people on their own. It is very often a col-

laborative task, where the groups of people are friends or families. The collaborative

aspect for shopping is big while it is not in a pure information request environment

like a library. If a music information retrieval systems should be applied in a com-

mercial way, it will not be easy to support functions which give rich collaborative

possibilities. Instruments like instant messaging, chat rooms or a function which

gives insight on what other people are listening to right now can try to create a col-

laborative atmosphere in the digital case. Functions like ”customers who bought

(found) this also bought (requested) the following products” [38], user ratings and

reviews by users or professionals are only possible in the digital domain and can ex-

tend the collaborative experience. This function, especially in a commercial setting,

brings the problem that generally unknown items never come up, because people are

only linked to sold products. A system, able to determine distance between musical

pieces, based upon the content, can very usefully extend this functionality, by pre-

senting ”near-by” pieces of music even if they were not sold yet. A paper dealing

with the collaborative idea extended with a small feature based music recommen-

dation system can be found in [6]. From the aspect of the collaborative idea it is

to question if a music genre classification without involving the users interests or

behavior makes sense and if a system combining these aspects can improve results.

Visual Aspects

The visual recognition of desired items, found by browsing or searching, is most

important for users. It is the fastest way to identify known items and speeds up
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searches, this is valid for the digital as well for the non digital music library case. In

a way also genre specific information is extracted by customers out of the artwork

of CD booklets. This is not always possible, but again this completes the palette of

deduced information of a CD and the booklet.

3.2.2 User interfaces

The success and usability of a human-interacting application always lies in a great

part in its user interface. Through the fact that music information retrieval systems

are not yet fully technically mature and are still in a research state the emphasis

often lies in finding the right features and their calculation methods for the right ap-

plication. But the discovering of feature sets expressing certain musical properties

of a music piece, also gives the opportunity to implement a new kind of interfaces.

Also to mention is, as long as these systems work imperfectly they are comple-

mented by human input, this yields to the realization of a user friendly graphical

user interface (GUI). In the following a few interfaces are mentioned, which build

upon the concept to map audio files to visual objects with specific properties related

to their content. Most of the following kinds of GUI’s where mentioned by Tzan-

tekais [43] which also contains the Sonic Browser [4]. The Island of Music project

by Pampalk [32] this thesis is based upon is also mentioned.

Browsers

This enlisting of browsers does not claim to be complete, it is intended to show what

realizations already were done in a prototypical way.Standard browsersprovide a

simple textual list of audio files of a collection. The user can select one or more files

for further processing. Another visual representation aretree browsers[4] (see Fig-

ure 3.1). The tree can be generated manually or automatically. Lower levels (closer

to root) of the tree are more general, getting more and more detailed the higher the

tree level. For example first differ between Music and Speech and Speech is subdi-

vided into Male and Female and so on. TheSonic Browseror SoundSpaceis based
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Figure 3.1: On the left atree Bowservisualization is presented, using a tree struc-
ture combined with different shapes and colors. The image on the right shows the
Timbrespace Browserwith colored cubes representing different audio objects in
three-dimensional space.

on the so called Cocktail party effect. Music objects are arranged in a three dimen-

sional space. The user hears a certain count of the closest objects. Moving closer

to an object will increase its volume. So the user can explore a three dimensional

space aurally. TheTimbrespace Browser[47] (see Figure 3.1) locates audio objects

in a two-dimensional or three-dimensional space. Objects are not only character-

ized by their position in space, but they also have certain shapes, textures, colors or

text annotations. As underlying principle the so called Principal Components Anal-

ysis (PCA) is used. In short this is a dimensionality reduction technique to project

large feature vectors into smaller ones like for example three-dimensional coordi-

nates. It has not to be that all three-dimensions are determined through timbre it

can also be combined with other features. The large feature vector contains timbral

information as the name of the browser let it presume already. A two-dimensional

visualization is theTimbregram[44] (see Figure 3.2), where the input files are di-

vided in short time frames and depending on timbral features, reduced again by

PCA, this short frames are color (or greyscale) encoded. Theislands metaphor(see

Figure 3.2) used by Pampalk in [32] is an approach, which uses the SOM algorithm

to locate the pieces of music, represented by the calculated feature vectors, on a
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Figure3.2: The left image shows atimbregramcontaining speech (left) and classical
music (right). On the right hand side an example of theisland methaphorcan be
seen. Dots on the map represent the location of pieces of music.

two-dimensional map with contour lines. Again the distance between the certain

pieces of music expresses their similarity and the contour lines are used to represent

density in different areas in the digital music library at all.

Figure 3.3: Monitoring different genres through aGenreGramby the movement of
the cylinders along the y-axis is shown on the left. TheTimbreBallMonitor on the
right is used to evaluate features. Sudden jumps can be interpreted as sound texture
changes.

Monitors

Monitors visualize audio content information in real time. Commonly known vi-

sualizations are simple display of thewaveformof a audio signal,spectrumsdis-
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playing magnitudes of signal in frequency bands calculated through Fourier Trans-

formation (see Sec. 4.1.1),spectogramsrendering the same information likespec-

trums in images as gradients,waterfalls showing cascadingspectrumplots in a

three-dimensional way, simple metronomes displaying the beats-per-minute (bpm)

eventually how strong the beat is and feature plots of user defined features. Tzane-

takis [43] also proposes aGenreGram[44] (see Figure 3.3) designed for visualizing

automatic genre classification results for real-time streams (it also can be used with

any kind of audio information, real-time or not). Genres are visualized by moving

cylinders. The vertical position indicates the affiliation of an input signal to a genre,

the higher - the more accurate a genre determines the current input. It gives valuable

feedback to users as well as to classification algorithm designers, viewing different

classifications decisions and their strength. This is much more informative than a

single decision. TheTimbreBall [44] Monitor (see Figure 3.3), a small ball in a

cube, visualizes in real-time the evolution of extracted feature vectors. The, in the

three-dimensional space mapped vectors make the ball move, and sudden jumps of

the ball can be interpreted as sound texture changes.

Figure 3.4: This illustrates aSound Slidersquery interface. Query parameters are
manipulated through shifting the different sliders.

Query interfaces

As this whole thesis concentrates on discrete audio signal as input, query interfaces

concerning MIDI related audio content are disregarded. The main idea of the query
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interfaces is to fully utilize the already analyzed structure and content of the un-

derlying audio collection the query is matched against. This gives the opportunity

to provide instant aural feedback to the user and thus results in an intuitive search

process.Sound Sliders[51] (see Figure 3.4) are query interfaces which give instant

and continuous feedback. As example tempo and beat strength are known for a

whole collection. A slider input device lets the user adjust to a certain beat. Music

pieces with a related beat are enlisted and, if the query result is larger than one, the

top match is played back instantly. The user can skip to the next result by clicking

a button. Shifting the slider results in a new query and new results to which the

system crossfades automatically from the actual play back.Sound palettesare the

discrete case ofSound Sliders. A palette with a fixed set of visual objects (text, im-

ages, shapes) is used to describe discrete attributes of a music piece. The playback

of query results is like in the case ofSound Slidersinstant and continuous.Loops

are important parts of the last two techniques. The problem of looping a certain

piece of music is much often to long. Beat detection can be used to find a adequate

playback starting point. It makes no sense to play a song from the beginning in the

case it has a long quiet intro and the representing part kicks in later. Crossfading

between the pieces makes the listening experiences more pleasant.

3.3 Musical Genre

Before looking on usage and function on categories in music, it may be interesting

to take a look at categories in general, like [14]. A very early version of defining

the term ”category” was done by Aristotle5. According to his idea a category is ul-

timate and most general predicate, which can be attributed to anything. Categories

are used to define entities by relating them to their general essence in the sense of

substance, quality, quantity, relation, place, time, position, condition, action or pas-

sion. This idea is different from Immanuel Kant’s6 definition. Kant does not see
5Aristotle was a philosopher in the ancient Greek; pupil of Plato; tutor of Alexander the Great

(384-322 B.C.)
6German philosopher of Modern times (1724-1804)
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categories as designators of essential modes of reality, but the way we know them.

They are universal forms that phenomena must take to become objects of knowl-

edge. He formulated twelve categories under four general titles (quantity, quality,

relation, modality) containing thesis, antithesis and synthesis patterns. The modern

usage of the term ”category” by cognitive psychologists is different again. Beside

this different and complex views, researchers agree in that kind, that categories are

classes of objects or events, which humans create to reduce the complexity of the

empirical world.

3.3.1 Generic Rules

Musical genre is a set of musical events, whose nature is governed by a definite

set of socially accepted rules. Thus it is a set, subsets exist. Musical events can

also been situated in the intersection of different subsets. Fabbri [13] uses the term

”musical events” in the sense of: any type of activity performed around any event

involving sound, to have an, as broad as possible, definition, so a kind of musical

event, not found to be music by objectors, does not exist for his set of rules. The

following set of rules for forming genres is intended to show the complexity of the

problem and not to resolve the problem. It should help understanding involvements

by building a genre system. The rules have no specific hierarchical order. It is to

mention that for the description of a single genre some rules are more others less

important.

Formal and technical rules

A major role in all musical genres play formal and technical rules. Each genre

has its typical form, even if the opposite, in terms of a form being sufficient to de-

fine a genre, is not true. Rules exist in written form, theoretical disquisitions or

teaching manuals, as well and not less important, rules passed in oral tradition or

through models. This is also true for rules referring to performance techniques and

instrumental characteristics. For example a transverse flute player in an classical
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orchestra and one in a jazz band are certainly on the same level from the point of

view about playing at sight and memory, but differ in embouchure, extension, im-

provisation and interpretation of sheet music. The complexity of a musical event is

very high and that is the problem while being confronted with a genre for the first

time, because its unclear which specific attributes it omits and which are important.

Further attributes are the choice between ”musical sounds” and ”noise”, note sys-

tems, conception of musical time, importance of elements like melody, harmony,

rhythm and the level of complexity an entire musical system owns. When facing

musical genres characterized by the existence of text, the formal and technical rules

referring to it should also be taken into consideration. The use of syntax, meter,

lexical choices contribute to the identification of a musical genre.

Semiotic rules

All mentioned rules are semiotic, because they are codes creating a relation between

the expression of a musical event and its content. In this context here these rules

are nearer to the expressions done through musical events. Its about the narrative

form, which lies in some genres both in text and in the music, determining different

genres. There are rules relating to the communicative functions: referential, emo-

tional, imperative, phatic, metalinguistic, poetic factors of a message. Imperative

messages for example mostly relate to dance music, phatic can be used to describe

rather ”background music”. Parallel to the musical rules there are also gestural and

mimic codes, not only of the performing artist, but also of other interprets, conduc-

tors or listeners.

Behavior rules

These rules are on one hand about the psychology of musicians (performers) and

their reactions when faced with an audience. On the other hand also about the

behavior and psychology of the audience. Each genre is characterized by rules of

conversation, smaller or larger rituals. These rules are used to make the circle of
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sympathizers of a genre exclusive and quickly expose any intruder, who is not well

informed.

Social and ideological rules

Sociological information can get part of genre rules. For example the occupational

distribution, typical to listeners of a genre, or age groups and social groups related

to a genre can become genre rules. These rules are also used by single individuals

taking the chance to deny their affiliation to a certain group by listening to music

of a specific genre. Ideological or political connotations of a genre sometimes can

exist to.

Economical and juridical rules

Not only now, where the music industry is under pressure, because of illegal music

exchange, there are also economical and juridical rules, deciding the survival and

success of a genre.

3.3.2 Categorizing Music

The field of rules for building genres is wide spread and sound sometimes very

abstract. But as a fact listeners process their perceptions confronting them with

cultural cognitive types, to determine what they are listening to [14]. They thus are

assigning the perceived music to a genre in their very own genre system. The aim

of some music information retrieval systems is to do so in an automatic way.

Used Genre Taxonomies

Existing music information retrieval systems do already use predefined genre sys-

tems [2][14]. It is important to say that genre is an intentional concept. Alternatively
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genre can be seen as an extensional concept in the meaning of a set of music files

sharing certain attributes (features). In idealistic, mathematical worlds these two

concepts coincide, in real world they do not. A closer look to different used genre

approaches and their classification approaches is given and discussed.

Genre taxonomies are used by record labels, record shops, music charts, music re-

lated web sites and online record shops, online radios and of course in music related

press and books. Genre description in use is more related to whole albums than on

single titles, because industry is selling more albums than singles so far. This will

dramatically change with the success of online music retail, which is based rather

on titles than on albums. Album oriented Taxonomies are inappropriate for de-

scribing titles, except for top level categories (Rock vs. Classical). A comparison

of different internet genre taxonomies [2] shows, that there is no conformance be-

tween the different genre systems. There are not many shared terms in the different

systems, and more important the structure as well as the position of genre classes

within the system differ. It was observed that not even terms like ”Rock” or ”Pop”

have a common definition between these systems. The semantics of terms for genre

denomination are not consistent within a system. They are denoting periods, topics,

locations, languages, dance types, artist types and so on. Such a confusion leads to

redundancies and thus makes it complicate to be incorporated into automatic classi-

fication systems. Interesting is, that it does not have a strong impact on the browsing

and searching by users. Like the rules for genre determination, have shown also Pa-

chet and Aucouturier come to the conclusion [2] that musical genres are not only

founded on intrinsic properties of music, but also on cultural extrinsic habits.

Music information retrieval projects devote a substantial part of their time in de-

signing a genre system. The time used toclassify songs manuallyis enormous too.

The manual approach was tried at the Cuidado project [31] and considered genre as

an additional metainformation like country, artist type, instrumentation, etc. Com-

bining these it was possible to limit the explosion of genres needed. Additionally

the genre system included similarity relations based upon inheritance, string match-

ing and expert knowledge. This approach was canceled because, the bottom genres
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were difficult to describe objectively, so no one other than than the designers were

able to distinguish between them, and the genre system was very sensitive to music

evolution. The development of new genres was difficult to integrate through mul-

tiple inheritance issues. Furthermore music evolution induces genre compression

(merging of genres) and expansion (splitting into sub-genres). This made the genre

system difficult to build and impossible to maintain. The experiment is no proof of

impossibility but the Cuidado project changed to a genre system organizing artists

rather than titles.

Prescriptive approaches to automatic musical genre clusteringattempt to automat-

ically deduce information from the audio signal to perform a genre classification.

The works reviewed in [2] all assumed that a genre system is given and the analyzed

songs should be assigned appropriately. The genre systems used are all very small,

simple and incomplete and look more than a proof of concept than a useful genre

labeling system. Problems of this systems are that for different genres, different

feature sets are most descriptive. Using the same descriptors for all titles leads to

improvable results, but automatic feature selection is a difficult task. The descrip-

tor should vary for different genres. Adding genres, which is necessary because of

the permanent development of new genres, or titles to the system will modify the

optimal feature set. The training set of sound samples can not be guaranteed to be

representative enough for the whole domain to select the right feature set. These

automatic systems can, at the time, only present results for a small amount of gen-

res containing no sub-genres. This is a very difficult task, because characterizing

differences are harder to find and have to be adjusted to the sub-genre they describe.

Similarity relationsused forautomatic genre classificationstart with no given genre

system. Such an classification approach tries to determine the similarity between

different pieces of music by computing intrinsic features, as the descriptive ap-

proach does, and tries to determine cultural similarity by data mining principles.

For example collaborative filtering is used, based on the idea there are common

patterns of taste. Such patterns could be extracted through user behavior, but it is

not possible to guarantee that a behavior of taste or shopping is linked to genre



CHAPTER 3. MUSIC CONTENT ANALYSIS 31

similarity. The problem of collaborative filtering system is, that they return promis-

ing results as long as user profiles are small, but with the growth of the profile the

results decrease in quality. Other sources for additional information for deducing

genre information can be radio programs, because the choice of songs for most radio

stations are not arbitrary, or track listing databases, especially tracklistings of sam-

plers/compilations. Drawbacks of such solutions are, that the resulting clusters are

not labeled and they only can work for pieces of music occurring in the underlying

data sources, unknown songs could not be classified.

3.4 The Human auditory system

The capability to differ between genres, through our aural cognitive system, is as-

tonishing good. R. O. Gjerdigen has shown in an experiment [33] that very short

outtakes of a song are enough for humans to assign pieces of music to genres. The

probands were students with no remarkable amount of musical education or experi-

ence. The average hours of music listening per week they stated was about 24 hours.

10 different genres, acquired in an informal survey before the experiment, were used

(only top-level genres, non hierarchical genre system) into which the probands were

asked to sort the music titles (Blues, Country, Classical, Dance, Jazz, Latin, Pop,

R&B, Rap, Rock). The used sound samples were taken from large internet CD ven-

dors and excerpts were done in the size of 3000ms, and from this one again excerpts

of 250ms, 325ms, 400ms and 475ms. The results are interesting. For the 3000ms

excerpts the agreement between the genre classification of the CD vendors and the

probands was as high as 71%. It also could be observerd over all pieces of music

of different lengths, a slightly better performance was done on instrumental pieces

of music than on vocal ones. The congruence between the 3000ms results and the

250ms is at about 44%. Still a valuable amount, random guess would lead to a ac-

curacy of 10%. This is astounishing because a time window of such small size, does

not let the probands determine features like rhytm, melody and conceptual structure

of the song. They have apparentely to perform the classification solely based on
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their spectral and timbral perception. Nontheless rhythm related features do contain

important genre information.

So lets take a look at the human auditory system. At first a short look on the anatomy

of the human ear is done and afterwards a closer look to psychoacoustic principles is

given. They play an important role in the prototype used for rhythm related features

by this thesis.

3.4.1 Anatomy

The human ear, schematically shown in Figure 3.5, can be divided into three parts [53][8],

referred as outer, middle and inner ear. Collecting sound energy and transmitting

it through the outer ear canal to the ear drum, is the task of the outer ear.The outer

ear protects the middle and inner ear from damage and enables the other parts of

our aural system to be located close to the brain with the effect of a reducing the

length of the transmitting nerves. The middle ear is the transformer of the signal

represented by oscillating air particles into oscillations of the fluid the inner ear is

filled by. This is done by the ear drum, working as a pressure receiver over a wide

frequency range. It is firmly attached to the long arm of the hammer (malleus).

The response of the eardrum is transmitted by the three bones hammer (malleus),

anvil (inus) and stirrup (stapes) to the entrance of the inner ear. The entrance of

the inner ear is formed out of the footplate of the stirrup (stapes) and the so called

oval window. If the oval window is stimulated by the movement of the three middle

ear bones the pressure has to be equalized, which the round window is for. In the

inner ear the oscillating fluid stimulates hair cells connected to nerves leading this

stimulus to the brain.

The human hearing area (as a graph of frequency and sound pressure) is depicted in

Figure 3.6. The frequency scale on the abscissa is logarithmic as well as the sound

pressure level in dB on a linear scale on the ordinate, because the sound pressure

level is logarithmic related to the sound pressure. The unit of sound pressure is

the Pascal (Pa). Sound pressurep and sound pressure levelL are related by Equa-
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Figure3.5: Schema of the human ear.

tion 3.1.

L = 20log(p/p0)dB. (3.1)

As reference value of the sound pressure levelp0 is standardized to20µPa.

The hearing area is the space between threshold in quiet and threshold of pain with a

frequency range of about 20Hz to 20kHz. Dashed areas of music and speech depict

the allocation of their responding frequency domains. For speech this is 100Hz to 7

kHz and for music about 40Hz to 10kHz.

3.4.2 Psychoacoustic effects

Psychoacoustics, the branch of science, dealing with hearing, the sensations pro-

duced by sound is given special attention in this thesis. While work in the audio

content processing field mainly does not give special attention, it is done in [37]

and in this thesis. This approach does a psychoacoustic related preprocessing to
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Figure3.6: Human hearing area.

the underlying input signal (music) before extracting classification relevant infor-

mation. Effects like masking, loudness sensation, critical bands and roughness are

considered. Background information to this effects is given below.

Critical Bands

Critical bands were proposed by Fletcher, as shown in [53]. The assumption is that

a pure test tone, masked by noise, is masked through the spectral components of

noise lying near the frequency of the test tone. His additional assumption was, if

the power of the test tone and the spectral components of the noise lying near by

is almost equal, only these spectral components are of interest. Frequencies more

far from the test tone do not effect the masking. Under this concept characteristic

frequency parts can be defined which are relevant for masking the pure tone. Ex-

periments with different variations of bandwidth determination showed the result

(see Table. 3.1), that the critical bandwidths below a frequency of 500Hz are about
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100Hz. Above there is a bandwidth of about 20% of the center frequency of the cor-

responding band. The particular upper cut-off frequency of a band is equal to the

lower cut-off frequency of the critical band above. This critical band rate scale de-

scribes the property of our hearing system, analyzing a broad frequency spectrum

by splitting it into certain frequency bands. Anatomical this effect is associated

with the basilar membrane, located at the round window (see Figure 3.5), and its

hair cells, which are responsible for analyzing different frequency bands.

Loudness

The eponym of the bark-scale, Barkhausen, introduced the loudness level measure

in the twenties of the 20th century. Its level is defined by the sound pressure of

a 1kHz tone in a plane wave and frontal incident, that is as loud as the sound.

So called equal-loudness curves (Figure 3.7) describe the different loudness levels

for different frequencies of pure tones. Loudness can be measured for any sound,

but most often it refers to the levels of pure tones. This curves are the result of

laboratory measurements. The unit of the loudness level is the ”phon”. The level

of phone is given through the 1kHz point of a curve and the corresponding dB

level. Threshold in quiet (Figure 3.7) is a loudness curve as well. Its 1kHz point

corresponds to 3dB, so the threshold in quiet is referred to as 3phon. The equal-

loudness curves for low loudness levels are almost parallel to threshold in quiet. The

dip between 2kHz and 5kHz describes the frequency band we are most sensitive to.

For low frequencies the curves get more shallow the higher the level. Above 200Hz

the curves are nearly the same for different phon values.

For loudness sensation, expressed in ”sone”, the level of 40dB of a 1kHz tone was

proposed to give the reference. This expresses the subjective loudness perception of

a tone. The pure tone at 1kHz with 2sone is subjectively double as loud as the 1kHz

with 1sone. The threshold in quiet, which is the corresponding 3phon curve, equals

0sone. As it was shown through experiments, above 40dB this relation follows a

power law (see Equation 3.2).
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Figure3.7: Equal-loudness curves of pure tones in a free sound field.

Lsone = 2
1
10

(Lphon−40) | Lphon ≥ 40 (3.2)

Below 40dB, following [3] the loudness sensation is approximated by Equation 3.3

Lsone = 2
1
40

(Lphon)2.642 | Lphon < 40 (3.3)

Masking

The effect of masking [53], describes the suppression of the perception of a pure

tone by the presence of other tones or by noise. Masking depends onspectralas

well on temporalrelation between masker and the masked one. The effect of mask-

ing is measured by determining the threshold of masking. This describes the sound

pressure level of a test tone, necessary to be audible in the presence of a masker. For

frequencies, very different for masker and test tone, this level equals the threshold

in quiet. Pure tones masked by white noise show above the threshold in quiet a con-

stant threshold in the frequency range up to 500Hz. For higher test tone frequencies
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the the threshold increases for about 10dB per Octave7. Masking by narrow band

noise, noise with a bandwidth equal to or smaller than the critical-bandwidth, is

shown in Figure 3.8. Ascending from low frequencies an steep increase of the

masking threshold can be observed. After reaching the maximum the curves show

a more shallow decrease against high frequencies. The three curves also show a

decreasing maximum for higher center frequencies. Is the difference between the

horizontal 60dB line at 250Hz only 2dB, so it is already 3dB at 1kHz and even 5dB

at 4kHz. The spectral masking effects concerning two different pure tones are very

complex and exceed the frame of this thesis.

Figure3.8: Test tone masked by critical-band wide noise at 60dB and center fre-
quencies of 250Hz, 1kHz and 4kHz.

All of the above mentioned spectral effects of masking are analyzed in steady states

with long-lasting test and masking sounds. Masking effects do not only relate to

spectral properties, but they do also to temporal effects. They can be divided into

premasking,simultaneous maskingandpostmaskingeffects (see Figure 3.9). The

mentioned figure has two time scales on the abscissa. The first zero point describes

the onset of the masker. The effect occurring before this point is referred to as

premaskingeffect, which are still a lot of uncertainties about. This does not mean

the hearing system can hear into the future, but describes the build up time of the

7An Octave is a music interval embracing eight diatonic degrees and equals a frequency band
with limits having an ratio of 2 to 1.
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aural perception. The effect plays a more secondary role, because the time span

of interest only lasts 20ms. Insimultaneous maskingthere are dependencies on

duration as well as on repetition rate of an test tone. These two dependencies show

an identical behavior for threshold in quiet and threshold of masking. For an test-

tone burst the threshold decreases with 10dB per Decade of the burst duration up

to 200ms. Above the thresholds are constant. This behavior can be described by

assuming that the hearing system integrates the sound intensity over a time frame

of 200ms. The second zero point in the abscissa in Figure 3.9 describes the point,

where the masker is switched off.Postmaskingis strongly dependent on the duration

of the masker∆t.

Figure3.9: Temporal characteristic of masking effects.

In context of this thesis a spreading function is used to incorporate thesimultaneous

maskingeffects over critical-bands [39][3]. This function describes the influence of

thej-th critical-band on thei-th critical-band (see Equation 3.4).

Si,j = 15.81 + 7.5(i− j + 0.474)− 17.5
√

1 + (i− j + 0.474)2 (3.4)

Fluctuation strength

The amplitude modulation of a acoustical signal produces, dependent on the modu-

lation frequency, different effects. Lower modulation frequencies (up to 20Hz) pro-

duce an effect called fluctuation strength. For higher frequencies (15Hz to 300Hz)

the sensation of roughness occurs, see below for more. There is no strong border
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between these effects, its more a smooth transition. Fluctuation strength is a sen-

sation which can be analyzed leaving any other effects out of sight. The course

of fluctuations strength over modulation frequency can be described as band-pass

characteristic with a maximum at 4Hz. This can be seen as an correlation between

our hearing system and the nature of speech, because a most common speed of

speech at 4 syllables per second can be observed. An increase in sound pressure of

the modulated signal also leads to an increase in fluctuation strength.

For the prototype, concerning psycho acoustical effects, used in this thesis a model

of fluctuation strength based on temporal variation of the masking pattern is ap-

plied [53]. The relationship between the fluctuation strengthF and the modulation

frequencyfmod as well as the masking depth∆L can be described by the following

equation.∆L describes the difference between the maximum and the minimum of

the temporal masking pattern.

F ∝ ∆L

(fmod/4Hz) + (4Hz/fmod)
(3.5)

Roughness

Roughness, the sensation caused by amplitude modulated tones with a modulation

frequency between 15Hz and 300Hz. This effect reaches its maximum around 70Hz

of modulation. From 150Hz to higher modulation frequencies the sensation of three

different tones arise, which is not of interest, because of the related high modulation

frequency. The most important parameters roughness is dependent of, are the degree

of modulation and the frequency of modulation. Above an degree of 25% of mod-

ulation roughness gets sensible. The relation between roughness and modulation

degree can be aproximated linearly and is independent of modulation frequency.

The modulation frequency relation of roughness is bandpass characteristic and the

maximum of roughness is only dependend of the carrier frequency. Maximum is

reached at a carrier frequency of 1kHz. This can be originated by frequency se-

lectivity of the ear for lower carriers and the limited temporal resolution for higher
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ones.

An approximation for roughness [53] would be given through the following equa-

tion.

R ∝ fmod∆L (3.6)



CHAPTER 3. MUSIC CONTENT ANALYSIS 41

z fl, fu fc z ∆fg z fl, fu fc z ∆fg

Bark Hz Hz Bark Hz Bark Hz Hz Bark Hz
0 0 12 1720

50 0.5 100 1850 12.5 280
1 100 13 2000

150 1.5 100 2150 13.5 320
2 200 14 2320

250 2.5 100 2500 14.5 380
3 300 15 2700

350 3.5 100 2900 15.5 450
4 400 16 3150

450 4.5 110 3400 16.5 550
5 510 17 3700

570 5.5 120 4000 17.5 700
6 630 18 4400

700 6.5 140 4800 18.5 900
7 770 19 5300

840 7.5 150 5800 19.5 1100
8 920 20 6400

1000 8.5 160 7000 20.5 1300
9 1080 21 7700

1170 9.5 190 8500 21.5 1800
10 1270 22 9500

1370 10.5 210 10500 22.5 2500
11 1480 23 12000

1600 11.5 240 13500 23.5 3500
12 1720 24 15500

1850 12.5 280

Table 3.1: Critical band ratez, lower (fl) and upper (fu) frequency limit of critical
bandwidths, (∆fg), centered at (fc)



Chapter 4

Feature Extraction

The original representation of music as an input signal is useful for playback but

it not for processing and classification. In this chapter, I will look at the different

possibilities to extract information out of the input signal, which kind of features

can be extracted and discussing these features in detail.

As shown in Figure 4.1 the raw audio input signal is transformed via signal analysis

techniques and further analyzed in the feature computation process, which results

in n attributesx1, ..., xn of the feature vectorv.

After taking a more detailed look at Fourier- and Wavelet transformation an insight

input signal

signal transformation feature computation

feature vector

Figure4.1: Feature extraction process overview.

42
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on different features, used by the music content analysis community, is given.

4.1 Signal Transformation/Analysis

To receive an appropriate computational representation the input signal is trans-

formed from its time-amplitude domain in the time-frequency domain. This is done

by using a Fourier based transformation or a wavelet signal decomposition. The mo-

tivation behind a transformation is that some properties are much easier computable

or are computable at all in the frequency domain.

For example compare the solution of the following problem (calculate the quotient

y = a/b) in its conventional and through a transformed analytic way. Assume

that no calculator is accessible for this task and a high accuracy is required. If this

problem has to be solved often with different values its very time-intensive. The

alternative would be to do a logarithmic transformation of the analysislog(y) =

log(a)− log(b). Using a ”classic” log-table the values are quickly transformed and

the analysis is a simple subtraction, delogarithmizing via a look at the log-table

again gives the final result. The solution of the problem in the transformed may not

be really more convenient, but the example should demonstrate the basic idea of

transforming a problems solution from one domain in another.

4.1.1 Fourier Transformation

A short overview of the Fourier Transformation (FT) and its variations is given

here, for a more detailed explanation see [5][8]. Its idea is based on the fact that

any continuous periodic signal can be represented as the sum of properly chosen

sinusoidal components. It was first discovered by Jean Baptiste Joseph Fourier

(1768 - 1830), a French mathematician and physicist. The Fourier Transformation

is not only one dimensional, like the logarithm; transforming a single valuey in a

single valuelog(y), it transforms a function of a variable, defined from−∞ to +∞
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Figure4.2: Input signal (taken from the drum and bass songDJ Hype & Zinc - Six
Million Ways To Die) at a sample rate of 44.1kHz, mono and normalized amplitude.
The displayed section is 1024 samples (about 23ms) long. The dotted line represents
the original signal and the solid line represents the effect of the applied Hanning
window function (see Figure 4.3 and Equation 4.8) on the input signal.

into another function of a variable, defined from−∞ to +∞.

This transformation is defined through the Fourier Integral (Equation 4.1), if it exists

for all values off .

H(f) =

∫ +∞

−∞
h(t)e−j2πftdt (4.1)

Theinverse Fourier transformation converts a frequency domain functionH(f) into

an time domain functionh(t) and is defined by (Equation 4.2).

h(t) =

∫ +∞

−∞
H(f)ej2πftdt (4.2)

j denotes the square root of−1 andejx = cos(x) + j ∗ sin(x).
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Figure4.3: The solid line depicts the Hanning windowing functionw(k) with a
length of 1024 samples. The dotted line shows the second half of the preceding
window and the first half of the succeeding window. Summed up the overlapping
windows always give 1. The hop size of the windows are always half of the window
size (in this case 512 samples).

Discrete Fourier Transformation

Through the discrete representation of the input signalh(k∆t) (see Figure 4.2) (kis

the index of the consecutively numbered samples,∆t is the time distance between

two samples), the need for a discrete transformation evolves. The Discrete Fourier

Transformation(DFT) is discrete in time and frequency domain, it is periodic with

the sampling frequency of the input signal and it is symmetric about the Nyquist

critical frequencyfc. The Nyquist theorem says that the time distanceT between

two sample values of the input signal can at maximum be1/2fc. At least two sam-

ples per period are required to represent a sinusoid signal. A continuous function

h(t) is uniquely reconstructable through its sample values, withT = 1/2fc, if the

Fourier transformed function is null for all frequencies bigger thanfc. In this case

h(t) is given by Equation 4.3.

h(t) = T
+∞∑

n=−∞

h(nT )
sin[2πfc(t− nT )]

π(t− nT )
(4.3)
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The discrete Fourier transformation expressing the relationship betweenN samples

of a time domain function and a transformed frequency domain function withN

samples looks like Equation 4.4.

G
( n

NT

)
=

N−1∑
k=0

g(kT )e−j2πnk/N (4.4)

wheren = 0, 1, ..., N − 1. The inverse discrete Fourier transformation is then given

by Equation 4.5.

g(kT ) =
1

N

N−1∑
n=0

G
( n

NT

)
ej2πnk/N (4.5)

It is important to mention, that the pair of transformation equations (Equation 4.4

and Equation 4.5) demand a periodicity of the time domain function as well as of

the frequency domain function, expressed in Equation 4.6 and Equation 4.7. In this

case with a period length ofN .

G
( n

NT

)
= G

[
(rN + n)

NT

]
, r = 0,±1,±2, ... (4.6)

g(kT ) = g[(rN + k)T ], r = 0,±1,±2, ... (4.7)

Note that the frequency response obtained from the transformation can be complex,

although the original signal is completely real. In practice, especially in the case of

music analysis it can not be ensured that the analyzed signal is periodic. Much more

a certain number of samples is analyzed at once, because the input signal is finite.

This equals a multiplication of the signal with a rectangular windowing function.

If now the window length does not exactly match an integer multiple of the basic

period of the signal, a sudden discontinuity is introduced, which results in high

frequency terms in the computed spectrum. Additionally an Direct Current (DC)

value is computed, since the average in the time domain of the signal will not be
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Figure4.4: Resulting Fast Fourier Transformation of the signal with applied Han-
ning window of Figure 4.2. It shows the contained frequency spectrum in the re-
spective analysis window of 1024 samples in Figure 4.2.

any longer zero. In order to avoid this problems an appropriate windowing function

has to be chosen, like for example the Hanning windowing function (Equation 4.8

and Figure 4.3).

w(k + 1) =
1

2
− 1

2
cos

(
2π

k

n− 1

)
, k = 0, ..., n− 1 (4.8)

Fast Fourier Transformation

The Fast Fourier Transformation (FFT) is a computer algorithm, devised by John

W. Tukey and James W. Cooley in 1965, for efficient computation of the DFT.

Through their publication of the algorithm in the article ”An Algorithm for the

Machine Calculation of Complex Fourier Series” in Mathematics of Computation

it came up that a lot of people had similar ideas and solutions for this problem at

this time. The advantage of this algorithm is its simplification of the calculating

complexity. The number of multiplications to compute the DFT isN2, while the

complexity of the FFT lies byNlog2N , which results in an enormous reduction of

the calculation time and an improvement in accuracy, because of lower rounding
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errors. A sample result of an FFT analysis is shown in Figure 4.4.

Short Time Fourier Transformation

The Fourier transformation in the frequency-domain can only give information

about which frequencies the signal is composed by but can not tell when this fre-

quencies in time exist. This of course is only relevant in a non-stationary case. In

the Fourier case this problem is overcome by using the Short Time Fourier Trans-

formation (STFT). This is like using the normal FT for short time frames, which are

multiplied with an windowing function, making the assumption possible, that the

signal is stationary in this short time frame.

4.1.2 Wavelet Transformation

The Fourier transformation might be the most popular transformation used in a lot

of different scientific fields, but it is not the only possible time-frequency trans-

formation. This section deals with another transformation method very popular in

music content analysis, the Wavelet transformation. An in detail explanation of

wavelets will not be given in context of this thesis. For further explanations please

refer to [20][41][17][34].

The Fourier transformation as well as the Wavelet transformation is a reversible

form, and makes it possible to go back and forth between the original signal and

the transformed form. Wavelets are functions that satisfy certain mathematical re-

quirements and are used to represent signals or functions. Wavelets process data

at different scales or resolutions. This is an important advantage against the STFT,

which works with a constant resolution. The signal is decomposed by iteratively

passing it through low- and high-pass filters. Higher frequencies are better resolved

in time, and lower frequencies are better resolved in frequency. So spectral compo-

nents of high frequency can be better located in time than spectral components of

low frequencies (see Figure 4.5).
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Figure4.5: Schema of time-frequency resolution in the fourier and the wavelet case.

Continuous Wavelet

The wavelet analysis is done in a similar way to the STFT analysis, in the sense of

multiplying the signal with a function, the wavelet. Mathematical the continuous

wavelet transform (CWT) is defined by Equation 4.9.

γ(τ, s) =

∫
f(t)Ψ∗

s,τ (t)dt (4.9)

The ”∗” denotes the complex conjugation. Equation 4.9 shows the decomposition

of the functionf(t) into a set of basis functionsΨs,τ (t), called the wavelets.s and

τ , scale and translation, are the new dimensions after the wavelet transform. The

inverse form of the continuous wavelet transform is given through Equation 4.10.

f(t) =

∫ ∫
γ(τ, s)Ψs,τ (t)dτds (4.10)

Wavelets are generated from a single basic waveletΨ(t), the so calledmother

wavelet, by scale variation and translation (Equation 4.11). The term wavelet it-

self stands for small wave. This refers to the finite length of the mother wavelet and

to the property of being oscillatory. The denomination as ”mother” derives from the

prototypical nature this function has for the other decomposition functions used in
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the wavelet analysis process.

Ψs,τ (t) =
1√
s
Ψ

(
t− τ

s

)
(4.11)

In equation 4.11,Ψs,τ (t) is the mother wavelet,s is the scale factor,τ is the transla-

tion factor and the factors−
1
2 is for energy normalization across the different scales.

The translation factorτ is related to the location of the analysis window, as it is

shifted over the input signal. It refers to time information in the transformed do-

main. The corresponding parameter of frequency as in the STFT is the scale param-

eters, which is defined as1/frequency. High scale values correspond to a global

view of the signal, while small values ofs correspond to a detailed view. Spoken

in terms of frequency low frequencies (high scales) correspond to global and high

frequencies (low scales) correspond to detailed information.

Note that in these mentioned equations (Equation 4.9,4.10,4.11) the wavelet basis

function is not defined. Contrary to the FT where the basis function is always given

by a sinusoidal function, no specific basis function is given for wavelets in common.

The theory of wavelets defines a framework within it is possible to design wavelets

for specific needs.

Discrete Wavelet

The continuous form of the wavelet form does not fit for practical use. The difficul-

ties lie in in the redundancy of the CWT. Also the infinite number of wavelets in the

continuous transform is not a desired result. Last, but no least, fast algorithms are

needed to calculate wavelet transformation in an acceptable amount of time.

Discreteness of the wavelet is reached by transforming the continuous wavelet rep-

resentation (Equation 4.11). Discrete wavelets are not continuously scalable and

translatable, but only in discrete steps (see Equation 4.12).
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f(t)

g(k)

h(k) 2

2

low-pass filter

high-pass filter

downsample

downsample

A1

D1

Figure4.6: Single stage of decomposition in the DWT. In this case (f(t) as input
signal) the top level of decomposition.An are the approximation coefficients of
level n and are used for further decomposition.Dn are the detail coefficients of
leveln.

Ψj,k(t) =
1√
sj
0

Ψ

(
t− kτ0s

j
0

sj
0

)
(4.12)

Usually s0 andτ0 is chosen to achieve a dyadic sampling in time- and frequency

scale. This especially fits on the characteristics of musical data were a doubling in

frequency scale relates to an octave. So usuallys0 = 2 andτ0 = 1. A single wavelet

can be said to have a band-pass like spectrum. So a series of dilated wavelets can

be seen as a band-pass filter bank.

For a stable reconstruction of a wavelet decomposed signal it was shown that the

condition given in Equation 4.13, stating that the wavelet coefficients have to be

located between two positive bounds, is necessary and sufficient.

A ‖f‖2 ≤
∑
j,k

|〈f, Ψj,k〉|2 ≤ B ‖f‖2 (4.13)

In Equation 4.13‖f‖2 is the energy off(t), A > 0, B < ∞ andA,B are indepen-

dent off(t).

To definitely remove all redundancies of the wavelet transform they have to be or-
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thonormal1. Discrete wavelets are orthogonal to their own dilations and translations

by special choices of the mother wavelet, in math terms Equation 4.14

∫
Ψj,k(t)Ψ

∗
m,n(t)dt = 1, j = m, k = n (4.14)∫

Ψj,k(t)Ψ
∗
m,n(t)dt = 0, j 6= m, k 6= n

The inverse discrete wavelet transformation (Equation 4.15) is given by summing

all the orthogonal wavelet basis functions weighted by the corresponding transform

coefficients.

f(t) =
∑
j,k

γ(j, k)Ψj,k(t) (4.15)

So the redundancy of wavelets is removed, but still there is an infinite number of

wavelets. The target is now to reduce the amount of used wavelets but keep the

quality of the transformation. This is on one hand done through the spectras of

the dilation of wavelets on the other hand by the time intervals of the translation.

Every time the wavelet is stretched in the time domain, its band width is halved. To

reduce it to a finite number a so calledscaling function(Φ(t)) is used. The so called

two-scale relation(see Equation 4.16) expresses the first scaling function in terms

of the second one, so this expression states the scaling function at a certain level in

dependence of the scaling function at the next smaller scale (more detailed). From

this two-scale relation (Equation 4.16) one sees thatΦ(t) is equal to a sum of scaled

and shifted versions of itself.

Φ(2jt) =
∑

k

hj+1(k)Φ(2j+1t− k) (4.16)

1A rotation (or flip) through the origin will send an orthonormal set to another orthonormal set.
In fact, given any orthonormal basis, there is a rotation, or rotation combined with a flip, which
will send the orthonormal basis to the standard basis. These are precisely the transformations which
preserve the inner product, and are called orthogonal transformations. [12]
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f(t)

A1 D1

A2 D2

An Dn

Figure4.7: Schema of the wavelet decomposition tree, till leveln.

The two-scale relation between the scaling function and the wavelet is expressed by

Equation 4.17.

Ψ(2jt) =
∑

k

gj+1(k)Φ(2j+1t− k) (4.17)

Theh(k) weighting factors form a low pass filter andg(k) a high pass filter.h(k)

can also be referred to as thescaling filterandg(k) as thewavelet filter. The indices

k andj represent translation and scaling respectively.

The perspective of seeing the DWT as a transformation through a filter bank makes

it efficiently computable. Figure 4.7 gives an idea how this transformation pro-

cess through the filter bank looks like. A single stage in the decomposition process

(see Figure 4.6) corresponds to filtering through low- or high-pass filter and subse-

quently downsampling (by a factor of 2) of the input signal.
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f(t)

A1 D1

AAA3 DAA3 ADA3 DDA3 ADD3 DDD3AAD3 DAD3

AA2 DA2 AD2 DD2

Figure4.8: Schema of the wavelet packet decomposition tree, till level 3.

Wavelet Packet Transformation

Actually the wavelet transform is a subset of a far more versatile form, the wavelet

package transform (WPT). Wavelet packets are particular linear combinations of

wavelets. They form bases which retain many of the orthogonality, smoothness

and localization properties of their parent wavelets. The coefficients in these com-

binations are computed by recursively making each computed coefficient the root

for a own analysis tree (see Figure 4.8). A music content analysis using WPT for

example was done by Grimaldi in [18].

Daubechie Wavelet

The Daubechie wavelet family (dbN) has no explicit expression except the db wavelet

of order 1, which equals the Haar wavelet (Figure 4.9), the most simple wavelet. It

is discontinuous and resembles a step function. In mathematical terms it is defined

by the following conditions (Equation 4.18).

Ψdb1(t) = 1 x ∈ [0, 0.5[ (4.18)
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Figure4.9: Haar waveletΨdb1 or db1 and scaling functionΦdb1.

Ψdb1(t) = −1 x ∈ [0.5, 1[

Ψdb1(t) = 0 x /∈ [0, 1[

The related scaling function is formulated as Equation 4.19.

Φdb1(t) = 1 x ∈ [0, 1] (4.19)

Φdb1(t) = 0 x /∈ [0, 1]

As seen in various papers [27][18][26] the Daubechie wavelet family fits well for

music analysis. These articles use Daubechie wavelets 4 (see Figure 4.10) and 8

(see Figure 4.11) with different levels of decomposition.

Figure 4.12 shows the result of a daubechenian DWT of grade 4 (db4) at a de-

composition level of 4. The input signal is a 3s segment of the same song used

for illustrating the FFT (see Figure 4.2). The tick labels on the x-axis denote the

end of the corresponding section. Starting from the right,D1 denotes the first

part of detail coefficients with a length of 66153 samples and a frequency range

of 11.025kHz to 22.05kHz,D2 is 33080 samples long and has a frequency range of

5512.5Hz to 11.025kHz,D3 is 16543 samples long and its frequency band ranges

from 2756.25Hz to 5512.5Hz,D4 and the approximation coefficientsA4 have a
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Figure4.10: Daubechie waveletΨdb4 of order 4 (db4) and scaling functionΦdb4.

Figure4.11: Daubechie waveletΦdb8 of order 8 (db8) and scaling functionΦdb1.

lengthof 8275 samples and a frequency range from zero to 2756.25Hz. So the fre-

quency content of the original signal is split up into different frequency bands and

those can be therefore analyzed separately.
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Figure4.12: Sample DWT analysis of about 3s (132326 samples) section of a song
(taken from the drum and bass songDJ Hype & Zinc - Six Million Ways To Die) at
a sample rate of 44.1kHz, mono and normalized amplitude. Here the db4 wavelet
is used with an decomposition level of 4.A4 are the approximation coefficients at
level 4,D1 to D4 are the detail coefficients.



CHAPTER 4. FEATURE EXTRACTION 58

4.2 Features

When browsing all the different papers about approaches to music genre recogni-

tion, a lot of different approaches are encountered. The typical underlying input

signal transformations where presented in the last section (4.1), fast fourier trans-

formation and discrete wavelet transformation. Following the signal transformation

(illustrated in Figure 4.1), different kinds of features out of the transformed signal

are extracted. Features are the numerical representation of certain characteristics of

the analyzed piece of music. The challenges in finding a feature or feature vector

for music content analysis applications are the duration of computation, complexity

and significance of the resulting feature vector and therefore also appropriate fea-

ture vectors vary from their purpose of application. Features are of different nature,

and according to Tzanetakis [43] they can be separated into different categories.

Spectral shape-, sound ”texture”-, rhythm related-, and pitch related features can be

distinguished.

4.2.1 Spectral shape features

For analyzing the spectral shape of an input signal, it has first to be transformed

from the time domain into the frequency domain, as already shown in Section 4.1.

The resulting frequency information (see Figure 4.4) represents the input, in the

extreme case it can be perfectly reproduced through the information, and as might

be noticed this information is too detailed. Thus specific features are calculated

based upon the given spectral information.

STFT-based features

STFT-based features were and are very common, but get more and more challenge

or are complemented by wavelet transform-based features. The STFT is mostly

calculated on a window of about 20ms length and a hanning windowing function
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(see Figure 4.3). Defined as the center of gravity of the magnitude of the STFT is

thespectral centroid(Equation 4.20).

Ct =

∑N
n=1 Mt[n]n∑N
n=1 Mt[n]

(4.20)

Mt[n] corresponds to the magnitude of the FT at framet and the frequency bin

n. Signals with stronger high frequency part, also referred to as ”brighter” signal,

are characterized through higherspectral centroidvalues. Thespectral centroid

is an important perceptual attribute in the characterization of musical instrument

timbre.Thespectral rolloff (Equation 4.21), a frequency parameter, is calculated as

the frequencyRt below which 85% of the magnitude is concentrated.

Rt∑
n=1

Mt[n] = 0.85
N∑

n=1

Mt[n] (4.21)

The amount of local spectral change is measured throughspectral flux(Equation 4.22).

It is defined as the squared difference between the normalized magnitudes of suc-

cessive spectral distributions.

Ft =
N∑

n=1

(Nt[n]−Nt−1[n])2 (4.22)

Nt[n], Nt−1[n] are the normalized values of the Fourier transformation at frame

t and the preceding onet − 1. Thusspectral fluxresults in measuring temporal

changes in the frequency domain.
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Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral2 Coefficients (MFCC) are a perceptual motivated set of

features developed in context of speech recognition. An investigation about their

adoption in the music classification domain was done in [28]. These coefficients

are computed through a STFT, followed by a filterbank approximating the percep-

tual resolution properties of the human ear. This filterbank consists of 13 linearly-

spaced filters below 1kHz and 27 log-spaced filters above (related to the so called

Mel-scale). The last step is a Discrete Cosines Transform (DCT) to reduce the

dimensionality of the feature vector. Typically 13 coefficients are used for speech

recognition purpose, Tzanetakis have found the first 5 to be useful for music content

analysis.

MPEG-based features

Most of the input data in music content analysis is represented in the well known

MPEG audio compressed format MP3. The idea is to use the compressed data di-

rectly for feature calculation. This is time and memory saving, because all other

approaches build upon a pulse code modulated (PCM) audio input signal and there-

fore must be converted at first. The approach was evaluated by Tzanetakis in [46].

Details about the compression format can be found in the International Standardiza-

tion Organization (ISO)/MPEG standard [21]. To understand the calculation of the

features it is important to know, that the signal in the compressed format is splitted

in 32 equally spaced subbands and time windows of about 20ms. The computed fea-

tures areMPEG centroid,MPEG rolloff andMPEG flux, which equal the spectral

ones (see Equation 4.20, Equation 4.21 and Equation 4.22) withN = 32 frequency

bins. Additional theMPEG root mean square (RMS) power(Equation 4.23) as a

measurement of the loudness is computed.

2Cepstral refers to the transform through theMel-scale motivated filter bank and is a pun. Cep-
stral equals Spectral with the first syllable reversed.
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RMSt =

√∑32
n=1 Mt[n]2

32
(4.23)

4.2.2 Texture content features

The ”term” timbre is used to describe all characteristics which differentiate one

sound from another of same pitch and loudness. This makes sense in the context

of a single spoken syllable or a tone of a single isolated instrument. For more

complex audio signals like polyphonic music or speech it can not be applied. But

there are important statistical characteristics in the energy distribution in time and

frequency, for those the term ”texture” content features will be used. In some cases

these textures can be observed visually on a spectrogram, in most cases they can

not. The sensation of sound texture features arises on a time section bigger than the

usual analysis window of about 20ms usually used for transformation and analysis.

In this context the term texture window will be used which is bigger and consists of

multiple analysis windows, typically with a length of about 1s.

STFT based texture content features

The texture content features are not directly computed features, butmultidimen-

sional Gaussian distributions parameters (mean (Equation4.24), variance (Equa-

tion4.25)), of thespectral featuresin the analysis window, over the texture window.

One feature, which makes it possible to differ speech from music, is computed over

the texture window and not over the analysis window. It is calledlow energyfeature

and is defined as the percentage of analysis windows that have less RMS power than

the average RMS power over the whole texture window. Therefore usually speech

has highlow energyvalues, because of many silent analysis windows.
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Wavelet transformation based texture content features

Above mentioned texture content features are computed of STFT information. The

wavelet transformation, as mentioned in Section 4.1.2, can also be used to calculate

texture content features. The resulting wavelet coefficients of the wavelet transform

provide a compact representation of the signal over time and frequency. To fur-

ther reduce the dimensionality of this information statistical characteristics of the

wavelet coefficients are calculated. Themeanof the absolute value of the coeffi-

cients in each wavelet subband, as well as theratios of the mean valuesbetween

adjacent subbands, is computed and provides information about the frequency dis-

tribution of the signal. The amount of change of the frequency distribution over

time is represented by thestandard deviation.

Another technique for computing wavelet transformation based texture content fea-

tures are wavelet histograms. Thereby the different decomposition coefficients are

evaluated through a histogram. Analyzing characteristics of thosewavelet his-

tograms, like the first three moments of a histogram (mean(Equation4.24),variance

(Equation4.25) andskewness(Equation4.27)) give a very compact representation of

texture information about a piece of music. This technique is successfully applied

in the visual field of content analysis [29].

x =
1

N

N∑
j=1

xj (4.24)

The meanx is calculated as the sum off all values divided by the count of values

and estimates the value around which central clustering occurs.

V ar =
1

N − 1

N∑
j=1

(xj − x)2 (4.25)

σ =
√

V ar (4.26)
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The VarianceV ar, as well as the standard the deviationσ, characterize the ”width”

or ”variability” of the data around the mean.

Skew =
1

N

N∑
j=1

[
xj − x

σ

]3

(4.27)

The skewness characterizes the degree of asymmetry of a distribution around its

mean. A positive value of skewness signifies a distribution with an asymmetric tail

extending out towards more positivex and a negative value signifies a distribution

whose tail extends out towards more negativex.

4.2.3 Rhythmic content features

As evaluated in [50] rhythmic content features in the sense oftempo of the main

beat and itsstrengthare major descriptors for music content analysis. Extended

rhythmic related information, which also is useful, is theregularity of the rhythm,

the relations between the main beat and the subbeatsand thestrength of subbeats

in relation to the main beat. The process of automatic beat detection is similar to

pitch recognition techniques over a larger time frame. The basis for extracting such

kind of rhythmic related features arebeat histograms.

The schema of an algorithm to compute abeat histogramis shown in Figure 4.13.

At first the input signal is decomposed in several octave frequency subband by a

DWT. An envelope extraction of each of the subband, consisting of a full wave

rectification (Equation 4.28), a low pass filtering (Equation 4.29), downsampling

(Equation 4.30) and a mean removal (Equation 4.31) is done.

y[n] = |x[n]| (4.28)

y[n] = (1− α)x[n] + αy[n− 1] (4.29)
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Multiple Peak Picking

Beat Histogram

Autocorrelation

Discrete Wavelet Transform
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subband (n)...

PCM

Full Wave Rectification

Low Pass Filtering
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Figure4.13: Schema of the beat histogram calculation.

y[n] = x[kn] (4.30)

y[n] = x[n]− E[x[n]] (4.31)

Afterwards the envelopes of the subbands are summed up and the autocorrelation

function (Equation 4.32) of the resulting envelope is computed. The peaks of the

autocorrelation function correspond to the various periodicities of the signal. By

picking multiple peaks of this function abeat histogramis generated, where each

bin equals a certain beats per minute (bpm) value. Higher values in abeat histogram

bin, describe a signal similar to itself and therefore a strong beat.
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Filtering

Modified Fluctuation Strength

Fast Fourier Transformation

PCM

Fluctuation Strength

Psychoacoustic Transformation

Fast Fourier Transformation

Figure4.14: Schema of the modified fluctuation strength calculation.

y[k] =
1

N

∑
n

x[n]x[n− k] (4.32)

Beathistograms provide a good overview of detailed information about rhythmic

related features for music content anlysis and applications in the field of genre clas-

sification and similarity search.

Another possibility to compute rhythmic related features of a music signal was

done in [37]. Here themodified fluctuation strength(see Section 3.4.2 - Fluctua-

tion strength) is computed as a representation of psychoacoustic rhythm patterns.

It is represented by its value and the corresponding frequency of pitch, expressed

in critical bands (see Section 3.4.2 - Critical Bands), as well as the modulation

frequency. A schematic view of the calculation process is given in Figure 4.14.

The straight forward appearance of Figure 4.14 may not distract from the fact that

through using critical bands in frequency representation also a multiband analysis

like in Figure 4.13 is done.

Music represented in PCM format is the input signal and is transformed through
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FFT of a window of about 20ms in the frequency domain. The frequency represen-

tation is undertaken a series of transformations of psychoacoustic aspects. Details

to the single steps and motivations of this transforms are found in Section 3.4.2.

The first step is a splitting of the signal in critical frequency bands. Afterwards,

in the Psychoacoustic Transformation block, the spread critical band rate is com-

puted through applying a masking function to give respect to the influences of ad-

jacent frequency band. The amplitudes are converted in decibel values and through

equal loudness curves and loudness sensation conversion sone values are computed.

Through the second FFT, which is computed over a window of about 6 seconds of

the already computed sone values, the amplitude modulations of loudness in time

are extracted and build the basis for the fluctuation strength. The filtering process,

consisting of a gradient filter to emphasize sharp edges of the fluctuation strength

and a Gaussian filter to enable the distance calculation betweenmodified fluctuation

strengthvectors of songs. At the end of this process the mean values of all analyzed

6 second fragments of a song are taken and build the resulting feature matrix.

4.2.4 Pitch content features

Pitch is defined as the property of a sound and especially a musical tone that is

determined by the frequency of the waves producing it i.e. highness or lowness of

sound. An computational efficient approach for multipitch detection was proposed

by Tolonen in [42]. In this approach not a computational intensive multiband anal-

ysis off the audio signal is done, but a high- and a low-pass filter at 1kHz is used.

Amplitude envelopes are extracted and summed to compute a Summary Enhanced

Auto Correlation Function (SACF). Tzanetakis used this approach to computepitch

histograms[49] out of a analysis window of about 20ms again. The three most dom-

inant peaks of the SACF are accumulated into thepitch histogram. A histogram bin

n corresponds to a musical note of specific pitch (frequencyf ). As labels the MIDI

note numbering is used, following the schema in Equation 4.33.
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n = 12 log2
f

440
+ 69 (4.33)

Foldedandunfolded pitch histogramsare used. Whileunfolded pitch histograms

contain all different notes, afolded pitch histogrammaps the unfolded notes into

one single octave (Equation 4.34).

c = n mod 12 (4.34)

The foldedpitch histogram, now contains information about the pitch classes of the

harmonic content of the input signal, whereas the unfolded one gives information

about the tonal range of the piece of music. To achieve better classification results

throughpitch histograms, the proposed pitch histogram comes under another trans-

formation. For better expressing tonal music relations thefolded pitch histogramis

mapped to a circle of quints (see Equation 4.35). A quint corresponds to 7 semitonal

steps.

c′ = (7c) mod 12 (4.35)

Musical pieces cannot be assigned to a genre on pure pitch information only, but

the pitch information gives an idea of certain tendencies to do so. For example

jazz or classical music have a higher value of pitch change than rock or pop music.

Features which are resulting out of the pitch histograms are for example the bin

with themaximum peakand itsamplitudeof the folded pitch histogram, typically

corresponding to the tonic or dominant chord of the music piece. The amplitude

gives information about the pitch change rate of the song, lower values represent

a lot of pitch changes in the song. In theunfolded pitch histogramthe period of

the maximum peakcorresponds to the octave range of the musical of the song. The

main tonal interval relation can be extracted out of theinterval between the two

most prominent peaksof the folded pitch histogramand will be 1 or -1 for pieces

with simple harmonic structure.
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4.2.5 Other features

A feature which does not perfectly fit in one of the above sections, because it is com-

puted over the plain PCM signal, are thetime domain zero crossings. This feature is

defined by Equation 4.36, where thesgn function is defined through Equation 4.37.

Zt =
1

2

∑
k

|sgn(x[k])− sgn(x[k − 1])| (4.36)

sgn[x(k)] = 1, x(k) ≥ 0 (4.37)

sgn[x(k)] = −1, x(k) < 0

Time domain zero crossingsprovide a measure for the noisiness of a signal and

makes it possible to differentiate between voiced and unvoiced audio signals. Also

signals with a broader frequency spectrum have moretime domain zero crossings

than narrower ones.

The mentioned features sets of different content aspects in the whole Section 4.2

above can of course be combined in an intelligent way to improve classification

results achieved through a single feature set of one particular feature domain.



Chapter 5

Experiments

Based on the theoretical discourse in the preceding chapters the following experi-

ments were performed.

Three in music genre recognition popular analyzing approaches were used to con-

duct evaluation experiments of their performance. Those were the psychoacous-

tic rhythm patterns of theSOMeJB[37] implementation, the genre vector of the

MARSYAS[45] framework for audio analysis and an implementation of the Daubechies

Wavelet Coefficients Histogram approach proposed in [27]. The feature vectors

were computed over two test music collections. One test collection is the one used

by George Tzanetakis, which evolved into a kind of standard testbed, consisting of

approximately 1000 songs divided into 10 genres. The second music collection is a

more real world user Mp3 collection of 9360 titles of a variety of genres, including

duplicates as different recordings of the same title.The distances between the songs

through the extracted features were computed and tried to benchmark the different

feature sets. These benchmarks were the recall-precision values of the retrieval per-

form of the feature sets and a small user study letting human test persons judge the

n-nearest neighbors results of a song with respect to genre similarity.

A detailed explanation is given in the next sections.

69
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5.1 Music Collections

An explanation of the composition of the music collections used for the evaluation

is given here. Further, the way of distance determination between the computed

feature vectors is introduced.

5.1.1 Real World Music Collection

The first music collection used for the evaluation process consists of 9360 different

songs, in the MP3 format. These songs are mainly western popular music including

classic and jazz songs too. This collection is referred to as ”Real World” collec-

tion, because it is a users MP3 collection, which was not especially prepared for

scientific research. It contains a wide variety of music titles of this users taste and

has artifacts like multiple recordings of the same song from different albums. Ac-

cording to a matching with an open music title database the collection consists of

music pieces out of genres like rock, pop, hiphop, alternative, original sound tracks,

singer/songwriter, electronica in a widest sense, jazz, blues and a few spoken word

tracks. Each of these songs was chopped into 4 different of 30 seconds length each

segments (see Figure 5.1). The starting points of these segments in the original au-

dio files are at the beginning of second 30, 45, 70 and 150. So there is a 15 second

overlap between the segments starting at second 30 and 45, the one starting at sec-

ond 70 is nearly appending and 150 is located with a time distance of 90 seconds

to the end of the first segment. This gives an overall amount of 37440 segments to

analyze. All MP3’s of this collection are in Mono, have a sample word width of

16bit and a sample rate of 44.1kHz.

5.1.2 Tzanetakis’ Music Collection

As second music collection a set of 1203 MP3’s, used by Tzanetakis for his ex-

periments, is analyzed. These sound files have a duration of 30 seconds, are also
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total Playtime
S30

S45
S70

S150

Figure5.1: Segments illustration, which the Mp3’s were chopped into. Segments
are named by their starting position in seconds of the total playtime and have an
equal length of 30 seconds.

in Mono, do have a sample word width of 16bit, but have a sample rate of 22kHz.

The pieces of music are pre-categorized in genres. This genre set consists of the

12 labels ambient, ballad, blues, classical, country, disco, hiphop, jazz, metal, pop,

reggae and rock. Basically there are about 100 songs in the average categorized in

a genre, for the exact distribution see columnn in Table 5.18.

5.1.3 Distance Determination

The determination of distance between the feature vectors of a feature extraction

method is computed through determining the Euclidean distance between two fea-

tures. The Euclidean distance is calculated as shown in Equation 5.1.

deuclid =

√√√√ N∑
i=1

(pi − qi)2 (5.1)

N denotesthe dimensionality of the feature vectorsp andq to compare.

5.2 Prototypes

TheSOMeJB[37] prototype was modified in the way of enabling the processing of

music as input data in PCM format with a sampling frequency of 44.1kHz. The for-



CHAPTER 5. EXPERIMENTS 72

mer version only supported PCM data sampled with 11kHz, this had the advantage

of a smaller feature vector, but since most of the music collections consist natively

of Mp3’s with a sampling frequency of 44.1kHz, it also had the disadvantage of the

very time intensive resampling of the input data.

As an framework for audio analysis, experimenting, evaluatingMARSYAS[45] can

be understood, developed by George Tzanetakis and Perry Cook. It provides func-

tionality for different feature extraction and provides the capability to extract a fea-

ture vector for genre classification needs.

DWCH’s as underlying technique for genre classification were proposed in [27].

This approach was chosen because more and more research [26][18][30] is done in

the wavelet related field for music genre recognition. Based upon the paper [27] an

implementation was done to compute the related feature vector.

5.2.1 Psychoacoustic Rhythm Patterns

TheSOMeJB[37] prototype is based on a psychoacoustically motivated approach,

which focuses on the dynamic properties of music. Additionally to the feature ex-

traction it provides genre clustering and a user interface using anIslandsmetaphor.

Here only the feature extraction process is of interest. The prototype is implemented

in the MATLAB1 environment.

The schema of the feature extraction process in this prototype is shown in Sec-

tion 4.2.3, a detailed description can be found in [32]. The modified prototype used

for the experiments in this thesis analyzes the complete of pieces of music rather

than a selection of 6 second segments. Music content information is represented as

a vector ofmodified fluctuation strengthof a song, which is a filter modified ver-

sion of the psychoacoustic parameter, fluctuation strength. The modified fluctuation

strength values are computed for 24 critical frequency bands and up to amplitude

modulation frequency (AM) of 10Hz. The AM frequency axis is represented by

1http://www.mathworks.com
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60 values. As Pampalk argues, there is not much activity beyond an AM of 10Hz.

Presence of roughness for higher AM values (15Hz-300Hz) is not regarded. The

feature vector ofmodified fluctuation strengthrepresents global characteristics of a

song and is a time invariant information.

In comparison to the two other prototypes the resulting feature vector is large. It’s

1440-dimensions are the vectorization of the computed 24- by 60-dimensional fea-

ture matrix. For the second music collection, which contains Mp3’s width a sample

rate of 22kHz only the first 20 critical frequency bands are taken into account. So

the feature vector dimension is reduced to a dimension of 1200, because the under-

lying feature matrix is 20- by 60-dimensional.

5.2.2 MARSYAS

The MARSYAS [45] framework of Tzanetakis is an general implementation for

the extraction of various music content based features. It follows a client-server

architecture and is implemented in C++. It is used to extract a feature vector for

genre classification needs as proposed in [48].

This application analyses music and extracts features under the aspects of timbral

features, rhythmic content features and pitch content features. Features are cal-

culated overanalysisor texture windowsrespectively to the specific feature (see

Sec. 4.2), over each whole piece of music of the collection (see Sec. 5.1). The

timbral texture feature vector consists ofmeans,variancesof spectral centroid,

spectral rolloff,spectral fluxandzerocrossing rate. Additional alow energy feature

and thefirst five MFCC coefficientsare computed, excluding the coefficients corre-

sponding to the DC component of the MFCC feature vector. The rhythmic related

feature vector, consists of parameters computed through beat histograms. Music

genre classification relevant, as found by Tzanetakis [48], are thefirst two relative

histogram peaks(divided by the sum of amplitudes), theratio of the amplitude of

the first to the second histogram peak, theperiods in bpm of the first two histogram

peaksand theoverall sum of the peak histogramas indication of beat strength. Pitch
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information is represented through information of pitch histograms. These are the

amplitude of the highest peak of the folded pitch histogram, corresponding to the

most dominant pitch class of a piece of music. Further on theperiods of the maxi-

mum peaksof theunfolded, as well as thefolded pitch histogram, thepitch interval

between the two most prominent peaks of the folded pitch histogramand at least the

overall sum of the histogram, as measure of the strength of pitch detection.

This results in a compact 30 dimensional feature vector for a piece of music rep-

resenting information of multiple music content analysis domains (19-dimensional

timbral texture feature vector, 6-dimensional rhythmic content feature vector, 5-

dimensional pitch content feature vector). A detailed explanation of the different

features is given in Section 4.2.

5.2.3 Daubechies Wavelet Coefficients Histogram

The latest development in the music content analysis field has put forth various

approaches using wavelets as underlying analysis principle. This implementation is

following [27] and was done in the MATLAB environment. It was carried out in

this environment, because it provides the appropriate wavelet and statistical tools.

At the beginning a discrete wavelet transformation of the pieces of music is ob-

tained. Contrary to the other two analysis approaches the analyzed window of mu-

sic has a length of 3 seconds and is located at the 15th second of playtime of the

pieces of music. The whole 30 seconds are not processed here. A daubechanian

basis wavelet of 8th grade was chosen and adecomposition of 7 levelsis done. The

coefficients in each of the decomposition bands and the last(level 7) approximation

coefficientsare accumulated in histograms. Over these histograms the first three

moments are computed. The moments are themean,varianceandskewnessof the

histograms. The now 24-dimensional feature vector is completed with the compu-

tation of theenergy levelin each subband, which is defined as the mean of absolute

values in a subband. Unlike to the prototype used in the original paper, the feature

vector used here has no additional timbral features for speech recognition added.
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The resulting feature vector is 32-dimensional and is, except for the subband energy

information, plainly based on statistical information about the wavelet decomposi-

tion coefficients.

As the parameters are out of different domains and so have different ranges of val-

ues, except for the SOMeJB prototype, the values are normalized with respect to

the interval[0, 1].

5.3 Evaluation

The evaluation of the obtained results was arranged as follows. At first recall and

precision of retrieval values are computed for both music collections. For the real

world music collection the segments starting at second 30 of original playtime of

the songs are used as query set and the others (segments starting at second 45, 70

and 150) build the data set, which the queries are conducted on. The second recall

and precision evaluation bases upon the music collection of Tzanetakis. Here query

and data collection are the same and therefore distances from each to each file are

computed. In every case only the best 20 answers, 20 smallest distances, are taken

into account. The best match to a query in this case is of course the query itself with

a distance of zero and is ignored, because this result has no information.

The parameters of recall and precision, as used in [30], give a good possibility for

assessing the obtained retrieval results. Assessment parameters are computed for

answer sets with a size of 1, 3, 5, 10 and 20. In case of the real world music collec-

tion only the other three time segments of a song in the data set are considered rel-

evant. For the Tzanetakis music collection all answers in the same pre-categorized

genre are considered as correct answers. So the evaluation over the real world

collection is somehow an assessment of recognizing songs and over the smaller

collection it is a genre classification evaluation.

It is important to note that where the number of relevant files are small, the values

for the parameters tend to seem very small. Precision and recall are defined by
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Equation 5.2 and Equation 5.3 respectively.

Pi =
Nrd

Ni

(5.2)

Ri =
Nrd

Nrt

(5.3)

Nrd denotes the number of relevant titles retrieved,Nrt are the number of relevant

pieces of music in the whole music collection,Ni stands for the total number of

pieces of music retrieved and the indexi is the size of the answer set.

The precision values (Equation 5.2) give an idea about the quality of the results of a

retrieval task in the sense of setting the number ofretrieved relevant documentsin

relation to thetotal number of retrieved documents. For evaluation, the parameter

total number of retrieved documentsis varied. A relative value of about, how much

relevant documentscould beretrievedof all situated relevantones in the collection,

represents the recall value. In the following tables of results a best case value will

be given for comparison to.

As another evaluation method, a small survey was done. People were asked to

evaluate the best 10 answers to queries in with respect to musical genre. This was

done for queries on the distance results of all three prototypes over results for the

real world music collection.

5.3.1 Specific Piece of Music Retrieval

In the Tables 5.1 and 5.2 the results of the recall (Ri) and precision (Pi) evaluation

over the real world music collection can be found. The labels DWCH, MARSYAS

and RP denote the related prototypes used for the feature extraction.

Explaining the absolute recall values, it is to say that with a number of 28860 MP3’s

in the data set of the real world collection in the best case all of the three relevant

MP3’s per query should be in the answer set and therefore the best case are 28860
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i DWCH MARSYAS RP best
20 7438 4135 17147 28860
10 6320 3410 16124 28860
5 5269 2821 14500 28860
3 4489 2410 12924 28860
1 2427 1440 6037 9620

Table 5.1: Absolute recall values for the real world music collection in case of
feature extraction by the different three prototypes and in a best case scenario, with
answer set sizes (i) 20, 10, 5, 3 and 1.

relevant pieces of music in the answer sets. In case of an answer set with a size of

one (i = 1) only 9620 relevant pieces of music can be retrieved. Expressing this

in relative recall values the best case scenario withi = 1 gives a value of 0.3333.

As the absolute (see Table 5.1) and relative (see Table 5.2) recall values for the

evaluation of the results for the real world music collection show, the rhythm pat-

terns features outperform the other two approaches in every case. The RP achieve

a recall rate of about 50-60%, followed by the DWCH with about 20-25% and the

MARSYAS with about 10%. This trend is the same for the precision values. Pre-

cision values in the best case are smaller than one for answer sets bigger than three

(i > 3), because there are only three relevant pieces of music in the collection for

each query. Table 5.3 shows again clearly the highest values for the RP protoype.

The presicion of the results is the best with every examined answer set sizei, in al-

most 45% of all cases the 3 top-ranked retrieved results are the 3 segments from the

piece of music used as a query, followed by DWCH and MARSYAS. Note, that the

DWCH approach analyses a 3 seconds segment in the pieces of music only, while

the other two process the whole length of the input.

To determine the stability of a feature vector over the analyzed segments of a piece

of music, a count of the different best ranked segments is done (answer set size

i = 20). Table 5.4 shows for all three analysis methods that, the close in time the

segments are, the better they get recognized. So the segments starting at second

45 of playtime of the original pieces of music are most often the best ranked ones,
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Ri DWCH MARSYAS RP best
20 0.2577 0.1433 0.5941 1
10 0.2190 0.1182 0.5587 1
5 0.1826 0.0977 0.5024 1
3 0.1555 0.0835 0.4478 1
1 0.0841 0.0499 0.2092 0.3333

Table 5.2: Recall values (Ri) for the real world music collection in case of feature
extraction by the different three prototypes and in a best case scenario, with answer
set sizes (i) 20, 10, 5, 3 and 1.

Pi DWCH MARSYAS RP best
20 0.0387 0.0215 0.0891 0.15
10 0.0657 0.0354 0.1676 0.3
5 0.1095 0.0586 0.3015 0.6
3 0.1555 0.0835 0.4478 1
1 0.2523 0.1497 0.6275 1

Table 5.3: Precision values (Pi) for the real world music collection in case of feature
extraction by the different three prototypes and in a best case scenario, with answer
set sizes (i) 20, 10, 5, 3 and 1.

followed by the segments starting at second 70 and then by segments starting at

second 150. The relative decrease of the values, the farer the segments are located

from the query segment, is smallest for the DWCH approach, this therefore is the

most stable one. This makes sense in consideration of the small time frame analyzed

by this prototype and the nevertheless competitive precision and recall values. In

Table 5.5 the absolute average position of the segments in the answer set (i= 20) is

listed. The DWCH and MARSYAS ranking of the segments is very similar, whereas

the ranking in the RP case is better, but also a bit more spread apart. Through

the average position of the three segments (see Table 5.5) the question about the

recall values for those segments arise. The following Tables 5.6 to 5.8 depict the

corresponding recall values, considering only one segment valid as answer to the

query segment. The values in these three tables show, corresponding to the average

position (see Table 5.5) and the stability information given in Table 5.4, a similar
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segment DWCH MARSYAS RP
45 2827 2032 5378
70 1603 740 1632
150 468 293 921

Table 5.4: Here the absolute number of times a segment is best ranked is shown. A
table cell describes the value of how often certain segments were better ranked than
the other two relevant ones for the different analysis methods.

segment DWCH MARSYAS RP
45 4.3354 4.5723 2.3708
70 5.0102 5.694 3.7867
150 5.5386 5.7061 4.3277

Table 5.5: This table shows the average position of the relevant segments in an
answer set with sizei = 20, for the different analysis methods.

relative loss of recall for segments located at second 70 and 150 of playtime against

the segment located at second 45 for the DWCH and MARSYAS approach. The RP

approach comes up with a significant smaller relative loss of recall for the segments

located further away in playtime from the query segment, aside from the good recall

values themselves.

The Tables 5.9 to 5.11 give information about the distance values in the answer

sets. The different column values (except in Table 5.11) can not be compared to

each other, because the distance values for RP are not normalized (RP feature vec-

tor values are all of the same domain and the dimensionality of the feature spaces

differ). While Table 5.9 shows the average distances of answer sets with different

sizei, Table 5.10 contains the average distances for specific ranks. In Table 5.11

the distances are normalized by considering the distance of rank 20 as 1. As it can

be seen in all three tables (Table 5.9- Table 5.11) the relative difference between the

values of a prototype is nearly the same for DWCH, MARSYAS and RP. These re-

sults make clear that the spacing of distances between ranks or ranges is in no case

of analysis method linear. The bigger the rank the smaller the differences of dis-
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RS45
i DWCH MARSYAS RP best
20 0.3842 0.2475 0.7946 1
10 0.3344 0.2093 0.7677 1
5 0.2842 0.1783 0.7262 1
3 0.2476 0.1563 0.6840 1
1 0.1513 0.1057 0.4420 1

Table 5.6: Recall values (Ri) for the real world music collection, considering seg-
ments S45 as the only valid answers, in case of feature extraction by the different
three prototypes and in a best case scenario, with answer set sizes (i) 20, 10, 5, 3
and 1.

RS70
i DWCH MARSYAS RP best
20 0.2736 0.1201 0.6034 1
10 0.2288 0.0953 0.5591 1
5 0.1897 0.0755 0.4906 1
3 0.1593 0.0629 0.4204 1
1 0.0830 0.0338 0.1333 1

Table 5.7: Recall values (Ri) for the real world music collection, considering seg-
ments S70 as the only valid answers, in case of feature extraction by the different
three prototypes and in a best case scenario, with answer set sizes (i) 20, 10, 5, 3
and 1.

tance are, considering range or rank of 20 and a data set size of 28860 MP3’s. This

behavior is the same for all three prototypes, there are no significant differences.
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RS150
i DWCH MARSYAS RP best
20 0.1369 0.0741 0.4340 1
10 0.1120 0.0597 0.3958 1
5 0.0890 0.0475 0.3324 1
3 0.0726 0.0382 0.2764 1
1 0.0250 0.0144 0.0697 1

Table 5.8: Recall values (Ri) for the real world music collection, considering seg-
ments S150 as the only valid answers, in case of feature extraction by the different
three prototypes and in a best case scenario, with answer set sizes (i) 20, 10, 5, 3
and 1.

i DWCH MARSYAS RP
20 0.0397 0.2776 0.3274
10 0.0335 0.2363 0.2841
5 0.0283 0.2046 0.2371
3 0.0251 0.1855 0.2008
1 0.0203 0.1553 0.1584

Table 5.9: The average distance value for various answer set sizes (i) and the differ-
ent analysis methods.

rank DWCH MARSYAS RP
20 0.0493 0.3450 0.3854
10 0.0412 0.2839 0.3474
5 0.0342 0.2395 0.3003
3 0.0293 0.2118 0.2437
1 0.0203 0.1553 0.1584

Table 5.10: The average distance values for specific ranks and the different analysis
methods.
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rank DWCH MARSYAS RP
20 1 1 1
10 0.8357 0.8229 0.9014
5 0.6937 0.6942 0.7792
3 0.5943 0.6139 0.6323
1 0.4118 0.4501 0.4110

Table 5.11: Normalized average distance values, the distance of rank 20 is consid-
ered to be 1, for specific ranks and the different analysis methods.
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rank artist album title seg.
1 Eminem The Marshall Mathers B Please II 45
2 Eminem The Marshall Mathers B Please II 70
3 FettesBrot Amnesie Sekt Oder Selters 150
4 DJTomek Ich lebe f̈ur Hip Hop 150
5 MobbDeep Hell On Earth Give It Up Fast 45
6 Eminem The Eminem Show Square Dance 45
7 FettesBrot Amnesie Definition Von Fett 70
8 Wyclef Jean Masquerade Party Like I Party 45
9 Limp Bizkit Chocolate Starfish My Way 150
10 Farin Urlaub Endlich Urlaub! Intro 45
11 FettesBrot Amnesie Mal Sehen 150
12 Fünf Sterne Deluxe Die Leude 45
13 Wyclef Jean Masquerade WThug Like Me 45
14 Wyclef Jean Masquerade The Mix Show 45
15 SamyDeluxe Samy Deluxe Wickeda MC 45
16 SamyDeluxe Samy Deluxe Wickeda MC 70
17 Mary J. Blige No More Drama Family Affair 70
18 MobbDeep Hell On Earth Give It Up Fast 70
19 Wyclef Jean The Ecleftic Thug Angels 150
20 Rückgrat Dreckige Rapz 70

Table 5.12: 20 best ranked answers to a query with the segment starting at second
30 of the track ”B Please II” by artist ”Eminem” from the album ”The Marshall
Matters” analyzed by the DWCH approach.

Explicit retrieval queries and results

The most interesting question is now, why do the three approaches perform different

over genres? This is a difficult question and the answer can not be figured out easily.

A closer look to some explicit retrieval queries is done to exemplify the results, but

an extensive answer can only be given by analysis of the influences of the different

feature vector parameters on the results. Such an investigation is not part of this

thesis and is a suggestion for future work.

Table 5.12 to Table 5.14 show the 20 best ranked answers to a query conducted with

the segment starting at second 30 of the the track ”B Please II” by artist ”Eminem”

from the album ”The Marshall Matters” analyzed by the three different analysis

approaches and Table 5.15- Table 5.17 does so for the segment starting at second
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rank artist album title seg.
1 Eminem The Marshall Mathers B Please II 70
2 Eminem The Marshall Mathers B Please II 45
3 Eminem The Marshall Mathers B Please II 150
4 Outkast ATLiens ATLiens 70
5 A Tribe Called Quest Beats Rhymes & Life Mind Power 70
6 A Tribe Called Quest Beats Rhymes & Life Mind Power 45
7 A Tribe Called Quest Beats Rhymes & Life Mind Power 150
8 Shaggy It Wasn’t Me 45
9 Shaggy It Wasn’t Me 45
10 A Tribe Called Quest Beats Rhymes & Life The Hop 45
11 Outkast ATLiens ATLiens 150
12 CypressHill (feat. Em-

inem)
Rap Superstar 70

13 MobbDeep Hell On Earth Nighttime Vultures 45
14 MobbDeep Hell On Earth Nighttime Vultures 70
15 MobbDeep Hell On Earth Nighttime Vultures 150
16 A Tribe Called Quest Beats Rhymes & Life The Hop 150
17 Shaggy It Wasn’t Me 70
18 Shaggy It Wasn’t Me 70
19 Shaggy It Wasn’t Me 150
20 A Tribe Called Quest Beats Rhymes & Life Phony Rappers 45

Table 5.13: 20 best ranked answers to a query with the segment starting at second
30 of the track ”B Please II” by artist ”Eminem” from the album ”The Marshall
Matters” analyzed by the RP approach.

30 of the track ”What’s new?” by artist ”Silje Nergaard” from the album ”Port of

Call”. The tables contain the raw answers to the queries containing multiple entires

of the same song if different segments where found as similar. Also, more than three

entries of a song are possible, because, as it was figured out through the experiment,

the real world music collection contains sometimes several MP3’s of the same title.

The two sample query pieces of music where chosen under the aspect of similar

performance following the recall and precision values for the genres hip hop and

jazz. Through the size of the real world music collection its impossible to evaluate

the results through listening, but by exploring a few results, the setting with this two

pieces of music seems representative.

In case of the hip hop song by ”Eminem” the RP (see Table 5.13) results are the
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rank artist album title seg.
1 Eminem The Marshall Mathers B Please II 45
2 MobbDeep Hell On Earth Extortion 150
3 MobbDeep Hell On Earth Can’t Get Enough Of It 150
4 Eminem Slim Shady LP 97’ Bonnie & Clyde 70
5 Eminem The Marshall Mathers Under the Influence 45
6 Wu-Tang Clan The W One Blood Under W 45
7 BustaRhymes When Disaster Strikes Turn It Up 45
8 FettesBrot Amnesie Lieblingslied 70
9 MobbDeep Hell On Earth Animal Instinct 70
10 FettesBrot Amnesie Nordisch By Nature 150
11 Wyclef Jean Masquerade Oh What a Night 70
12 Eminem The Marshall Mathers Drug Ballad 70
13 Morcheeba Fragments of Freedom Shallow End 45
14 GetUp 45
15 BustaRhymes Extinction Level Event Iz They Wildin Wit Us &

Gettin Rowdy Wit...
45

16 Eminem The Marshall Mathers B Please II 150
17 Eminem The Eminem Show Drips 70
18 AbsoluteBeginner Bambule Showmaster 70
19 Eminem Slim Shady LP 97’ Bonnie & Clyde 45
20 Outkast ATLiens ATLiens 45

Table 5.14: 20 best ranked answers to a query with the segment starting at second
30 of the track ”B Please II” by artist ”Eminem” from the album ”The Marshall
Matters” analyzed by the MARSYAS approach.

most homogeneous ones, only number 9 can be found as a little bit misplaced by

being finical. It is also important to mention the RP result is the one with the least

count of different songs, because of enlisting mostly all segments of a song if one

is found relevant. The MARSYAS 5.14 result is also only disturbed by two pieces

of music. Number 10 is a more disco affiliated number but with hip hop vocals and

number 13 is a mellow pop song with a strong hip hop like beat. DWCH results

(Table 5.12) contain the most misplaced answer titles here. Number 9 is a rock

song, but consisting of a beat, keys and rap only passage in the 3 second frame of

analysis. The same problem arises with number 10, which is actually a punk rock

song, but again in the frame of analysis there is a keys only passage. Confusion also

brings number 13 and 14, actually hip hop songs too, but with reggae background
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music. Over all the results for the hip hop retrieval task are very consistent and

reasons for misplacing songs are traceable.

The laid back jazz song ”What’s new?” by artist ”Silje Nergaard” from the album

”Port of Call” causes much bigger confusion. The RP results provided in Table 5.16

come up with the artist ”Tori Amos” three times (Number 1,16,17), who performs

with piano and voice like in the query file but has a stronger singer/songwriter as-

sociation than towards jazz. Also a german songwriter, ”Reinhard May” is enlisted

two times, and does definitely not fit in the answer set. A piece of music of ”Queen”

is also found similar, which is not a jazz title at all, but listening into it, the mis-

placement gets understandable. The song is piano and voice only and has a similar

mood like the query song. Results of the MARSYAS analysis 5.17 are really bad.

Actually, only numbers 13 and 16 do match, all other tracks are classic, mellow pop

in the broadest sense, instrumentals or soul music. For the DWCH 5.15 results a

similar confusion like for the RP results happen. In the answer set tracks of ”Tori

Amos”, ”Rainhard May” and ”Queen” can be found to.

These results show that a numeric only evaluation of the results a music information

retrieval system produces is not a good idea and can easily lead to a false estimation

of the performance of such a system.
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rank artist album title seg.
1 Tori Amos Boys For Pele Way Down 45
2 Tori Amos Under The Pink The Wrong Band 45
3 ReinhardMey Lampenfieber Kleiner Kamerad 150
4 StanGetz Stan Getz & Oscar Peter-

son Tri
Detour Ahead 70

5 Marilyn Crispell, Gary
Peacock

Amaryllis Conception Vessel-circl 45

6 Marilyn Crispell, Gary
Peacock

Amaryllis Conception Vessel-circl 150

7 NorahJones Come Away With Me Come Away With Me 70
8 FrankSinatra His Greatest Hits Ol’ Man River 70
9 Tony Bennett I left my heart in San 45
10 Tony Bennett I left my heart in San 150
11 StanGetz Stan Getz & Oscar Peter-

son
three little words 45

12 StanGetz Stan Getz & Oscar Peter-
son

three little words 150

13 NorahJones Come Away With Me Don’t Know Why 150
14 ReinhardMey Lampenfieber Ich bin! 45
15 Queen Greatest Hits 4 Dear Friend 45
16 Tori Amos a case of you (joni

mitchel)
45

17 Tori Amos a case of you (joni
mitchel)

150

18 Mel Torme autumn leaves 45
19 Mel Torme autumn leaves 150
20 Silje Nergaard port of call what’s new 45

Table 5.15: 20 best ranked answers to a query with the segment starting at second
30 of the track ”What’s new?” by artist ”Silje Nergaard” from the album ”Port of
Call” analyzed by the DWCH approach.
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rank artist album title seg.
1 Tom Waits Take it with me 45
2 Elvis Presley White Christmas It Is No Secret 150
3 Tom Waits Alice I’m Still Here 70
4 Tori Amos a case of you 70
5 Tori Amos Under The Pink Baker Baker 150
6 Tom Waits - gemischt 15-Take It With Me 70
7 Patricia Barber night club invitation 70
8 Silje Nergaard port of call every time we say good-

bye
70

9 Tom Waits Alice I’m Still Here 45
10 Charlie Haden quartet

west
haunted heart deep song 150

11 Charlie Haden quartet
west

haunted heart deep song 45

12 NorahJones Come Away With Me The Nearness of You 45
13 Tori Amos Boys For Pele Hey Jupiter 70
14 CharlieHaden quartet haunted heart ev’ry time we say good-

bye
45

15 CharlieHaden quartet haunted heart ev’ry time we say good-
bye

150

16 Silje Nergaard port of call don’t explain 45
17 Silje Nergaard port of call don’t explain 150
18 marilyn crispell, gary

peacock
amaryllis conception vessel-circl 70

19 CharlieHaden quartet haunted heart deep song 70
20 NorahJones Come Away With Me the nearness of you 45

Table 5.16: 20 best ranked answers to a query with the segment starting at second
30 of the track ”What’s new?” by artist ”Silje Nergaard” from the album ”Port of
Call” analyzed by the RP approach.
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rank artist album title seg.
1 KlausNomi Samson and Delilah

(Aria)
70

2 Elvis Presley White Christmas Take My Hand, Precious
Lord

150

3 FrankieGoes To Holly-
wood

Power of Love 45

4 Coldplay A Rush Of Blood In The
Head

Amsterdam 150

5 Tori Amos a case of you 70
6 Tori Amos Under The Pink Pretty Good Year 150
7 Faithless Sunday 8pm Why Go 45
8 O.S.T Northern Exposure Medley 150
9 PearlJam Vitalogy Better Man 70
10 ChrisDe Burgh A Spaceman Came Trav-

elling
150

11 franksinatra autumn leaves 45
12 franksinatra autumn leaves 150
13 nataliecole unforgettable with love smile 70
14 O.S.T Northern Exposure Medley 70
15 RandyCrawford the very best i stand accused 70
16 O.S.T Four Weddings And A

Funeral
Cant Smile Without You 45

17 ChrisRea Gone Fishing 45
18 Limp Bizkit Results May Vary Let Me Down 150
19 Tom Waits Heartattack And Vine On the Nickel 150
20 Georg Friedrich Ḧandel Concerti Grossi op. 3 N

6 D-Dur
70

Table 5.17: 20 best ranked answers to a query with the segment starting at second
30 of the track ”What’s new?” by artist ”Silje Nergaard” from the album ”Port of
Call” analyzed by the MARSYAS approach.
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5.3.2 Genre based Retrieval

Tables 5.18 to 5.19 contain the results of the evaluation using the Tzanetakis music

collection. Here a fixed answer set size ofi = 10 is used and the performance in

different genres is displayed. Query and data set are the same and all pieces of music

of the same genre are considered to be relevant or correct answers to a query. Top

ranked in the answers to a query is always the query piece of music itself. Because

of this, rank number one is ignored and the absolute ranks 2-11 are interpreted as

the answer set of size 10. The number of titles in a genre is enlisted in columnn in

Table 5.18. The best case scenario calculates as the size of the answer set multiplied

by the number of titles in a genre, because the size of every genre is greater than

the answer set size (n > i). The best case scenario for the recall values are rather

small values too, because in a answer set of size 10 only a fraction of all relevant

titles situated in the collection can be located. For each query there would ben− 1

relevant pieces of music in the collection and this value is always bigger than the

answer set size (i= 10).

It can be observed that the performance of the prototypes vary from genre to genre.

In the average the DWCH approach performs better than the other two, which come

up with nearly the same average results for precision and recall evaluation. The

best performance is always achieved either by the RP or the DWCH prototype. In

the genres labeled ambient, country, disco, hip hop and rock the RP results are the

best, with disco and hip hop having the greatest difference to the next best results.

The recall and precision values for ballad, blues, classical, jazz, metal, pop and

reggae are the best for the DWCH approach and are remarkable better than the

other approaches for classical, metal and pop pieces of music. The MARSYAS

results are second placed for classical, jazz, metal, pop, reggae and rock. Due to the

performance of the feature vectors computed through the DWCH approach it is to

mention again that only a 3 second part of the pieces of music is analyzed, while

the others are calculated over the whole length.
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genre n DWCH MARSYAS RP best
ambient 71 238 211 252 710
ballad 45 83 70 79 450
blues 108 314 249 292 1080

classical 110 636 538 481 1100
country 104 297 238 312 1040
disco 102 286 281 375 1020

hiphop 106 304 225 385 1060
jazz 105 345 342 325 1050

metal 104 560 431 336 1040
pop 131 540 401 306 1310

reggae 114 436 387 272 1140
rock 103 177 203 207 1030
all 1203 4216 3576 3622 12030

Table 5.18: Absolute recall values for the Tzanetakis music collection in case of
feature extraction by the different three prototypes and in a best case scenario.

R10 DWCH MARSYAS RP best
ambient 0.0486 0.0431 0.0514 0.1449
ballad 0.0429 0.0362 0.0408 0.2324
blues 0.0274 0.0217 0.0255 0.0943

classical 0.0535 0.0453 0.0405 0.0926
country 0.0280 0.0224 0.0294 0.0980
disco 0.0280 0.0275 0.0368 0.1000

hiphop 0.0276 0.0204 0.0349 0.0961
jazz 0.0319 0.0316 0.0300 0.0971

metal 0.0528 0.0406 0.0317 0.0980
pop 0.0320 0.0237 0.0181 0.0775

reggae 0.0341 0.0303 0.0213 0.0893
rock 0.0170 0.0195 0.0199 0.0990

others - - - -
avg 0.0353 0.0302 0.0317 0.1099

Table 5.19: Recall values for the Tzanetakis music collection in case of feature
extraction by the different three prototypes and in a best case scenario.
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P10 DWCH MARSYAS RP best
ambient 0.3352 0.2972 0.3549 1
ballad 0.1844 0.1556 0.1756 1
blues 0.2907 0.2306 0.2704 1

classical 0.5782 0.4891 0.4373 1
country 0.2856 0.2288 0.3000 1
disco 0.2804 0.2755 0.3676 1

hiphop 0.2868 0.2123 0.3632 1
jazz 0.3286 0.3257 0.3095 1

metal 0.5385 0.4144 0.3231 1
pop 0.4122 0.3061 0.2336 1

reggae 0.3825 0.3395 0.2386 1
rock 0.1718 0.1971 0.2010 1
avg 0.3396 0.2893 0.2979 1

Table 5.20: Precision values for the Tzanetakis music collection in case of feature
extraction by the different three prototypes and in a best case scenario.
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samegenre sounds similar different
DWCH 17.91 21.21 60.88

MARSYAS 37.17 27.01 35.82
RP 32.11 26.7 41.19

Table 5.21: Percentage of ratings in the categories, same genre, sounds similar and
different genre, for best 10 retrieval answers of 12 example songs selected from the
real world music collection.

5.3.3 Usability Study of specific Retrieval

As a music information retrieval system based upon music content analysis is in-

tentionally designed for the use by human users, it is obvious and very important to

survey those users about their assessment of results such a system is providing. A

survey is done in the form of letting users evaluate the answers returned by the three

prototypes for query songs. For each feature set 4 songs out of the real world music

collection are selected by random, considering a balance of genres. This means that

every prototype is used to retrieve results for a classical, a pop, a rock and a hiphop

song. The users are presented the 12 ”master” songs and the resulting 10 best an-

swers, and are asked to judge them in the sense of same genre. Not only a similar

or unsimilar genre decision is possible, because of the assumption people will have

very different opinions on genres. They also have the opportunity to classify a song

as similar, but of different genre. That the perception of genre varies from user to

user is for example confirmed through different restrictive classification behavior.

User:”This is german hiphop! Why is this track placed right in the

middle of all english tracks?”

The answer set is build upon the 20 best answers to the query pieces of music. In

case of multiple entries of a title, through enlisting different segments of the piece of

music, the best ranked segment is kept and segments ranked behind it are discarded.

Subsequent pieces of music to discarded segments are shifted upwards in the answer

set. As it came up, while preparing the user survey, multiple entries through of a
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title caused by the different segments are not the only problem. The real world

music collection contains a lot of titles more than once. Because the segments of

pieces of music in the collection are anonymous there is no easy way to compile a

top 10 ranking without having double or multiple entries in it. Therefore multiple

entries are counted and evaluated only once. Multiple entries concerned the answer

sets of all three prototypes of about the same amount.

The group of probands are 11 students with an average age of 26.7 years and is

balanced in terms of gender. Over 60% of the surveyed people have some musical

education and over 80% would call themselves ”interested in music”. The numeri-

cal results (see Table 5.21) of the user survey have to be handled with care. To call

a user survey representative a much larger sample of interviewed people would be

necessary. Results of the user survey should be seen more as an encouragement to

involve users in the performance evaluation process of a music information retrival

system. Following the values in Table 5.21 the MARSYAS and RP results are about

the same, while the DWCH systems performance is worse. Reasons for these re-

sults, being contradictory to the precision values (see Table 5.20) for the evaluation

over the Tzanetakis music collection, are the random choice of songs and hence

created mismatch of starting position between the prototypes. Another reason is the

fact that the users judge a piece of music in at maximum first 10 seconds, while

the DWCH approach analyzes begin of second 15 to end of second 17 for feature

extraction. Interesting insights in the users formation of opinion upon a piece of

music’s genre are observed during the survey. It is also to say that users for almost

every track made their decision in about 2 or 3 seconds. Music pieces giving users

no clear association to a musical genre are quickly analyzed on a different level than

the musical content impression. Through figuring out the artist or the band, known

influences for the artist or band, or time period of creation the users find additional

information for the genre assignment process.

User:”Thisclassic tune sounds very baroque! Is this a cembalo? This

title is from a totally different time period and is not similar to the clas-

sical query song in my opinion!”
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This is a capability a music information retrieval system based plainly on music

content analysis cannot possess. Overall the critiques of the participants for the

different answer sets ranged from

User:”Is this meant serious? Those songs have nothing in common!”

to

User:”Cool, this would be nice to automatically generate playlists out

of my private MP3 collection!”



Chapter 6

Conclusion

Completing this work the interesting facts the comparison of the three approaches

of music content analysis brought up have to be mentioned. Most significant perfor-

mance differences are the outstanding performance of the RP approach for precision

and recall in case of the big music collection and the different segments of a music

piece in the collection considered as the correct answers. One has also to mention

that the DWCH approach, although only analyzing a small part of the segments

does significantly perform better than the MARSYAS approach. A possible rea-

son could be the chosen Euclidean distance measurement, maybe the MARSYAS

performance could be improved by weighting the attributes of the feature vector,

because they are of different domains. Also, the size of the music collection could

matter, it is larger than any other used in literature referred in this thesis. The stabil-

ity of the DWCH approach, although the precision recall values are not that good,

speak for it and it should be possible to improve the results in every aspect by build-

ing a feature vector upon the analysis of the whole music piece and not only of a

fragment.

Another fact speaking for further research with the DWCH technique are the good

results for the genre evaluation over the Tzanetakis music collection. DWCH results

can compete with the RP results in this setting with no problem. This speaks for a

96
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good stability of the DWCH approach for genre classification. The average preci-

sion for genre recognition is poor for all three prototypes. A precision of about 30%

is not enough to base a reasonable application, for example an automatic playlist

generation, upon.

The user evaluation of the results is to small to deduce significant numeric conclu-

sions. Of much more interest is the fact, that genre systems people have vary from

user to user and it is impossible to build a genre system, which satisfies the require-

ments of all users. This is also supported by the information about the development

of a genre form a musicologists view. Users base their genre assignment decision

for a piece of music not only on the music content, but also on various background

knowledge they have. These insights also affirmed the importance of involvement

of a evaluation through the users these systems are designed for, a numeric only

evaluation can be misleading.

The emphasis of an automatic genre classification, which is based on music content

analysis only, should concentrate on a successful very coarse top level classification.

It is to question if a music content based approach can do a more detailed genre

separation. Nonetheless the results are encouraging for future work and it is only

a question of time till the approaches are sophisticated enough to effectively fulfill

their task.
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formatik, Fakulẗat für Wirtschaftswissenschaften, Universität Wien, Wien,
2001.

[25] Karin Kosina. Music genre recognition. Master’s thesis, Fachhochschul-
Studiengang Medientechnick und Design, Hagenberg, June 2002.

[26] Guohui Li and Ashfaq A. Khokhar. Content-based indexing and retrieval of
audio data using wavelets. InIEEE International Conference on Multimedia
and Expo (II), pages 885–888, 2000.

[27] Tao Li, Mitsunori Ogihara, and Qi Li. A comparative study on content-based
music genre classification. InProceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 282–289. Association for Computing Machinery, July 2003.

[28] Beth Logan. Mel frequency cepstral coefficients for music modeling. InPro-
ceedings of the 1st International Symposium on Music Information Retrieval,
October 2000.

[29] Mrinal K. Mandal, Tyseer Aboulnasr, and Sethuraman Panchanathan. Image
indexing using moments and wavelets.IEEE Transactions on Consumer Elec-
tronics, 42(3):557–565, August 1996.

[30] Vinay P. Namboodiri. Swaram: Segmentation and wavelet based retrieval of
music. InProceedings of the International Conference on Digital Libraries
2004, New Dehli, India, February 2004.

[31] Francois Pachet. Content management for electronic music distribution.Com-
munications of the ACM, 46(4):71–75, April 2003.



BIBLIOGRAPHY 101

[32] EliasPampalk. Islands of music - analysis, organization, and visualization of
music archives. Master’s thesis, Institute of Software Technology and Interac-
tive Systems, Vienna University of Technology, December 2001.

[33] D. Perrot and Robert O. Gjerdigen. Scanning the dial: An exploration of fac-
tors in the identification of musical style. InProceedings of the 4th Conference
of the Society for Music Perception and Recognition, 1999.

[34] Robi Polikar. The wavelet tutorial.http://users.rowan.edu/∼polikar/
WAVELETS/WTtutorial.html. accessed on March 7th, 2004.
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