
DISSERTATION

– PTDOM –

A Persistent Typed Document Object Model for
the Management of MPEG-7 Media Descriptions

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

Univ.-Prof. Dr. Wolfgang Klas

Institutsnummer 384
am Institut für Informatik und Wirtschaftsinformatik
der Universität Wien

Zweitgutachter

Univ.-Prof. Dr. Christian Breiteneder

Institutsnummer E188
am Institut für Softwaretechnik und Interaktive Systeme
der Technischen Universität Wien

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Inf. Gerd Utz Westermann

Matrikelnummer 0027225
Hebragasse 5/25

1090 Wien, Österreich

Wien, am 10.2.2004

Zusammenfassung

MPEG-7 ist ein vielversprechender Metadatenstandard, der eine umfassende Beschreibung multimedia-
ler Inhalte ermöglicht. Mit einer zunehmenden Zahl an verfügbaren MPEG-7-Medienbeschreibungen wird
eine angemessene Datenbankunterstützung zur Verwaltung solcher Beschreibungen immer wichtiger. Da
MPEG-7-Medienbeschreibungen im wesentlichen XML-Dokumente sind, welche Medienbeschreibungssche-
mata folgen, die in einer Erweiterung der XML Schema-Sprache namens MPEG-7 DDL verfaßt sind, ist es
ein naheliegender Gedanke, XML-Datenbanklösungen für diese Aufgabe einzusetzen.

Die vorliegende Dissertation will diesen Ansatz näher untersuchen. Sie stellt zunächst einen
ausführlichen Anforderungskatalog auf, der von einer zur Verwaltung von MPEG-7 Medienbeschreibun-
gen eingesetzten XML-Datenbanklösung erfüllt werden sollte. Gegen diese Anforderungen werden 21 re-
präsentative, dem Stand der Technik entsprechende XML-Datenbanklösungen gründlich geprüft: native
XML-Datenbanklösungen und XML-Erweiterungen klassischer Datenbank-Management-Systeme – kom-
merzielle Systeme, Forschungsprototypen ebenso wie Open-Source-Projekte. Die Untersuchung fördert be-
trächtliche Defizite heutiger XML-Datenbanklösungen zutage, die ernsthaft deren Eignung zur Verwaltung
von MPEG-7-Medienbeschreibungen beeinträchtigen. Ein zentrales Problem der betrachteten Lösungen ist,
daß sie größtenteils die in Medienbeschreibungsschemata vorhandene Schema- und Typinformation bei der
Speicherung von MPEG-7-Medienbeschreibungen ignorieren. Als Konsequenz werden die großen Mengen
nicht-textueller Daten wie bspw. Frequenzspektren, Farbverteilungen und Bewegungsvektoren von Bildob-
jekten, die üblicherweise in MPEG-7-Medienbeschreibungen enthalten sind, unzulänglicherweise als Text
gespeichert. Dies behindert den sinnvollen Zugriff auf diese Daten und deren Verarbeitung.

Angesichts solcher Probleme ist es das Ziel dieser Arbeit, eine XML-Datenbanklösung zu entwickeln,
welche den Anforderungen zur Verwaltung von MPEG-7-Medienbeschreibungen besser genügt. Diesbezüglich
leistet die Arbeit drei wesentliche Beiträge:

Erstens stellt sie das Typed Document Object Model (TDOM) vor, ein generisches Datenmodell für
XML-Dokumente mit besonderem Augenmerk auf die Repräsentation nicht-textueller Inhalte. TDOM bie-
tet sogenannte typisierten Repräsentationen zur adequaten Darstellung von XML-Dokumentinhalten gemäß
ihres jeweiligen, in der Schemadefinition des Dokuments spezifizierten Typs. Auf Basis von TDOM können
Anwendungen auch auf nicht-textuelle Daten innerhalb von MPEG-7-Medienbeschreibungen geeignet zu-
greifen und diese typkonform verarbeiten.

Zweitens stellt diese Arbeit Typisierungsautomaten vor, ein sprachunabhängiger Formalismus zur Zwi-
schenrepräsentation von Schemadefinitionen für XML-Dokumente. Ein Typisierungsautomat ist nicht nur in
der Lage, mittels TDOM dargestellte XML-Dokumente gegen die von ihm repräsentierte Schemadefinition
zu validieren. Er ist ebenfalls in der Lage, geeignete typisierte Repräsentationen der Inhalte dieser Doku-
ment herzuleiten und zu erzeugen. Da der Mechanismus der Typisierungsautomaten bis zur Ausdrucksstärke
von MPEG-7 DDL erweiterbar ist, stellt er eine adequate Grundlage zur Zwischenrepräsentation beliebiger
MPEG-7-Medienbeschreibungsschemata dar.

Drittens beschreibt die Arbeit die Implementierung des Persistent Typed Document Object Model (PT-
DOM), einer prototypischen XML-Datenbanklösung. Diese verfügt über einen MPEG-7 DDL-konformen
Schemakatalog, der Typisierungsautomaten verwendet, und eine Dokument-Management-Komponente, die
auf TDOM zur Repräsentation von XML-Dokumenten aufbaut. Unter Verwendung des Schemakatalogs nutzt
PTDOM die Vorteile von TDOM zur typgerechten Speicherung von XML-Dokumentinhalten. Berücksichtigt
man zudem die weitreichende Unterstützung von Datentypen, benutzerdefinierten Routinen und Indexstruk-
turen sowie wie seine durchgehende Erweiterbarkeit, so stellt PTDOM eine XML-Datenbanklösung dar, wel-
che die meisten Anforderungen zur Verwaltung von MPEG-7-Medienbeschreibungen erfüllt und sich deshalb
hervorragend zu diesem Zweck eignet.

Die Relevanz der Beiträge dieser Dissertation ist nicht nur auf das Gebiet von MPEG-7 beschränkt.

Da TDOM, Typisierungsautomaten und der implementierte Prototyp prinzipiell zur Verwaltung beliebi-

ger XML-Dokumente verwendbar sind, legt diese Arbeit auch einen Grundstein für eine neue Generation

allgemeiner XML-Datenbanklösungen, die verfügbare Schema- und Typinformation zur Speicherung von

XML-Dokumenten nutzen. Die Verfügbarkeit solcher Lösungen ist in all jenen Anwendungsgebieten äußerst

wünschenswert, in denen datenzentrierte XML-Dokumente mit großen Anteilen nicht-textueller Daten auf-

treten.

Abstract

MPEG-7 is a promising metadata standard for the extensive description of multimedia content.
The amount of MPEG-7 media descriptions available is continuously increasing and adequate database
support for the management of larger numbers of such descriptions is gaining more and more importance.
Since MPEG-7 media descriptions essentially are XML documents following media description schemes
defined with an extension of XML Schema named MPEG-7 DDL, employing XML database solutions
for their management is an idea that lies close at hand.

It is the aim of the present thesis to explore this idea in detail. It develops an extensive set of
requirements that should be met by any XML database solution employed for the management of
MPEG-7 media descriptions. Against these requirements, it thoroughly examines 21 representative
state-of-the-art XML database solutions: native XML database solutions as well as XML extensions of
traditional database management systems – commercial systems, research prototypes, as well as open
source projects. The examination unveils considerable deficiencies of existing XML database solutions
that seriously limit their suitability for the management of MPEG-7 media descriptions. One of the ma-
jor problems is that the analyzed solutions largely ignore schema and type information that is available
within media description schemes for the storage of MPEG-7 media descriptions. As a consequence,
large amounts of complex non-textual data typically contained in MPEG-7 media descriptions, such
as frequency spectrums, color distributions, and object motion vectors, are inadequately stored and
represented as text hindering reasonable access to these data and their appropriate processing.

Facing these problems, this thesis sets out to develop an XML database solution which suits the
needs of the management of MPEG-7 media descriptions. In this regard, it makes several important
contributions:

Firstly, the thesis proposes the Typed Document Object Model (TDOM) as a generic data model for
XML documents that pays particular attention to the representation of non-textual contents. TDOM
provides the notion of typed representations to treat the contents of an XML document in a way that
is adequate to the respective content type specified in the schema definition to which the document
complies. On the basis of TDOM, applications can reasonably access and process even complex non-
textual data contained in MPEG-7 media descriptions.

Secondly, the thesis proposes typing automata as a formalism for the intermediary representation
of schema definitions for XML documents that is independent of any particular XML schema definition
language. A typing automaton is not only able to validate TDOM-represented XML documents against
a schema definition; it is also able to infer and produce appropriate typed representations of the contents
of these documents. As typing automata can be extended up to the expressiveness of MPEG-7 DDL,
they constitute an adequate foundation for the intermediary representation of arbitrary MPEG-7 media
description schemes.

Thirdly, the thesis describes the implementation of the Persistent Typed Document Object Model
(PTDOM), a prototypical XML database solution. PTDOM features an MPEG-7 DDL-compliant
schema catalog that is based on typing automata and a document management component that em-
ploys TDOM for the representation of XML documents. Using the schema catalog, PTDOM takes
advantage of TDOM for the typed storage of XML document contents. Furthermore considering its
profound support for datatypes, user-defined routines, and index structures and its profound extensi-
bility, PTDOM satisfies most of the requirements for the management of MPEG-7 media descriptions
and is thus highly suited for this purpose.

The impact of this thesis is not just limited to the domain of MPEG-7. Since TDOM, typing

automata, and the implemented prototype are usable for the representation and management of arbitrary

XML documents in principle, the thesis lays the foundations for a new generation of general XML

database solutions that exploit available schema and type information for the adequate storage of XML

documents. The availability of such solutions is very desirable in any application domain in which

data-centric XML documents with large amounts of non-textual data are encountered.

Contents

1 Introduction 1
1.1 Aims . 2
1.2 Contributions . 2
1.3 Organization . 3
1.4 Prerequisites . 4

2 MPEG-7 5
2.1 Metadata for Digital Media . 5
2.2 Metadata Standards . 6
2.3 Overview of MPEG-7 . 9
2.4 MPEG-7 Media Descriptions . 10
2.5 Basic Observations . 12

3 Requirements 15
3.1 Representation of Media Descriptions 15
3.2 Access to Media Descriptions . 17
3.3 Media Description Schemes . 20
3.4 Extensibility . 22
3.5 Classic DBMS Functionality . 24

4 XML Database Solutions 25
4.1 Native Database Solutions . 26
4.2 Database Extensions . 27

5 Analysis 29
5.1 Representation of Media Descriptions 29
5.2 Access to Media Descriptions . 32
5.3 Media Description Schemes . 37
5.4 Extensibility . 39
5.5 Classic DBMS Functionality . 40
5.6 Summary . 42

6 The Typed Document Object Model 45
6.1 Data Models for XML Documents 45
6.2 TDOM in Six Points . 46

7 Typing 63
7.1 Basic Considerations . 64
7.2 Typing Automata . 68
7.3 Computational Complexity . 82

vii

viii CONTENTS

7.4 Optimizations . 84
7.5 Extensions . 91

8 Implementation 105
8.1 Simple Type Framework . 107
8.2 Document Manager . 107
8.3 Schema Catalog . 108
8.4 Routine Framework . 111
8.5 Index Framework . 113
8.6 Query Evaluator . 115
8.7 Experimental Results . 121

9 Conclusion 125

List of Figures

2.1 Standardized description schemes . 7
2.2 Standardized metadata frameworks 8
2.3 Predefined MPEG-7 media description schemes 9
2.4 Melody media description scheme . 12
2.5 Example MPEG-7 media description 13

4.1 XML database solutions . 25

5.1 Analysis results . 30

6.1 TDOM representation of XML document structure 47
6.2 Structural representation of an MPEG-7 media description 48
6.3 TDOM representation of elements and attribute values 49
6.4 Typed representation example . 50
6.5 Unyped representation example . 52
6.6 TDOM simple type framework . 55
6.7 Example simple type support . 56
6.8 Switching between corresponding representations 58

7.1 Typing problem . 65
7.2 Example tree automaton . 66
7.3 Tree automaton application . 68
7.4 Example element type IDs . 70
7.5 Typing automaton structure . 71
7.6 Example transition rules . 73
7.7 Typing phase . 77
7.8 Local document typing . 86
7.9 Failing local document . 87
7.10 Secondary conditions . 93
7.11 Example mapping of unmixed element content declaration 93
7.12 Example mapping of complex type derivation hierarchy 96
7.13 Attribute condition structure . 99
7.14 Example mapping of attribute declarations 101

8.1 PTDOM architecture . 105
8.2 Simple type framework component 107
8.3 Document manager overview . 108
8.4 Schema catalog overview . 109
8.5 Routine framework overview . 112
8.6 Index framework overview . 114

ix

x LIST OF FIGURES

8.7 Query evaluator component overview 116
8.8 PTDOM query algebra overview . 117
8.9 Query algebra example . 118
8.10 Heuristic XPath translation overview 120
8.11 Results of schema definition import 121
8.12 Results of document import . 122
8.13 Results of document querying . 123

Chapter 1

Introduction

The Multimedia Content Description Interface (MPEG-7) [ISO01a, ISO99, MSS02,
MKP02, Mar02, NL99a, NL99b] is an ISO standardization effort driven by major
broadcasting companies, consumer electronics manufacturers, and telecommunica-
tion service providers that is targeted at the development of a metadata standard
for multimedia content. Starting back in 1996 and having reached a mature state by
November 2001, MPEG-7 provides an exhaustive tool set for the detailed descrip-
tion of audiovisual media for a broad variety of applications, ranging from classic
multimedia archives, search engines, journalism, education, and entertainment ap-
plications to multimedia production support.

Given its strong backing and broad applicability, MPEG-7 is receiving much
attention from the multimedia community. As more and more tools and applications
producing and processing MPEG-7-compliant media descriptions are emerging (e.g.,
[FK01, YBL+01, KW01]), the amount of MPEG-7 media descriptions is increasing
continuously.

In the light of this development, there will certainly be the need for adequate
database support for the management of MPEG-7 media descriptions. Adequate
database support including a sophisticated query language, efficient index struc-
tures, transactions, concurrency control, access control, reliable means for backup
and recovery, etc. would greatly alleviate the implementation of MPEG-7 applica-
tions that have to work with larger numbers of media descriptions such as multime-
dia archives, multimedia search engines, and multimedia production environments.
Since MPEG-7 media descriptions are XML documents [BPSMM00] which con-
form to schema definitions expressed with the XML Schema variant MPEG-7 DDL
[TBM+01, BM01, ISO01b], it is a self-suggesting idea to employ XML database
solutions for their management, as proposed for instance by [Kos02, FK01].

Closer reflection on this natural idea reveals, however, that the decision to use
XML database solutions for the management of MPEG-7 media descriptions is
not as simple as it might sound at first glance. For example, it must be consid-
ered that MPEG-7 media descriptions largely consist of non-textual data typically
covering rather low-level technical aspects of multimedia content, such as frequency
spectrums, color distributions, object shapes, object motion vectors, etc. A suitable
database solutions should offer adequate means to access and index such non-textual
data. But many XML database solutions have a classic document management
background and are therefore mainly targeted at the treatment of textual data.

Moreover, there exists a confusing variety of XML database solutions with dif-
ferent degrees of maturity and capabilities: “native” XML database solutions as

1

2 CHAPTER 1. INTRODUCTION

well as XML extensions of traditional database management systems, commercial
products as well as open source projects and research prototypes [Bou02]. In order
to be able to reasonably decide for an XML database solution for the management
of MPEG-7 media descriptions, it is necessary to have an overview of current XML
database solutions and their capabilities and limitations.

1.1 Aims

The present thesis wants to explore the issue of applying XML database solutions
for the management of MPEG-7 media descriptions in detail. An extensive catalog
of requirements shall be developed that should be met by any XML database so-
lution employed for the management of MPEG-7 media descriptions. Against this
catalog, a representative set of current XML database solutions with commercial,
research, and open source backgrounds are to be evaluated. Given a positive out-
come of this evaluation, an appropriate XML database solution for the management
of MPEG-7 media descriptions shall be suggested. Given a negative outcome, the
foundations for a new XML database solution that suits the imposed requirements
for the management of MPEG-7 media descriptions shall be layed. A prototype of
such a solution shall be designed and implemented.

1.2 Contributions

In pursuing these aims, the thesis makes several substantial contributions:

• The thesis performs an extensive analysis of state-of-the art XML database
solutions. It compares a broad array of 21 native XML database solutions
and XML extensions of traditional database management systems (DBMSs)
including commercial systems, research prototypes, as well as open source
projects against a wealth of 18 requirements covering the representation of and
the access to MPEG-7 media descriptions, the handling of media description
schemes, extensibility, as well as traditional DBMS functionality. An analysis
of the capabilities and limitations of current XML database solutions with
such an extent and level of detail is unprecedented. The analysis has also
been published in [WK03b, WK02b].

• In face of considerable deficiencies unveiled by the analysis of current XML
database solutions, the thesis proposes the Typed Document Object Model
(TDOM) for XML documents as a foundation for XML database solutions
that better suit the needs of MPEG-7 applications. Compared to other data
models for XML documents, TDOM is focused on exploiting available schema
and type information – as carried by MPEG-7 media description schemes,
for example – to represent non-textual XML document contents in a way
that is appropriate to the particular content type. On the basis of TDOM,
applications can reasonably access and process even complex non-textual data
such as frequency spectrums and color distributions often contained in MPEG-
7 media descriptions. TDOM has also been published in [WK04, WK02a].

• The thesis proposes typing automata as a formalism for the intermediary
representation of schema definitions for XML documents which is independent
of any particular XML schema definition language. Typing automata are able
to validate XML documents in TDOM representation and to infer and create

1.3. ORGANIZATION 3

appropriate typed representations of their contents. As they are extensible up
the expressiveness of MPEG-7 DDL, typing automata constitute an adequate
intermediary representation for MPEG-7 media description schemes. Typing
automata have also been published in [WK03a].

• The thesis describes the prototypical implementation of the Persistent Typed
Document Object Model (PTDOM), an XML database solution developed
on top of the object-oriented DBMS ObjectStore that is highly suitable for
the management of MPEG-7 media descriptions. PTDOM employs TDOM
for the representation of XML documents and features an MPEG-7 DDL-
compliant schema catalog based on typing automata. The typing automata
maintained by the schema catalog are used to store XML document contents
in an appropriately typed manner thereby giving applications adequate ac-
cess to these contents. Further benefits of PTDOM are its broad support of
data types, index structures, and server-side routines, as well as its profound
extensibility. The described prototype has also been published in [WK03c].

1.3 Organization

The present thesis is structured as follows: Chapter 2 introduces the domain of
metadata for digital media and corresponding metadata standards and gives an
overview of the MPEG-7 standard. It interrelates MPEG-7 to other metadata
standards and performs some basic observations on the nature of MPEG-7 media
descriptions and media description schemes that are relevant for their management
in a database. Based on these observations, Chapter 3 presents a comprehensive
catalog of requirements that should be fulfilled by an XML database solution em-
ployed for the management of MPEG-7 media descriptions. Chapter 4 introduces
different types of XML database solutions and presents an extensive and represen-
tative set of such solutions on which the investigations of this thesis are restricted.
Chapter 5 performs a detailed analysis of these database solutions with regard to
the requirements of Chapter 3.

Given the significant weaknesses of current XML database solutions uncovered
by the analysis, the thesis continues with developing a new XML database solution
that better suits the needs of MPEG-7 applications. As a foundation of such a
solution, Chapter 6 proposes, after highlighting the deficiencies of existing XML
data models, TDOM as a data model for XML documents that is suitable for the
representation of MPEG-7 media descriptions. As another foundation, Chapter 7
proposes typing automata for the intermediary representation of XML schema def-
initions for the validation and typing of TDOM-represented XML documents. It
examines the computational complexity of the behavior of typing automata, sug-
gests optimizations, and proposes enhancements that increase the expressiveness
typing automata up to the level of MPEG-7 DDL. Equipped with TDOM and typ-
ing automata, Chapter 8 describes the implementation of the PTDOM prototype of
an XML database solution that satisfies most of the requirements for the manage-
ment of MPEG-7 media descriptions given by Chapter 3. Chapter 9 concludes the
thesis with a summary of its results and gives an outlook to possible future research
work.

4 CHAPTER 1. INTRODUCTION

1.4 Prerequisites

This thesis assumes basic knowledge of XML and XML Schema. There exist many
excellent introductions to this topic, e.g., [LBK02] Chapter 17, [Fal01], and [HS02].
The thesis further assumes basic knowledge of database management systems. For
an introduction to this topic, the reader is referred to one of the numerous database
text books, such as [LBK02] or [EN94].

Chapter 2

MPEG-7

This chapter gives an introduction to MPEG-7 and takes a closer look on MPEG-7
media descriptions and their characteristics. It begins with an introduction into
the subject of metadata for digital media (2.1) and related metadata standards
(2.2). This is followed by an overview of the MPEG-7 standard, its aims, anatomy,
and position to other metadata standards (2.3). The form of typical MPEG-7 me-
dia description schemes and complying descriptions (2.4) is illustrated and several
observations concerning basic properties that have to be considered for their man-
agement are performed (2.5).

2.1 Metadata for Digital Media

A central problem of digital media management is that digital media formats – such
as MPEG-2 for videos, MP3 for audios, and SMIL for multimedia presentations
– primarily encode the presentation of content for use by media players but not
the information content conveys to consumers. It is more and more recognized
that metadata, i.e., data that describe media, are the key to an effective media
management [CFS99, SK98, KSS95].

Metadata may address different aspects of media [Gil98]: apart from pure de-
scription of media content, e.g., the score and lyrics of a song or the persons oc-
curring in a video, metadata can also cope with administrative aspects of media,
e.g., the location of media and copyright information, preservation aspects, e.g.,
the tools with which media where produced and the physical condition of storage
media, technical aspects, e.g., applied encoding formats and encoding parameters,
and usage aspects, e.g., user tracking and information about reuse. Rich metadata
covering these aspects open up the way to a variety of advanced multimedia ap-
plications (see [Gre00, SK98] for illustrative examples) ranging from search engines
and archives allowing content-based search and retrieval of media, content-based
filtering of media on broadcast channels, (semi-)automated composition support
in multimedia authoring, and automatic generation of personalized content in ac-
cordance with user interests to administrative support for the media production
process.

In the literature, several classification schemes for metadata for digital media
have been elaborated [BKS98, Gil98, KSS95, BR94]. Though diverse in detail and
bias, the proposed schemes agree on a common core of basic characteristics along
which metadata can be categorized: firstly, metadata can be classified according to
the level on which they describe media. Media description may occur on a technical

5

6 CHAPTER 2. MPEG-7

level or on a semantic level. Metadata on a technical level constitute technical
features describing lower-level aspects of media, such as frequency spectrums for
audios and color distributions for images. Technical features are effective for the
realization of similarity searches on media collections. Metadata on a semantic level
are concerned with the information media conveys on a higher level of abstraction.
Examples would be the score of a song, the persons occurring in a video, etc. As such
metadata are close to human thinking, they are very valueable for the realization
of content-based access.

Secondly, metadata can be classified according to their producibility: production
of metadata can either be automatic or it may require manual human intervention.
As human intervention for the production of metadata may be costly, automatic
producibility is a very desirable property of metadata from an economic point of
view. It is noteworthy that the level of metadata affects their producibility: low-
level, technical metadata can usually be generated automatically from media with
little effort while semantic metadata describing the information conveyed by media
content typically require domain knowledge to be brought in by humans.

Thirdly, metadata can be categorized according to dependencies: metadata can
be domain-dependent. For example, the position of a tumor is likely to be of use for
medical applications only whereas the color distribution of an image may be useful
for a variety of application domains. Also, metadata can be media type-dependent.
For instance, color distributions apply to visual media only while the creation date
is applicable to any type of media.

2.2 Metadata Standards

In the wake of increasing awareness of the importance of metadata for digital media
management, a multitude of metadata standardization initiatives have been called
into being throughout the recent years. Indeed, standardization of metadata for
digital media bears several appealing prospects: metadata standards allow content
providers to engage in electronic business by sharing standardized descriptions of
their media with other providers. Standardized media descriptions also enable third
parties to establish value-added services spanning multiple providers like media
search engines or market places. Finally, metadata standards pave the way to
interoperable commercial off-the-shelf software for the creation and processing of
media descriptions such as media annotation and automated metadata extraction
tools.

Coarsely, two classes of metadata standards can be distinguished: standardized
description schemes and standardized metadata frameworks. Standardized descrip-
tion schemes comprise the many standardization efforts of various communities that
are targeted at the definition of fixed, ready-to-use attribute sets for the common
description of media tailored to the needs of the communities’ particular application
domains together with appropriate formats for exchanging descriptions.

The table of Figure 2.1 presents a selection of seven influential and frequently
cited representatives of this category of metadata standards: Machine-Readable
Cataloging (MARC) [Net02] and Dublin Core Metadata for Resource Discovery
(Dublin Core) [DCM99] for the bibliographic description of arbitrary media; Cat-
egories for the Description of Works of Art (CDWA) [AIT00] and VRA Core Cat-
egories [VRA02] for the description of artworks and images depicting artworks;
Content Standard for Digital Geospatial Metadata (CSDGM) [Met98] for the de-
scription of geographic media and data sets; the Data Dictionary (Z39.87) [NIS02]

2.2. METADATA STANDARDS 7

Standardized description schemes

MARC Dublin Core CDWA
VRA Core
Categories

CSDGM Z39.87 LOM

Standardization
body

Library of
Congress

Dublin Core
Metadata
Initiative
(DCMI)

Art
Information
Task Force

(AITF)

Visual
Resources
Association

(VRA)

Federal
Geographic Data

Committee
(FGDC)

National
Information
Standards

Organization
(NISO)

IEEE
Learning

Technoglogy
Standards
Committee

(LTSC)

G
en

er
al

 in
fo

rm
at

io
n

Year

Late 60’s –
current
version

MARC 21
since 1999

1998 – current
Version 1.1.
since 1999

Mid 90’s –
current

Version 2.0
since 2000

Current
Version 3.0
since 2002

1994 – updated
version since

1998
2002 2002

Domain
Bibliographic

media
description

Bibliographic
media

description

Description
of artworks

Description of
images of
artworks

Description of
geographic

media

Description of
still images

Description of
educational

media

Media types Any Any Any Images Any Images Any

Level Largely
semantic

Largely
semantic

Largely
semantic

Largely
semantic

Semantic and
technical

Technical
Largely

semantic

C
h

ar
ac

te
ri

st
ic

s
o

f
st

an
d

ar
d

iz
ed

 m
et

ad
at

a

Producibility Mainly
manual

Mainly manual
Mainly
manual

Mainly manual
Manual and
automatic

Mainly automatic
Mainly
manual

Figure 2.1: Standardized description schemes

for the technical description of images taken with digital cameras or digitized with
scanners; and Learning Object Metadata (LOM) [IEE02] for the description of ed-
ucational material.

Accompanied by some general information, the table classifies these standard-
ized description schemes according to the basic characteristics of the metadata they
define. One can observe that the standardized description schemes treat media with
regard to the respective application domains largely on a semantic level. Most of the
high-level metadata defined by these schemes will have to be manually produced by
human catalogers. The exceptions to this are CSDGM and Z39.87 which define sig-
nificant amounts of low-level technical metadata that are automatically extractable.
One can furthermore observe that the applicability of the depicted standardized de-
scription schemes – except VRA Core Categories and Z39.87 which focus on image
description – is usually not restricted to any specific media types. On that score,
however, it should be considered that most of the description schemes pursue a
coarse-grained look onto media: they do not open up the internal, type-dependent
structure of media for the detailed description of individual media parts.

There are some problems concerning the use of standardized description schemes.
As they constitute fixed attribute sets highly-specialized on certain application do-
mains, they are difficult to apply to other domains or to adapt to the needs of a
particular application. Moreover, the data models and exchange formats that un-
derly the various standardized description schemes differ so that the combination of
several description schemes or the realization of applications supporting more than
one description scheme is complicated.

In the light of these difficulties, standardized metadata frameworks have evolved
as another class of metadata standards. Metadata frameworks do not predefine any
domain-specific description schemes. Instead, they provide rich generic data models
for media descriptions together with schema definition languages allowing to define
description schemes for arbitrary application domains as well as exchange formats
for both description schemes and complying media descriptions. Standardized meta-
data frameworks thus constitute common foundations for media description that can

8 CHAPTER 2. MPEG-7

be flexibly tailored to the particular needs of an application domain or an applica-
tion. They promise simpler interoperability between as well as simpler combination
of different description schemes and permit the creation of generic tools for the
processing of media descriptions.

Standardized metadata framework

PICS MCF RDF Topic Maps XTM

Standardization
body

World Wide
Web

Consortium
(W3C)

World Wide
Web

Consortium
(W3C)

World Wide Web
Consortium

(W3C)

International
Organization for

Standardization (ISO)

TopicMaps.org
Consortium

Year 1996 1997 1999 2000 2001

Data model Attribute-based

Semantic
network-based/
directed labeled

graphs

Semantic
network-based/
directed labeled

graphs

Semantic network-
based/ labeled graphs

Semantic network-
based/ labeled graphs

G
en

er
al

 in
fo

rm
at

io
n

Schema
definition
language

Rating Systems
Standard

Vocabulary
RDF Schema

Topic Map Constraint
Language (TMCL)
under development

Published Subject
Identifiers, Topic Map
Constraint Language

(TMCL) under
development

Domain
Qualitative

rating of web
resources

Machine-
processable

semantic
description of
web resources

Machine-
processable

semantic
description of

web resources

Navigatable, semantic
mapping of

information resources

Navigatable, semantic
mapping of web

resources

Level Semantic Semantic Semantic Semantic Semantic

C
h

ar
ac

te
ri

st
ic

s
o

f
st

an
d

ar
d

iz
ed

m
et

ad
at

a

Media types Any Any Any Any Any

Figure 2.2: Standardized metadata frameworks

Figure 2.2 presents a selection of five representative standardized metadata
frameworks: the Platform for Internet Content Selection (PICS) [KMRT96] for the
qualitative rating of web resources; the Resource Description Framework (RDF)
[LS99] and its precursor Meta Content Framework (MCF) [GB97] aimed at the
machine-processable semantic description of web resources; Topic Maps [ISO00] and
their close relatives XML Topic Maps (XTM) [PM01] targeted at the navigatable
mapping of information and web resources according to their semantics.

Along with some general information regarding the data models and schema defi-
nition languages supported, the figure classifies the depicted standardized metadata
frameworks according to basic characteristics of the metadata that can be created
with them (producibility is neglected in the figure because it depends on the de-
scription schemes that are actually defined with the schema definition languages).
It is noteworthy that all frameworks are primarily targeted at describing media at
a semantic level in very broad application domains. The data models offered by
the frameworks do not support more intricate numeric data like vectors or matrices
that might be necessary to reasonably represent complex technical metadata such as
color distributions or object shapes. It can be furthermore observed the frameworks
generally permit the description of arbitrary types of media. However, it should be
considered that this independency of media types is the result of maintaining largely
a coarse-grained view on media.

2.3. OVERVIEW OF MPEG-7 9

2.3 Overview of MPEG-7

The Multimedia Content Description Interface (MPEG-7) [ISO01a, MSS02,
MKP02, Mar02, NL99a, NL99b] is an ISO metadata standard aimed at provid-
ing a means for the sophisticated description of multimedia content that is of use
for a broad spectrum of applications, including – but not limited to – multimedia
archives, search engines, media production support, education, and entertainment.

To achieve the ambitious goal of broad applicability, MPEG-7 essentially stan-
dardizes two things: the Description Definition Language (MPEG-7 DDL) [ISO01b]
for the definition of schemes for the description of media, and, defined with MPEG-
7 DDL, a comprehensive set of media description schemes that are expected to be
useful for many applications.1 The predefined media description schemes comprise
schemes for describing visual [ISO01c] and audible media [ISO01d] and multime-
dia description schemes that are of general use [ISO01e]. With these description
schemes, MPEG-7 permits an extensive description of multimedia content and parts
of multimedia content not only on a technical, feature-oriented level but also on a
high semantic level. Using MPEG-7, for example, one can describe the frequency
spectrum of a song recording as well as the song’s lyrics and musical score – all
within a single media description.

Standardized MPEG-7 media description schemes

Visual Audio Multimedia

Color:

color space

dominant colors

color quantization

…

Audio framework:

audio waveform

audio power

audio spectrum

…

Content management:

creation information

creation tool

creator

…

Texture:

edge histogram

homogeneous texture

texture browsing

…

Timbre:

harmonic instrument timbre

percussive instrument timbre

…

Content semantics:

classification scheme

text annotation

graph

…

Shape:

object region-based shape

contour-based shape

3D shape

…

Sound recognition and indexing:

sound model

sound classification model

sound model state path

…

Navigation and summarization:

hierarchical summary

visual summary component

audio summary component

…

Motion:

camera motion

object motion trajectory

motion activity

…

Melody:

melody contour

melody sequence

…

Content organization:

collection

classification model

cluster model

…

Localization:

region-locator

spatio-temporal locator

…

Spoken content:

spoken content lattice

spoken content header

…

User interaction:

usage history

user preferences

…

Figure 2.3: Predefined MPEG-7 media description schemes

Figure 2.3 gives an overview of some of the media description schemes shipping
with MPEG-7. As it can be observed, the description schemes profoundly cover the

1MPEG-7 originally distinguishes between descriptors, which are basic descriptive features of
media, and description schemes, which are more complex descriptional units made up of other
description schemes and descriptors. In practice, however, this distinction is rather arbitrary:
descriptors may have a complex structure as well. For simplicity, both descriptors and description
schemes are thus referred to as media description schemes in the following.

10 CHAPTER 2. MPEG-7

different aspects that can be addressed by metadata for digital media: there exist
plenty of schemes for describing audiovisual content on technical and semantic levels,
schemes for the management and organization of content addressing administrative,
preservation, and technical aspects of media, as well as schemes addressing usage
aspects of media such as user preferences and usage history.

Applications do not need to stick to the predefined media description schemes.
They can flexibly create new description schemes with MPEG-7 DDL, either from
scratch or by extending or combining existing schemes. This inherent extensibility
further contributes to the standard’s aim of broad applicability.

Relating MPEG-7 to other metadata standards available for digital media makes
clear why MPEG-7 is so attractive to the multimedia community. As MPEG-7 de-
fines a collection of ready-to-use schemes for the description of media, it can be
classified into the group of standardized description schemes. In contrast to other
standardized description schemes like MARC, CDWA, and LOM, however, MPEG-
7 has not been developed with a restricted application domain in mind but is in-
tended to be applicable to a wide range of multimedia applications. Furthermore,
the wealth of media description schemes predefined with MPEG-7 allows to describe
multimedia content or parts of multimedia content with an unprecedented degree
of detail not only on a semantic but also on a technical level while not unduly re-
stricting the supported media types: the standard applies to arbitrary audiovisual
material. In comparison to other standardized description schemes, it is also inter-
esting to observe that many of the media description schemes offered by MPEG-7
– especially those addressing the technical level of media – are automatically pro-
ducible. But what distinguishes MPEG-7 most from other standardized description
schemes is that it can be tailored to the needs of a specific application domain or
application by means of MPEG-7 DDL allowing to define new or to extend existing
media description schemes.

With the ability to define media description schemes by means of MPEG-7 DDL,
MPEG-7 can be equally regarded as a standardized metadata framework. How-
ever, MPEG-7 distinguishes itself from other standardized metadata frameworks
like RDF and Topic Maps not only in that it already comes with an extensive set of
ready-to-use media description schemes. Also, MPEG-7 is targeted at the semantic
description of media as well as at their technical description. Consequently, it pro-
vides adequate support for intricate numeric data necessary for the representation
of more complex technical metadata like color histograms, shapes, etc.

2.4 MPEG-7 Media Descriptions

MPEG-7 is strongly committed to XML [BPSMM00] and related standards.
MPEG-7 DDL, the language used for the definition of media description schemes,
is a superset of XML Schema [TBM+01, BM01], the W3C schema definition lan-
guage for XML documents. Certain extensions to XML Schema were considered
neccessary to better cope with the peculiarities of multimedia data. In particular,
support for array and matrix data types as well as additional temporal data types
were added to XML Schema.

Being an extended XML Schema, MPEG-7 DDL can be considered as another
general-purpose schema definition language for XML documents. Since MPEG-
7 media descriptions instantiate media description schemes defined with MPEG-7
DDL, an MPEG-7 media description is consequently an XML document that is
valid with regard to the MPEG-7 DDL schema definition containing the media

2.4. MPEG-7 MEDIA DESCRIPTIONS 11

description scheme to which the description complies.
Within an MPEG-7 DDL schema definition, a media description scheme is de-

fined by means of a complex type. Complex types, a concept already introduced
by XML Schema, essentially constitute named complex content models. A complex
types can be referenced by an element type declaration in order to specify the ele-
ments and attribute values that are valid to appear as the contents of the elements
instantiating the element type declared.

An important feature of complex types of which MPEG-7 makes extensive use
is that they can be derived from each other – either by extending the content model
of a base type with further elements or attribute values or by restricting the content
model of the base type to a limited subset. Every MPEG-7 media description scheme
is directly or indirectly derived from the complex type DSType predefined by MPEG-
7 (or from the complex type DType in case that a media description scheme merely
constitutes a descriptor). In that manner, MPEG-7 media description schemes are
organized in a deeply nested derivation hierarchy.

Apart from the pure aesthetics of letting related media description schemes
share common characteristics via common base types, organizing MPEG-7’s media
description schemes in a deep complex type derivation hierarchy permits the flexible
combination of different description schemes. By complex type derivation, MPEG-7
DDL enables a simple form of polymorphism within XML documents: the content
of an element does not necessarily need to be filled in according to the content model
given by the complex type referenced by its element type declaration; the element
can also be filled in according to the content model of a complex type derived from
the referenced type as long as the derived type used is declared by augmenting the
element with an additional xsi:type attribute value.

Figure 2.4 illustrates the definition of media description schemes with MPEG-7
DDL. The figure shows a slightly simplified fragment of the Melody media descrip-
tion scheme [ISO01d], a representative scheme for the description of melodies that
can be employed for the realization of query-by-humming applications.

The Melody media description scheme is defined by the complex type
MelodyType to the upper left of the figure. By extending the predefined type
AudioDSType which in turn extends the predefined type DSType, it is expressed
that MelodyType defines an MPEG-7 audio description scheme.

The declaration of MelodyType states that a melody can be described by
its meter and its melody contour using optional elements of type Meter and
MelodyContour. The meter of a melody, according to the complex type MeterType
to the upper right of the figure providing the content model for Meter elements,
is a fraction consisting of numerator and denominator (element types Numerator
and Denominator). There is the restriction that the numerator must be an integer
value in the interval from 1 to 128, while the denominator must be a power of two
in the same interval.

A melody contour is divided into a contour and a beat. This is expressed with the
element types Contour and Beat given by the complex type MelodyContourType in
the lower left column which defines the content model for MelodyContour elements.
Since MelodyContourType is derived from AudioDSType, it also defines an MPEG-7
audio description scheme, i.e., the MelodyContour media description scheme. The
contour of a melody is a list of integer values giving a measure for the distance
between every two consecutive notes of a melody while the beat is a list of integer
values associating every note of the melody with its position in the beat.

Finally, the figure shows the declaration of the element type
AudioDescriptionScheme to the lower right. The contents valid for ele-

12 CHAPTER 2. MPEG-7

…

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter”
type=“mpeg7:MeterType”
minOccurs=“0”/>

<element name=“MelodyContour”
type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
<simpleType>

<list itemType=“integer”/>
</simpleType>

</element>
<element name=“Beat”>

<simpleType>
<list itemType=“integer”/>

</simpleType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MeterType”>
<complexContent>

<extension base=“mpeg7:AudioDType”>
<sequence>

<element name=“Numerator”>
<simpleType>

<restriction base=“integer”>
<minInclusive value=“1”/>
<maxInclusive value=“128”/>

</restriction>
</simpleType>

</element>
<element name=“Denominator”>

<simpleType>
<restriction base=“integer”>

<enumeration value=“1”/>
<enumeration value=“2”/>
<enumeration value=“4”/>
<enumeration value=“8”/>
<enumeration value=“16”/>
<enumeration value=“32”/>
<enumeration value=“64”/>
<enumeration value=“128”/>

</restriction>
</simpleType>

</element>
</sequence>

</extension>
</complexContent>

</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

…

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter”
type=“mpeg7:MeterType”
minOccurs=“0”/>

<element name=“MelodyContour”
type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
<simpleType>

<list itemType=“integer”/>
</simpleType>

</element>
<element name=“Beat”>

<simpleType>
<list itemType=“integer”/>

</simpleType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MeterType”>
<complexContent>

<extension base=“mpeg7:AudioDType”>
<sequence>

<element name=“Numerator”>
<simpleType>

<restriction base=“integer”>
<minInclusive value=“1”/>
<maxInclusive value=“128”/>

</restriction>
</simpleType>

</element>
<element name=“Denominator”>

<simpleType>
<restriction base=“integer”>

<enumeration value=“1”/>
<enumeration value=“2”/>
<enumeration value=“4”/>
<enumeration value=“8”/>
<enumeration value=“16”/>
<enumeration value=“32”/>
<enumeration value=“64”/>
<enumeration value=“128”/>

</restriction>
</simpleType>

</element>
</sequence>

</extension>
</complexContent>

</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

Figure 2.4: Melody media description scheme

ments of that type are given by the complex type AudioDSType. Since every audio
description scheme predefined by MPEG-7 is ultimately derived from AudioDSType,
AudioDescriptionScheme elements can hold descriptions complying to any audio
description scheme by exploiting complex type polymorphism via the xsi:type
attribute. In particular, an AudioDescriptionScheme element can be filled
according to both the Melody and MelodyContour media description schemes if
xsi:type attribute values are provided addressing the complex types MelodyType
and MelodyContourType, respectively.

Figure 2.5 depicts an MPEG-7 media description complying to the Melody me-
dia description scheme. The description covers a small fraction of the melody of
the song “Moon River” by Henry Mancini (taken from [ISO01d], page 101). An
AudioDescriptionScheme element constitutes the entry point to the description
whose content is marked to be compliant to the Melody media description scheme
by means of an xsi:type attribute value.

2.5 Basic Observations

Several elementary characteristics of the MPEG-7 standard can be observed that
should be considered for the management of MPEG-7 media descriptions:

The first very basic observation is that MPEG-7 media description schemes are
schema definitions for XML documents written in the MPEG-7 DDL schema def-

2.5. BASIC OBSERVATIONS 13

<!-- Melody description of 8 notes taken from “Moon River” by Henry Mancini -->

<AudioDescriptionScheme xmlns=“http://www.mpeg7.org/...”
xmlns:xsi=“http://www.w3.org/...”
xsi:type=“MelodyType”>

<Meter>
<Numerator>3</Numerator>
<Denominator>4</Denominator>

</Meter>
<MelodyContour>

<!-- Distance between two notes -->

<Contour>2 -1 -1 -1 -1 -1 1</Contour>

<!-- Beat position of notes -->

<Beat>1 4 5 7 8 9 9 10</Beat>
</MelodyContour>

</AudioDescriptionScheme>

<!-- Melody description of 8 notes taken from “Moon River” by Henry Mancini -->

<AudioDescriptionScheme xmlns=“http://www.mpeg7.org/...”
xmlns:xsi=“http://www.w3.org/...”
xsi:type=“MelodyType”>

<Meter>
<Numerator>3</Numerator>
<Denominator>4</Denominator>

</Meter>
<MelodyContour>

<!-- Distance between two notes -->

<Contour>2 -1 -1 -1 -1 -1 1</Contour>

<!-- Beat position of notes -->

<Beat>1 4 5 7 8 9 9 10</Beat>
</MelodyContour>

</AudioDescriptionScheme>

Figure 2.5: Example MPEG-7 media description

inition language; MPEG-7 media descriptions are XML documents valid to these
schema definitions. Even though this observation appears banal at first glance, it
unveils a fundamental characteristic of the standard that has considerable implica-
tions on the management of MPEG-7 media descriptions: MPEG-7 does not define
an XML-independent conceptual model for MPEG-7 media descriptions that could
serve as a basis for the development of an MPEG-7 database schema. By defining
media description schemes with a schema definition language for XML documents,
MPEG-7 instead coalesces the XML representation of media descriptions with their
conceptual model. As a consequence of this inseparability of XML representation
and conceptual model, managing MPEG-7 media descriptions effectively means
managing XML documents.

Of course, an XML-independent conceptual model for MPEG-7 media descrip-
tions could be reverse-engineered from the media description schemes predefined
with the standard. But considering the multitude and complexity of the stan-
dardized media description schemes, this constitutes an effort that is likely to be
prohibitive in practice unless limited to a small subset of the predefined schemes.

As a second observation, one can find that the set of media description schemes
supported by MPEG-7 is not fixed. The standard already comes with comprehen-
sive ready-to-use media description schemes for audiovisual content but applications
are always permitted to create new, to extend, or to recombine existing descrip-
tion schemes with MPEG-7 DDL whenever necessary. Since MPEG-7 DDL is a
general-purpose schema definition language for XML documents allowing to mask
almost arbitrary XML schema definitions as MPEG-7 media description schemes,
this observation implies that a generally applicable solution for the management of
MPEG-7 media descriptions cannot be a solution that is just capable of managing
XML documents complying to the predefined media description schemes. Instead,
it has to be a solution capable of managing arbitrary XML documents.

14 CHAPTER 2. MPEG-7

The inherent extensibility of MPEG-7 is another argument against the idea
of reverse-engineering a generally applicable conceptual model for MPEG-7 media
descriptions as the foundation for a dedicated MPEG-7 database schema: such a
model will inevitably neglect application-specific media description schemes since
these are typically not known in advance.

Thirdly, as illustrated before, MPEG-7 makes heavy use of complex type deriva-
tion to organize the standardized media description schemes in a deep derivation
hierarchy and extensively exploits this derivation hierarchy for the flexible combi-
nation of description schemes by means of complex type polymorphism. A man-
agement of MPEG-7 media descriptions will have to deal with the complexity in-
troduced by both concepts.

Finally, it can be observed that much of the information encoded within typical
MPEG-7 media descriptions is not of a textual nature. Large portions of the in-
formation consist of numbers and complex numeric structures such as vectors and
matrices usually representing technical metadata. The Melody media description
scheme presented earlier in Figure 2.4 is a prime example for this observation since
the information defined by that scheme is solely of non-textual nature, such as
numbers for measuring the meter of a song and lists of integer values for capturing
the song’s contour and beat. As a matter of fact, more than 80% of the media
description schemes predefined by MPEG-7 for the description of visual and audi-
ble content in [ISO01c] and [ISO01d] consist primarily of non-textual data. Thus, a
management of MPEG-7 media descriptions must be prepared to adequately handle
large amounts of complex, non-textual data.

Chapter 3

Requirements

Given its broad applicability, inherent extensibility, and the wealth of predefined
media description schemes, MPEG-7 can be expected to face wide-spread use in a
large variety of future multimedia applications. Soon, there will be the need for
adequate solutions for managing MPEG-7 media descriptions.

As observed previously, MPEG-7 media descriptions are XML documents com-
plying to schema definitions written in MPEG-7 DDL. Considering the lack of an
XML-independent conceptual model for MPEG-7 media descriptions and the diffi-
culties to reverse-engineer such a model, the problem of managing MPEG-7 media
descriptions in general constitutes a problem of managing XML documents. Thus,
the idea to employ XML database solutions lies close at hand. This chapter presents
requirements such solutions should satisfy in order to be suitable for the manage-
ment of MPEG-7 media descriptions.

General requirements for XML database solutions have already been addressed
in the literature [ST01]. This chapter, however, does not take an abstract XML
database management viewpoint. Instead, outgoing from the basic observations
about MPEG-7 in Chapter 2, it derives and motivates requirements for XML
database solutions from the concrete perspective of applications that need ade-
quate database support for MPEG-7 media descriptions. These certainly include
requirements that are specific to the management of MPEG-7 media descriptions
and do not necessarily apply to the management of other kinds of XML documents.
Nevertheless, these equally include general requirements that should apply to the
management of almost any kinds of XML documents.

For the subsequent presentation, requirements are organized into requirements
concerning the representation of media descriptions (3.1), the access to media de-
scriptions (3.2), media description schemes (3.3), extensibility (3.4), and classic
database management system (DBMS) functionality (3.5).

3.1 Representation of Media Descriptions

The basic characteristics of MPEG-7 media descriptions considerably affect the way
they should be represented in an XML database solution. As it will be set out in the
following, the nature of MPEG-7 especially calls for the fine-grained representation
of a media description’s structure as well as for the typed representation of its basic
contents.

15

16 CHAPTER 3. REQUIREMENTS

Fine-grained representation MPEG-7 allows the definition of arbitrarily com-
plex media description schemes with MPEG-7 DDL, capturing media content from
possibly very different points of view and levels of abstraction. Regarding this po-
tential complexity, typical applications cannot be expected to process the full scope
of an MPEG-7 media description. Instead, applications will likely process only
those parts necessary to achieve their particular tasks. For instance, an MPEG-7-
based query-by-humming song retrieval engine will be mainly interested in melody
contours kept within MelodyContour elements as defined by the Melody media de-
scription scheme; it will likely ignore other elements that might be contained in an
MPEG-7 media description treating other aspects of the song.

As a result, it is important for an XML database solution used for the manage-
ment of MPEG-7 media descriptions to store and represent the structure of such
descriptions with fine granularity. A fine-grained storage representation that in
detail models the hierarchy of elements and attribute values of which a media de-
scription consists allows a database solution to efficiently provide applications with
exactly those parts of a description that they are interested in. The price to pay
is that effort must be spent for the decomposition of media descriptions when they
are imported into a database and for their reassembly when they are exported.

If a database solution represents MPEG-7 media descriptions as coarse-grained,
unstructured objects, in contrast, it must load, parse, and decompose the descrip-
tions every time they are accessed by applications. Apart from performance con-
cerns regarding the overhead if applications want to access small fractions of descrip-
tions only as it is likely in typical MPEG-7 application scenarios, a coarse-grained
storage representation of media descriptions hinders not only the realization of fine-
grained updates and concurrency control but also fine-grained access control – also
very desirable properties for the management of MPEG-7 media descriptions.

A variety of data models for XML documents that could be used for the fine-
grained representation of MPEG-7 media descriptions have been proposed in the
literature, e.g., [JLS99, GMW99, GSN99, SYU99]. Moreover, several fine-grained
data models for XML documents have appeared in the context of standardization
efforts, such as the DOM Structure Model which is specified along with the DOM
API by the DOM standard [LLW+00], the XPath Data Model which provides the
basis for the evaluation of XPath expressions [CD99], the XML Information Set
[CT01], and the XQuery 1.0 and XPath 2.0 Data Model [FMN02], a working draft
currently being defined in connection with the XQuery standardization effort for a
common XML query language [BCF+02].

Typed representation As already exemplified by the means of the Melody media
description scheme in Chapter 2, large portions of the information contained in
MPEG-7 media descriptions typically consist of non-textual data. Since MPEG-7
media descriptions are XML documents and, as such, a form of text documents, all
these data are, self-evidently, encoded as text.

While this might be appropriate for the platform-independent exchange of media
descriptions, the textual representation of non-textual data is inadequate for the
storage of media descriptions within a database. Usually, textual representations of
non-textual data not only consume more storage space than corresponding binary
representations; typically, they are also less efficient and more complicate to handle.
It is plausible, for example, that handling the list of integer values constituting the
content of the Contour element in Figure 2.5 on the basis of the depicted textual
representation – i.e., using string operations – is rather cumbersome compared to
a data structure more appropriate for lists, e.g., an array. Finally, the textual

3.2. ACCESS TO MEDIA DESCRIPTIONS 17

representation of non-textual information is not always adequate to the semantics
of the data. As an example, the alphanumeric order of the textual representation
of integer values differs from their inherent numeric order. This complicates, for
instance, meaningful indexing of integer values.

As a consequence, a suitable XML database solution should keep the basic con-
tents of an MPEG-7 media description – more precisely, simple element content
and the content of attribute values occurring in a media description – in typed rep-
resentation and not just as text. Typed representation means that these contents
are encoded in data structures that suit the particular content type. In this regard,
an eligible solution should support the rich set of simple data types predefined by
MPEG-7 DDL [ISO01b, BM01] as well as the numerous derivation methods for
simple types with which MPEG-7 DDL allows to flexibly derive new simple types
from existing ones.

A database solution that keeps non-textual contents of MPEG-7 media descrip-
tions as text, in contrast, burdens applications with the responsibility to constantly
and explicitly convert accessed non-textual contents to representations better suit-
ing their types for further processing. Apart from that this is cumbersome and
error-prone, the sheer number of conversions necessary during the processing of me-
dia descriptions might induce a performance overhead that can pile up considerably.

Some of the data models for XML documents that have been proposed in the lit-
erature, e.g., [GMW99, GSN99], support – at least to some degree – the typed repre-
sentation of a document’s basic contents and could therefore be suitable foundations
for representing MPEG-7 media descriptions. Among the standard data models for
XML documents, the current working draft of the XQuery 1.0 and XPath 2.0 Data
Model to some extent permits typed representation of simple element content and
the content of attribute values as well.

3.2 Access to Media Descriptions

A fundamental service of an XML database solution used to store MPEG-7 me-
dia descriptions is to provide applications with adequate means for accessing such
descriptions contained in a database. In this section, it is argued that a suitable so-
lution should allow fine-grained access to the structure of a media description, typed
access to the basic contents carried by the description, and fine-grained updates
of media descriptions. Moreover, the availability of sophisticated index structures
enabling efficient access even to large collections of media descriptions is consid-
ered an important requirement. In the following, it is particularly demanded that a
suitable XML database solution provides powerful value index structures, text index
structures, and path index structures.

Fine-grained access As explained before, MPEG-7-based applications will typ-
ically not process the full scope of a media description but rather selectively access
only those parts necessary to fulfil their particular tasks. An XML database so-
lution storing MPEG-7 media descriptions should therefore not only represent the
structure of media descriptions with a fine granularity; naturally, it should also pro-
vide applications with adequate means to perform fine-grained, selective access to
these descriptions. With an XML database solution that does not provide means
for fine-grained access, applications have to tediously load entire media descriptions
for each access and then find and navigate to those parts inside a description that
they are actually interested in themselves.

18 CHAPTER 3. REQUIREMENTS

The spectrum of possible means for fine-grained access to the constituents of an
MPEG-7 media description ranges from APIs like the DOM API [LLW+00] that
facilitate the programming of navigational access to XML documents to declarative
query languages for XML documents. Several XML query languages have been
proposed in the literature, such as XML-QL [DFF+98] and Quilt [CRF00] to name
two prominent examples. Furthermore, XML query languages with varying degrees
of expressivenes have been created in the context of standardization efforts like
XPath expressions [CD99], XQL [RLS98], and XQuery [BCF+02].

The tradeoff between navigational APIs and declarative query languages for
database access is long since understood and also applies to XML database solutions:
navigational APIs are a low-level yet powerful means that allow to program any
desired form of database access but leave it completely up to the programmer to
manually perform optimizations; query languages are a high-level, declarative means
that allow to compactly specify database access and enable automatic optimization
by a query optimizer but are constrained in expressiveness.

Typed access Non-textual information making up significant portions of typical
MPEG-7 media descriptions should be accessible to applications in a way that
is appropriate for the particular data type. An XML database solution allowing
only textual access to the basic contents of media descriptions seriously hinders
applications from accessing non-textual contents of such descriptions in an adequate
manner. For example, accessing the list of integer values making up the content of
the Contour element of Figure 2.5 as a string has considerable drawbacks: apart
from that there is no indication that this string actually represents a list of integer
values, an application must either access the list by means of string operations –
which is not adequate – or explicitly cast the string to a list of integer values before
processing – which is cumbersome, error-prone and implies an overhead.

It is therefore highly desirable that an XML database solution gives typed ac-
cess to the basic contents of an MPEG-7 media description: simple element content
and the content of attribute values should be accessible via appropriate typed rep-
resentations and not as text. Also, a rich set of type-specific operations should
be provided so that these contents can be reasonably processed. The type-specific
operations offered should not only cover the simple types predefined with MPEG-7
DDL but also those simple types that can be constructed within media description
schemes using simple type derivation methods. Picking up once more the exam-
ple list of integer values, reasonable type-specific operations could be functions for
accessing and retrieving the single elements of the lists or for querying list’s size.

An extensive set of type-specific operations for typed access within an XML
query language has been recently proposed in the context of the XQuery stan-
dardization effort [MMRW02]. The proposed operations, however, only cover a
restricted subset of predefined simple types and simple type derivation methods
of XML Schema and would have to be extended in order to be fully adequate to
MPEG-7, e.g., with matrix operations.

Fine-grained updates Multimedia content production can be seen as a repet-
itive process in which media descriptions, just as the content they describe, are
continuously evolving and subject to change. As a consequence, an XML database
solution should provide adequate means for updating MPEG-7 media descriptions.

The call for fine-grained access to media descriptions is thus extended from mere
read access to cover fine-grained update operations. If a database solution does not
support fine-grained updates of media descriptions, a change of (a potentially small

3.2. ACCESS TO MEDIA DESCRIPTIONS 19

fraction of) a media description must be performed by unloading the complete
description from the database, modifying it outside the database, and reinserting
it back into the database. Depending on the extent of the update, this can be
inefficient and might unnecessarily hamper concurrent access.

As for read access, the span of available means to support fine-grained updates
ranges from DOM-like APIs allowing to program updates of XML documents to
declarative update languages. Compared to the amount of available XML query
languages, however, the domain of declarative update languages for XML docu-
ments has largely been neglected so far. An extension of XQuery with update func-
tionality has been proposed by [TIHW01] and the XML:DB Initiative is currently
standardizing the XUpdate language [LM00].

Value index structures To facilitate the realization of efficient multimedia re-
trieval applications on the basis of MPEG-7 media descriptions kept in an XML
database solution, the availability of value index structures is indispensable. Even
for a large number of media descriptions, a value index maintained on the elements
of a given type or on the values of a given attribute permits the efficient lookup of all
those out of the indexed elements or attribute values whose contents fulfil a certain
criteria. For instance, a value index defined on the Numerator and Denominator el-
ements declared by the Melody media description scheme could help an application
to immediately find all song descriptions with a beat of 3

4 . Without value index-
ing support, the same application would have to access every media description
contained in the database and check the beat itself.

The value index structures supported by an XML database solution should at
least include classic one-dimensional value index structures such as B-Trees that
have long proved their effectiveness for traditional database applications. However,
MPEG-7 media descriptions often carry complex multimedia data that cannot be
effectively indexed by one-dimensional value index structures. What are reasonable
“less than” and “equal to” relations according to which, e.g., the Contour elements
defined by the Melody media description scheme could be organized in an ordered,
one-dimensional index structure like a B-Tree? In this case, indexing according
to topological relations is more appropriate: for instance, a query-by-humming
application needs to efficiently find out whether the contour of a melody fragment
that has been hummed by a user is “contained” in the melody contour of a song
that is stored in the database. Multidimensional value index structures [GG98]
like R-Trees or extended k-d-Trees can support such queries. Therefore, an XML
database solution suitable for MPEG-7 should also come with multidimensional
index structures to permit adequate indexing of multimedia data.

Text index structures So far, it has been stressed that non-textual content con-
tributes significantly to the content of typical MPEG-7 media descriptions. Never-
theless, a considerable portion of the content still consists of textual information.
To support the realization of versatile search engines for songs, for example, it would
make perfect sense to capture not only the melody of a song using the Melody media
description scheme but also the song’s lyrics.

To facilitate efficient retrieval of elements and attribute values according to tex-
tual content, e.g., to retrieve all songs with lyrics containing a certain phrase, an
XML database solution should therefore, in excess to conventional value index stru-
cures, have sophisticated text index structures at the disposal. Suitable structures
for text indexing [FBY92] are well-known from the domain of information retrieval,
e.g., inverted files and PAT-Trees.

20 CHAPTER 3. REQUIREMENTS

Path index structures Since applications seldom process complete MPEG-7
media descriptions but rather selected parts of media descriptions only, applications
accessing an MPEG-7 database will often need to efficiently extract these parts from
the descriptions stored in the database. The naive approach, i.e., accessing every
media description in the database and traversing the description to reach the parts
of interest employing the means for fine-grained access offered by the underlying
XML database solution, might turn out to be inefficient for large databases. Not
only could the traversal times for all accessed descriptions pile up prohibitively
for complex traversals. Also, media descriptions will be accessed unnecessarily if
they do not contain the part of interest because, for instance, it has been declared
optional in the media description scheme.

To reduce traversal times of frequently followed access paths and to prevent
unnecessary access to media descriptions, the availability of structures for path
indexing is an essential requirement for an XML database solution applied for the
storage of MPEG-7 media descriptions. Applicable path index structures are known
from the domains of object-oriented databases, e.g., Multiindexes [BK89], semi-
structured databases, e.g., DataGuides [GW97] and T-Indexes [MS99], and XML
databases, e.g., extended Access Support Relations [FM00] and SphinX [PH01].

3.3 Media Description Schemes

Media description schemes specifying the allowable forms of media descriptions are
a central concept of the MPEG-7 standard. An XML database solution managing
MPEG-7 media descriptions should therefore provide an MPEG-7-DDL-compliant
schema catalog for the storage of media description schemes. Based on this catalog,
a suitable solution should exploit media description schemes for the validation of
media descriptions, for the inference of typed representations, and for access opti-
mization.

MPEG-7-DDL-compliant schema catalog It has been discussed in Chapter 2
that MPEG-7 provides the schema definition language MPEG-7 DDL for the speci-
fication of media description schemes which define the allowable structure of media
descriptions and the types of their basic contents. It should be no surprise that this
information is valuable for the effective management of MPEG-7 media descrip-
tions. Also, this information is of value for applications that require knowledge of
the nature of media descriptions, such as editors for media descriptions.

To facilitate the utilization of schema and type information carried in media de-
scription schemes, an XML database solution adequate to MPEG-7 should provide
an MPEG-7-DDL-compliant schema catalog for the management of the media de-
scription schemes to which the media descriptions contained in a database comply.
For this purpose, the catalog should be able to parse media description schemes
written in MPEG-7 DDL, to check their correctness and integrity, and to bring
them into an appropriate representation for later utilization.

A schema catalog based on an XML schema definition language different from
MPEG-7 DDL might also be suitable for the management of MPEG-7 media de-
scription schemes. In such a case, media description schemes have to be translated
to the catalog’s schema definition language prior to storage. The suitability of the
schema catalog for the management media description schemes is thus determined
by the expressiveness of its schema definition language compared to MPEG-7 DDL.

An analysis of XML schema definition languages [LC00] has revealed, however,

3.3. MEDIA DESCRIPTION SCHEMES 21

that XML Schema – being a large subset of MPEG-7 DDL – already exceeds the ex-
pressiveness of other common schema definition languages like DTDs [BPSMM00],
XDR [FT98], DSD [Møl03], and Schematron [Jel02], especially with regard to com-
plex type derivation, complex type polymorphism, and supported simple types –
concepts on which MPEG-7 heavily relies. As a consequence, MPEG-7 media de-
scription schemes cannot be reasonably translated to these schema definition lan-
guages in general. And even though compliance to XML Schema will be sufficient
for the schema catalog to cope with many description schemes such as the example
Melody media description scheme, an understanding of the MPEG-7-DDL-specific
extensions is nevertheless indispensable to deal with every media description scheme
that might occur in practice.

There exist data models for the detailed representation of schema definitions
written in XML Schema. These might serve as a basis for the representation of
media description schemes in a schema catalog. The XML Schema standard itself
provides the XML Schema Component Data Model [TBM+01]; Abstract Schemas
[CLKR02] have been proposed in the context of the current DOM Level 3 stan-
dardization [LLW+03] as a data model for representing schema definitions for XML
documents in a schema dialect-neutral way.

Validation of media descriptions It is widely accepted that databases should
ensure data consistency. Similarly, an XML database solution should ensure the
consistency of MPEG-7 media descriptions stored with it. For that purpose, a
database solution should utilize the media description schemes kept in the schema
catalog to validate the correctness of media descriptions.

A database solution that does not support the validation of MPEG-7 media
descriptions defers the task of ensuring data consistency to the applications work-
ing with that solution. Apart from that it can be cumbersome to applications
to constantly perform even most basic consistency checks, leaving the important
responsibility of ensuring the consistency of media descriptions in the hands of
applications can actually be dangerous and error-prone.

Validation of media description should be performed during the import of a
media description into a database to prohibit the insertion of inconsistent media
descriptions. Validation of media descriptions is also necessary during updates: if an
update of a media description violates its description scheme, it should be rejected.

Inference of typed representations It has already been motivated that the
provision of typed representations of the basic contents of a media description is an
important requirement for an XML database solution suitable for MPEG-7. How-
ever, MPEG-7 media descriptions themselves do not contain any type information
for their basic contents that could be used to create appropriate typed represen-
tations; this information is contained in the media description scheme associated
with the description. Without the Melody media description scheme of Figure 2.4,
for instance, there is no indication that the content of the Contour element in the
media description shown in Figure 2.5 constitutes a list of integer values and not
just arbitrary text.

To be able to automatically provide typed representations of the basic contents of
an MPEG-7 media description, an XML database solution should exploit the type
information available with the media description schemes of the schema catalog.
Employing this information, the solution can infer the types and, by these types,
create appropriate typed representations of the basic contents of the description.

22 CHAPTER 3. REQUIREMENTS

Access optimization If an application accesses MPEG-7 media descriptions
stored with an XML database solution via a high-level declarative query language
such as XQuery and not via a low-level API for programmed navigational access
like DOM, the access is open to automatic optimization by the database solution’s
query processor.

A prerequisite to sophisticated optimization of access to a database’s contents
is the availability of schema information. The information carried by the media
description schemes contained in a schema catalog can be utilized for the optimiza-
tion of declarative queries in a number of ways that may significantly reduce query
evaluation times [BAOG98, FS98, Woo99]. For instance, expressions contained in a
query that, according to a media description scheme, can never yield a result or that
are redundant to other expressions can be cut off thereby reducing the complexity of
queries. Furthermore, path traversals specified inside a query can be simplified ac-
cording to those access paths that are actually permitted by the media description
scheme. Using the media description scheme, queries against media descriptions
can also be equivalently rewritten such that existing indexes can be exploited for
query evaluation.

Without schema information carried by media description schemes providing
an accurrate summary of the structure of the media descriptions contained in a
database as a basis for decisions, however, sophisticated optimizations are difficult
to perform. At best, a query processor can apply transformation rules that are gen-
erally valid for every potential media description according to some heuristics and
statistics to rewrite queries into an equivalent form which is hoped to be evaluatable
more efficiently.

An XML database solution whose query processor does not perform any auto-
matic access optimization at all relies on application programmers to have detailed
knowledge of the structure of the media descriptions that will be stored in a database
and the indexes that will be available for accelerating access to these descriptions.
Using this knowledge, programmers have to formulate queries inside their applica-
tions in such a way that they can be evaluated efficiently without any rewriting by
the query processor. When the structure and available indexes change, however, an
application’s queries might need to be changed as well to still be performant.

3.4 Extensibility

Extensibility is a desirable property of an XML database solution managing MPEG-
7 media descriptions. As motivated in the following, an ideal database solution
should offer extensibility with functionality and extensibility with index structures.

Extensibility with functionality MPEG-7 basically constitutes a means for the
definition of schemes for the description of multimedia content that is supplemented
by a profound library of standardized, ready-to-use description schemes. However,
the standard does not prescribe how MPEG-7-compliant media descriptions are to
be processed by applications. For example, MPEG-7 defines a way how the melody
of a song can be described with the Melody media description scheme; but it is left
to an application how descriptions following the Melody media description scheme
are employed, e.g., to compare two songs for similarity.

Given this situation, it is difficult to provide meaningful operations for the treat-
ment of MPEG-7 media descriptions that are of use for all applications. Coming
back to the example, different applications might even need different measures of

3.4. EXTENSIBILITY 23

similarity for the comparison of songs on the basis of the Melody media description
scheme.

Therefore, it is desirable that an XML database solution is extensible with func-
tionality. Applications should be able to plug in procedures and functions for the
processing of media descriptions and parts of media descriptions that suit their
particular purposes. This corresponds to the concept of stored procedures and
functions well-known from relational DBMSs. The functional extensions should
be callable with the particular means for accessing media descriptions offered by a
database solution, such as an API or a declarative query language. An example of a
query language for XML documents that explicitly considers functional extensions
is XQuery: the XQuery language allows the definition of custom functions which
can then be used in queries just like any other function built-in with the language.

With a database solution that cannot be extended with functionality, in contrast,
missing functionality usually has to be integrated within the application programs
(if one neglects the possibility of modifying and extending the kernel of the database
solution: this typically is a challenging and complex endeavor demanding that the
solution’s source code is available). In a client-server scenario, this conceptual un-
pleasantness may even constitute a performance problem. As an example, consider
a song retrieval application acting as the client of an MPEG-7 database on a server.
If the implementation of a reasonable similarity measure for melody contours has to
be integrated into the application program, all media descriptions have to be trans-
ferred from the server to the client in order to select all those descriptions with
contours similar to a given one according to the defined measure. The resulting
network traffic is likely to be prohibitive for large databases.

Extensibility with index structures Since the MPEG-7 standard does not
prescribe how media descriptions are to be processed, it is difficult to assess what
index structures should be available with an XML database solution to best fit the
needs of different MPEG-7 applications that are going to work with the solution.
For instance, the availability of an R-Tree index structure for the indexing of me-
dia descriptions could perfectly suit the needs of a particular application while an
extended k-d-Tree index structure could prove more effective for other applications.

Moreover, specialized index structures might exist focused on the needs of a
specific application that are not useful for other applications. For example, one
could imagine a highly specialized value index structure specifically designed for
a classic music archive application enabling very efficient retrieval of classic music
based on the Contour element of media descriptions complying to the Melody media
description scheme. Such an index structure does not need to be effective for the
retrieval of pop songs as well.

To flexibly accomodate the different indexation needs of MPEG-7 applications,
we believe that an XML database solution should be extensible with new index
structures. It should provide an open interface facilitating the integration of new
value, text, or path index structures without the need to modify the system’s ker-
nel. Interfaces for the integration of new index structures exist in the context of
object-relational DBMSs. For example, Oracle features the Extensible Indexing
API allowing the provision of new index structures [GD02] and the microkernel of
the Monet research prototype has been specifically designed to be flexibly extensible
by kernel modules which may introduce, among others, new index structures into
the system [BK95].

If there is no interface supporting the flexible integration of new index structures,
a new index structure can be brought into a database solution (again neglecting the

24 CHAPTER 3. REQUIREMENTS

possibility of modifying the solution’s kernel) by extending the solution with func-
tions (provided that this is possible) for constructing, maintaining, and querying the
new structure which then have to be explicitly invoked by applications. The index
structure could be stored just like any other data in the database. This approach,
however, hides the existence of the index structure from the database solution so
that, for example, it cannot be considered for automatic access optimization; also,
indexing is not transparent to applications.

3.5 Classic DBMS Functionality

There is some classic but nevertheless important DBMS functionality which most
database applications nowadays take for granted. It is state of the art that DBMSs
provide support for transactions to guarantee atomic, consistent, isolated, and
durable access to database content, exert fine-grained concurrency control to achieve
a high concurrency between transactions, exercise fine-grained access control to
grant and enforce access rights of users down to single pieces of data contained in
a database, and come with reliable means for backup and recovery to shield appli-
cations from aborted transactions, system crashes, and media failures.

Since such features are also desirable for applications working with a database
of MPEG-7 media descriptions, a suitable XML database solution should provide
classic DBMS functionality as well. Given that the desirability of this functional-
ity is neither specific to MPEG-7 database applications nor even specific to XML
database applications, we abstain from giving a detailed justification of this demand
from an MPEG-7 point of view. Nevertheless, XML database solutions will be ana-
lyzed with regard to classic DBMS functionality later in Chapter 5. As we will see,
support of classic DBMS functionality is no matter of course.

Chapter 4

XML Database Solutions

The area of XML database solutions is still very active. There exists a confusing
variety of systems at different development stages and with different degrees of
maturity that are concerned with the management of XML documents in a database
[Bou02]. To permit an analysis of XML database solutions with regard to the
management of MPEG-7 media descriptions within the scope of this thesis, the
investigations have been restricted on a set of prominent and representative XML
database solutions sufficiently mature for reasonable examination.

Database extensions

Native

database
solutions Unstructured storage Structured

storage Mapping

Commercial

eXcelon XIS
GoXML DB
Infonyte-DB

Tamino
TEXTML

X-Hive/DB

IBM DB2 XML Extender
Microsoft SQLXML

Oracle XML DB

Oracle XML DB/
Structured Mapping

Open
source

dbXML
eXist

Xindice
 ozone/XML

Research

Lore
Natix

PDOM
TIMBER

Monet XML

Shimura et al.
XML Cartridge

Figure 4.1: XML database solutions

As shown in Figure 4.1, the selected set of XML database solutions consists of
commercial products, open source projects, and research prototypes roughly cate-
gorized according to common terminology into native XML database solutions and
XML database extensions enabling the storage of XML documents within conven-
tional, usually relational or object-oriented DBMSs. Even though it is frequently
encountered in conjunction with XML databases and appears to be intuitively clear
at first glance, the notion of a native XML database solution is cloudy and there
exists no widely accepted definition. In practice, one has to realize that the term
“native” is mainly employed by vendors of specialized XML database solutions as a
marketing brand to distinguish their products from the XML database extensions
offered by the major conventional DBMS vendors.

25

26 CHAPTER 4. XML DATABASE SOLUTIONS

To give an impression of the variety of interpretations of the term “native”
around, one class of definitions considers the way in which XML documents are
stored as the central aspect that distinguishes native XML database solutions from
others [Bou02]. Some of these definitions regard as the essential characteristic of
a native XML database solution that it stores XML documents in their original
textual file format at the most applying compression techniques to reduce storage
space and maintaining additional indexes to speed up retrieval operations. Other
storage-oriented definitions soften up this relatively rigid point of view and allow
a native database solution to define a logical data model such as DOM for the
hierarchical structure of XML documents and to store documents according to this
model employing any physical storage model desired [XML03]. Yet another class
of definitions, e.g., [Thu02], takes a very abstract viewpoint and defines a native
XML database solution to be a solution that has been specifically developed for the
management of XML documents.

Facing this diversity of definitions, we would like to come up with a manageable
criterion to distinguish between the categories of native XML database solutions
and XML database extensions for the purpose of this analysis, which has proven
to be compliant to the self-conception of most vendors of XML database products.
We regard as the distinctive feature between both categories that a native XML
database solution allows the modeling of data only by means of XML documents.
An XML database extension, in contrast, still offers applications the modeling prim-
itives of the data model of the extended DBMS. Hence, the predicate “native” does
not imply that a native database solution has been developed specifically for the
management of XML documents from the ground up; a native solution might very
well base on conventional database technology as long as the data model of the
underlying system is entirely hidden.

The rest of this chapter briefly introduces the native XML database solutions
(4.1) and XML database extensions (4.2) that are given in Figure 4.1.

4.1 Native Database Solutions

A variety of commercial native XML database solutions have appeared on the mar-
ket to serve the increasing need for the efficient management of large amounts of
XML documents. Arguing that XML documents cannot be efficiently stored in con-
ventional DBMSs because of their hierarchical and semistructured nature, several
vendors have developed entire DBMSs specialized on the management of XML doc-
uments. Perhaps the most prominent representative of this group of native XML
database solutions is Tamino [Sof01b]; commercial solutions falling in the same cate-
gory are X-Hive/DB [X-H02] and GoXML DB [XML01]. Infonyte-DB [Inf02] which
evolved from the research prototype PDOM [HMF99] has also been specifically de-
veloped for the management of XML documents. However, Infonyte-DB does not
provide a full-fledged database server with all the standard DBMS functionality
such as transaction management and concurrency control but rather constitutes a
lightweight in-process storage solution for XML documents.

Furthermore, vendors of object-oriented DBMSs have seized the opportunity
to get their slice of cake from the market of XML document management and
reshaped their existing DBMSs to native XML database solutions. A prominent
representative of this approach is eXcelon XIS [eXc01a] which internally makes
use of the object-oriented DBMS ObjectStore. In a similar manner, vendors of
document management systems have reshaped their existing technology as native

4.2. DATABASE EXTENSIONS 27

XML database solutions, e.g., TEXTML [IXI01].
Apart from these commercial solutions, several open source projects aiming at

the development of native XML database solutions have emerged recently. The
Apache XML Project has started to implement a specialized DBMS for XML docu-
ments called Xindice [Sta02] from the gound up. Xindice is the successor of dbXML
[Sta01] previously driven by the dbXML Project. eXist [Mey02] is another example
of an open source project implementing a native database solution. In contrast to
Xindice, however, eXist is built on top of a relational database system, MySQL or
PostgreSQL, which internally serves as the persistent storage backend.

Finally, there has also been considerable research concerning native XML
database solutions. A prominent example is the semistructured DBMS research
prototype Lore that has been developed towards a native XML database solution
[GMW99]. The idea is to exploit Lore’s ability to represent irregular graph struc-
tures (including hierarchies) and the system’s powerful query language for the man-
agement of XML documents. Natix [FHK+02, KM99] and TIMBER [JAC+02] are
further prominent research prototypes of native database solutions. Whereas the
heart of of Natix is a dedicated storage manager supporting a flexible and efficient
clustering of XML document trees and subtrees into physical disc records of lim-
ited sizes, TIMBER has been built on top of the multiple purpose storage manager
Shore [CDF+94].

4.2 Database Extensions

Basically, three approaches for representing XML documents in conventional
DBMSs can be distinguished. In the first approach, which is called unstructured
storage in the following, an XML document is stored directly in its textual format
in a character large object (CLOB). This is the approach supported by most ma-
jor relational DBMSs today: these systems have been extended with CLOB-based
data types for XML documents along with more or less sophisticated functions
for accessing a document’s content from SQL. Prominent representatives of rela-
tional database extensions supporting the unstructured storage of XML documents
are Oracle XML DB [HAA+02], IBM DB2 XML Extender [IBM00], and Microsoft
SQLXML [Mic00b].

In the second approach, which is called structured storage, a fine-grained meta-
model of XML documents capable of representing the node trees of arbitrary XML
documents is built by employing the modeling primitives of the underlying conven-
tional DBMS. This opens up the structure and the contents of XML documents
to the querying facilities provided with the DBMS. There has been considerable
research in this area (see [FK99] for an overview) and a lot of research prototypes
of database extensions for the structured storage of XML documents have been de-
veloped, mostly for relational DBMSs. This analysis focuses on the representative
prototypes XML Cartridge [GSN99], Shimura et al. [SYU99], and Monet XML
[SKW+00, BK95] extending the relational DBMSs Oracle, PostgreSQL, and Monet
respectively with support for the management of XML documents.

There are also open source projects that provide structured storage extensions
for conventional DBMSs. The analysis includes the open source project ozone/XML
[DN01]. ozone/XML is a library of persistent-capable classes for the object-oriented
DBMS ozone that implements the DOM standard for the representation of XML
documents in a database.

Finally, in the third approach for representing XML documents in conventional

28 CHAPTER 4. XML DATABASE SOLUTIONS

DBMSs, which is called mapping, the content of XML documents is mapped to
database schemas specifically designed for that content. This, in principle, places
all the modeling capabilities available with a conventional DBMS at the disposal to
efficiently and adequately represent document content. There exists a large number
of tools and formalisms for the specification of the mapping between an XML format
and a database schema. For example, IBM DB2 XML Extender and Microsoft
SQLXML provide the concepts of document access definitions (DAD) and annotated
schemas respectively for this purpose. Nevertheless, such tools and formalisms are
neglected for this analysis: with these, the design of a database schema appropriate
for the content of an XML format and the specification of the mapping between
the XML format and the database schema are elaborate manual tasks. Bearing
in mind that MPEG-7 allows the definition of arbitrary media description schemes
in excess to those predefined with the standard, the effort necessary to cope with
a media description following a previously unknown description scheme would be
prohibitive.

Recently, there has been considerable research concerning the automatic deriva-
tion of relational database schemas from schema definitions for XML documents
and the automatic mapping between them [STH+99, TDCZ02, DFS99]. As these
approaches are based on Document Type Definitions (DTDs) and not on schema
definitions written in the far more complex MPEG-7 DDL, they do not qualify for
the management of MPEG-7 media descriptions. However, in its latest release of the
Oracle XML DB database extension, Oracle has picked up the basic approach and
extended it for XML Schema to provide an additional storage option for XML docu-
ments in excess to unstructured storage. Oracle calls this storage option Structured
Mapping [HAA+02]. Since XML Schema constitutes a large subset of MPEG-7
DDL, Oracle XML DB/Structured Mapping is taken into account for the analysis.

Chapter 5

Analysis

This chapter analyzes in detail to what extent the XML database solutions intro-
duced in Chapter 4 are suitable for the management of MPEG-7 media descriptions.
For that purpose, it evaluates these database solutions along the requirements for
the management of MPEG-7 media descriptions outlined earlier in Chapter 3.

Accordingly, the remainder of the chapter examines the fulfillment of the re-
quirements concerning the representation of media descriptions (5.1), the access to
media descriptions (5.2), media description schemes (5.3), extensibility (5.4), and
classic DBMS functionality (5.5). The chapter concludes with a summary of the
findings of the analysis (5.6). For a better orientation in the ensuing discussions,
the results of the analysis are visualized in Figure 5.1.

5.1 Representation of Media Descriptions

Fine-grained representation Native XML database solutions typically repre-
sent XML documents, and hence also MPEG-7 media descriptions, in a fine-grained
manner. For storage, they internally decompose an XML document into the indi-
vidual nodes of which it consists. eXcelon XIS, Infonyte-DB, PDOM, X-Hive/DB,
Xindice, dbXML, and eXist represent these nodes according to the DOM Structure
Model. GoXML DB employs the XQuery 1.0 and XPath 2.0 Data Model. The re-
search prototypes Lore, Natix, and TIMBER define their own, non-standard models
based on edge-labeled trees for the internal representation of XML documents.

In contrast, the native solutions Tamino and TEXTML basically store XML
documents in their entirety in their original textual format, only applying compres-
sion techniques to reduce the consumption of storage space. This is comparable to
the XML database extensions IBM DB2 XML Extender, Microsoft SQLXML, and
Oracle XML DB which store XML documents in CLOBs in an unstructured man-
ner as well. Tamino somewhat alleviates the disadvantages of such a coarse-grained
storage representation by managing additional fine-grained structural information:
a structure index maintains path information for the individual elements and at-
tribute values occurring in a document.

Since XML database extensions that follow the structured storage approach ap-
ply the modeling primitives of the underlying DBMS for the definition of detailed
metamodels for XML documents, they offer a fine-grained storage representation of
MPEG-7 media descriptions by construction: the object-oriented database exten-
sion ozone/XML is a library of persistent classes that constitutes a 1:1 implementa-
tion of the DOM Structure Model and API; the relational extensions Shimura et al.

29

30 CHAPTER 5. ANALYSIS

Native database solutions Database extensions

eX
ce

lo
n

X
IS

G
oX

M
L

D
B

In
fo

ny
te

-D
B

/ P
D

O
M

Ta
m

in
o

TE
X

TM
L

X
-H

iv
e/

D
B

X
in

di
ce

/ d
bX

M
L

eX
is

t

Lo
re

N
at

ix

TI
M

B
E

R

IB
M

 D
B

2
X

M
L

E
xt

en
de

r

M
ic

ro
so

ft
SQ

LX
M

L

O
ra

cl
e

X
M

L
D

B

oz
on

e/
X

M
L

M
on

et
 X

M
L

S
hi

m
ur

a
et

 a
l.

X
M

L
C

ar
tri

dg
e

O
ra

cl
e

X
M

L
D

B
/

S
tru

ct
ur

ed
 M

ap
pi

ng

Fine-grained
representation – – – –

R
ep

re
se

nt
at

io
n

of
 m

ed
ia

de

sc
rip

tio
ns

Typed
representation – – – – – – – – – – – – – – – –

Fine-grained
access –

Typed access – – – – – – – – – – – – –

Fine-grained
updates – – – – – –

Value index
structures /– – – – –

Text index
structures – – – – –

A
cc

es
s

to
 m

ed
ia

 d
es

cr
ip

tio
ns

Path index
structures – – – – – – – –

MPEG-7-DDL-
compliant schema

catalog
 – – – – – – – – – – – – – –

Validation of
media descriptions – – – – – – – – – – – – – –

Inference of typed
representations – – – – – – – – – – – – – – – – – –

M
ed

ia
 d

es
cr

ip
tio

n
sc

he
m

es

Access
optimization – – – – – – – – – – – – – – – – –

Extensibility with
functionality – – – – – – – –

Ex
te

ns
ib

ili
ty

Extensibility with
index structures – – – – – – – – – – – – – –

Transactions – – – –

Fine-grained
concurrency

control
 – – – – – – – – –

Fine-grained
access control – – – – – – – – – – – – – – – –

C
la

ss
ic

 D
B

M
S

fu
nc

tio
na

lit
y

Backup and
recovery –

Figure 5.1: Analysis results (� support, � partial support, – no support)

and XML Cartridge represent XML documents by the means of edge-labeled trees
which they store in a central edge table; Monet XML dynamically creates a table
for every distinct path by which an element or attribute value occurring in an XML
document contained in the database can be reached from the root of the respective
document. Every element and attribute value of a document is then stored in the
table created for the corresponding path.

The database extension Oracle XML DB/Structured Mapping in principle fa-
cilitates fine-grained storage of XML documents as well. The system’s mapping
scheme basically creates an SQL object type for every complex type declared in
a schema definition written in XML Schema. Such an SQL object type has one
field each for every element type and attribute of which the corresponding complex

5.1. REPRESENTATION OF MEDIA DESCRIPTIONS 31

type consists. In case that a field corresponds to an element type with simple con-
tent or an attribute, it is assigned the atomic SQL data type coming closest to the
simple type defining the respective content. In case that a field corresponds to an
element type with complex content, it is assigned the SQL object type created for
the complex type defining the content of that element type. Multiple occurrences
of element types are handled by collection-typed fields. As an entry point to this
structure, a table is created for each root element type with a single column which
is assigned the SQL data or object type suitable for the root element type’s content.
To store an XML document that complies to the given schema definition using this
storage representation, Oracle XML DB/Structured Mapping maps the contents of
that document in a fine-grained manner to the corresponding columns and fields of
the tables and SQL object types created.

When it comes to the storage of MPEG-7 media descriptions, however, this
mapping scheme unveils considerable limitations: elements with mixed content and
elements with arbitrary content cannot be represented, as well as elements which
make use of the xsi:type attribute to announce complex type polymorphism. Or-
acle XML DB/Structured Mapping circumvents these restrictions by augmenting
the SQL object types with additional CLOB fields serving as overflow stores that
keep those fractions of XML documents that cannot be represented otherwise tex-
tually in an unstructured manner. But as MPEG-7 makes considerable use of the
problematic constructs mentioned above (especially of complex type polymorphism,
see Chapter 2), significant portions of typical MPEG-7 media descriptions can be
expected to be kept in such overflow stores. This notably reduces the granularity
of the storage representation for MPEG-7 media descriptions. The example media
description of Figure 2.5, for instance, would be stored completely in an overflow
store, because the root AudioDescriptionScheme element applies complex type
polymorphism via xsi:type already.

Typed representation The investigated XML database solutions have strong
deficiencies with regard to the representation of non-textual information signifi-
cantly contributing to the content of MPEG-7 media descriptions. Most of them
store the basic contents of an XML document, i.e., simple element content and the
content of attribute values, as text regardless of the particular content type.

In fact, only a few solutions even address the issue of typed representation of
basic document contents. The native database solution GoXML DB, as it employs
the XQuery 1.0 and XPath 2.0 Data Model for the storage of XML documents, could
in principle exploit the model’s capabilities regarding typed representation of simple
element content and the content of attribute values. Experiments with Version 2.0.2
revealed, however, that this model feature has apparently not been implemented:
such content is always stored and treated as text. The native database solution
Lore as well as the database extension XML Cartridge to some extent implement
typed representations: for the representation of the content of attribute values,
Lore provides a set of atomic data types including integer, real, and string. Simple
element content, however, is always represented as text. XML Cartridge keeps the
basic contents of a document in specific leaf tables which use the atomic SQL data
types provided by the underlying Oracle DBMS to store values, with one leaf table
for every supported data type.

Whether this support for typed representations leads to an adequate storage of
the basic contents of MPEG-7 media descriptions, however, is questionable at least.
Apart from the fact that the data types supported by Lore and XML Cartridge only
constitute a limited subset of the simple types that are predefined with MPEG-7

32 CHAPTER 5. ANALYSIS

DDL, all the systems do not support the simple type derivation methods coming
with MPEG-7 DDL. Among others, they therefore cannot adequately represent
lists and matrices commonly occurring in MPEG-7 media descriptions. Moreover,
it remains unclear how Lore and XML Cartridge are actually supposed to create
typed representations, since they do not take schema definitions into account for the
storage of XML documents that contain type information needed for that purpose.

Out of the investigated database solutions, Oracle XML DB/Structured Map-
ping is the one providing yet the most support for the typed representation of the
basic contents of an MPEG-7 media description. According to the mapping scheme
explained above, simple element content and the content of attribute values of an
XML document are kept in fields of SQL object types which are assigned the atomic
SQL data type best suiting the particular content type as given by the schema def-
inition associated with the document.

Nevertheless, there are again considerable limitations. On the one hand, the
mapping scheme does not support many of the simple type derivation methods pro-
vided with MPEG-7 DDL: among others, lists are simply mapped to text fields and
the mapping of matrices is not supported at all since Oracle XML DB/Structured
Mapping cannot cope with the extensions of MPEG-7 DDL to XML Schema. On
the other hand, the typed representation of simple element content or the content of
an attribute value depends on whether the respective element or attribute value is
kept in an textual overflow store or not, because it occurs in an element with mixed
or arbitrary content or in an element which employs complex type polymorphism
via the xsi:type attribute. These factors are likely to result in the textual repre-
sentation of large parts of non-textual data carried by MPEG-7 media descriptions.

5.2 Access to Media Descriptions

Fine-grained access With the exception of TEXTML which allows the retrieval
of complete XML documents only, all of the XML database solutions covered by this
analysis provide means that give applications fine-grained access to the constituents
of MPEG-7 media descriptions. Many solutions offer navigational programming
interfaces which can be used to program fine-grained traversals of the structure of
media descriptions. The native solutions eXcelon XIS, Infonyte-DB, PDOM, and
X-Hive/DB as well as the database extensions Oracle XML DB, ozone/XML, and
Oracle XML DB/Structured Mapping all offer implementations of the DOM API.
Natix offers a file system driver giving a file system view on the hierarchical structure
of XML documents: document content can thus be traversed via file operations.

With XML database extensions that follow the structured storage and map-
ping approaches, applications can directly use the query mechanisms available with
the DBMS underlying the extension to access the content of media descriptions in
a fine-grained manner. These extensions explicitly represent the content of XML
documents with the modeling primitives of the DBMS. For example, the tables fine-
grainedly representing XML document content with the relational database exten-
sions Monet XML, Shimura et al., XML Cartridge, and Oracle XML DB/Structured
Mapping can be directly queried with SQL.

Most of the examined database solutions also support some form of declarative
XML query language or query algebra that facilitates fine-grained access to MPEG-
7 media descriptions. The native solutions eXcelon XIS, Infonyte-DB, X-Hive/DB,
Xindice, dbXML, and eXist are capable of evaluating XPath expressions. Tamino
implements a proprietary, slightly extended variant of XPath expressions called

5.2. ACCESS TO MEDIA DESCRIPTIONS 33

X-Query [Sof01a], which should not be confused with the XQuery standardization
effort, whereas Infonyte-DB and PDOM support XQL. Lore supports the expressive
Lorel query language [AQM+97] for semistructured data. GoXML DB implements
a subset of the current working draft of the XQuery standard. Natix and TIMBER
define the query algebras NPA [FM01] and TAX [JAC+02], respectively, powerful
enough to represent XPath expressions as well as most queries expressible with
XQuery and provide appropriate translators from XPath and XQuery.

The relational database extensions IBM DB2 XML Extender, Microsoft
SQLXML, and Oracle XML DB following the unstructured storage approach are
capable of evaluating variants of XPath expressions on XML documents contained
in a CLOB. For this purpose, they offer dedicated functions for use within SQL
queries that take a CLOB containing an XML document and an XPath expression
as arguments. When invoked, these functions internally load the whole XML doc-
ument from the CLOB into main memory, parse it, evaluate the expression, and
return the result of the evaluation as a string.

As the querying of XML documents stored with relational database extensions
that follow the structured storage and mapping approaches by the means of SQL
can be complex and cumbersome, the database extensions XML Cartridge, Shimura
et al., and Oracle XML DB/Structured Mapping offer additional functions that take
path expressions, XQL queries, and XPath expressions respectively as arguments
and rewrite them to equivalent SQL statements.

Typed access It has already been pointed out that the investigated XML
database solutions are weak in representing the basic contents of MPEG-7 media
descriptions in an appropriate typed manner. Thus, it is no surprise that applica-
tions have difficulties in accessing such contents in a way adequate to the particular
content type with these systems. As a matter of fact, those XML database solutions
that store the basic contents of an XML document textually per se give applications
textual access to basic document contents only. To access and process non-textual
content in a reasonable way, applications must manually transform the content to
appropriate typed representations everytime the content is accessed, e.g., by ex-
plicitly performing type conversions or by exploiting implicit type coercion rules
associated with the operators of a query language such as XPath or XQuery.

Some XML database solutions that store the basic contents of a document tex-
tually facilitate a form of typed access to all those contents for which value indexes
have been defined. For the definition of a value index on the content of elements or
attribute values, eXcelon XIS, Tamino, TEXTML, and Infonyte-DB allow to spec-
ify whether the content is to be interpreted as strings, numbers, or dates for the
purpose of indexing. When an element or attribute value indexed in such a way is
accessed in a query, it is treated according the data type specified.

This form of typed access, however, quickly meets its limitations with MPEG-
7: the set of data types available for value indexing does not come even close to
the broad variety of predefined simple types and simple type derivations methods
available with MPEG-7 DDL. For instance, reasonable typed access to lists and
matrices frequently occurring in media descriptions is not possible. Moreover, in-
dexed content is still retrieved as text typically forcing applications to transform
retrieved non-textual content to typed representations more appropriate for further
internal processing. Finally, wide-spread typed access to the basic contents of a
media description requires the definition of many value indexes which is likely to
slow down update performance prohibitively.

Those XML database solutions that keep the basic contents of an XML docu-

34 CHAPTER 5. ANALYSIS

ment in typed representation generally can also give applications typed access to
these contents. The limitations of these solutions with regard to typed representa-
tion directly strike through to typed access though: just as it is questionable how
Lore and XML Cartridge are supposed to obtain typed representations without em-
ploying type information contained in schema definitions, it remains unclear how
both systems are supposed to realize typed access to the basic contents of XML
documents in practice. Similarly, because of the already mentioned deficiencies
of the applied mapping scheme, it will not always be possible with Oracle XML
DB/Structured Mapping to access the basic contents of MPEG-7 media descrip-
tions in a typed manner from within SQL queries (or XPath expressions that have
been rewritten to SQL queries), depending on whether the particular content is of
a type that is always represented textually such as a list or whether the content
happens to be kept in a textual overflow store due to complex type polymorphism,
mixed content, etc.

Fine-grained updates Many of the XML database solutions investigated in this
thesis not only provide mechanisms that give applications fine-grained read access
to MPEG-7 media descriptions stored with them; in several cases, they also permit
fine-grained updates of media descriptions. A common means offered by the exam-
ined systems for this purpose are navigational APIs allowing to program fine-grained
updates of XML documents. The native database solutions eXcelon XIS, Infonyte-
DB, PDOM, and X-Hive/DB as well as the database extensions ozone/XML and
Oracle XML DB/Structured Mapping all implement the update-related methods of
the DOM API; the file system interface offered by Natix allows fine-grained updates
as well by the means of file operations.

Since database extensions following the structured storage and mapping ap-
proaches in detail represent the content of MPEG-7 media descriptions with the
data model of the extended DBMS, they can consequently employ update mech-
anisms available with the DBMS to perform fine-grained modifications of media
descriptions as well: the relational database extensions Monet XML, Shimura et
al., XML Cartridge, and Oracle XML DB/Structured Mapping allow fine-grained
updates of XML documents using suitable SQL UPDATE statements.

Apart from these update mechanisms, many native database solutions enable
fine-grained updates of media descriptions via dedicated XML update languages.
eXcelon XIS supports proprietary Updategrams [eXc01a]; GoXML DB extends
XQuery with update operations. The database solutions Xindice and dbXML offer
implementations of the XUpdate language. Lore’s query language Lorel and TIM-
BER’s query algebra TAX both include operations for performing fine-grained up-
dates. As fine-grained updates of XML documents may result in complex SQL UP-
DATE statements, the relational database extension Oracle XML DB/Structured
Mapping offers a function that rewrites update requests specified in a simple XML
update language based on XPath expressions to semantically equivalent UPDATE
statements.

In contrast, the native database solutions Tamino, TEXTML, and eXist do not
allow fine-grained updates of MPEG-7 media descriptions. With these systems,
an update of even a small fraction of an XML document can only be performed
by replacing the complete document with an updated version. This is also the
case with the IBM DB2 XML Extender, Microsoft SQLXML, and Oracle XML DB
database extensions that unstructuredly store XML documents in CLOBs.

5.2. ACCESS TO MEDIA DESCRIPTIONS 35

Value index structures The support for value indexing offered by the covered
XML database solutions is generally not sufficient for the reasonable indexing of
MPEG-7 media descriptions. The examined native XML database solutions typi-
cally come with ordered, B-Tree-based one-dimensional value index structures that
can be employed for the indexing of simple element content and the content of at-
tribute values of XML documents. The exceptions to this are PDOM, eXist, and
Natix which do not provide value index structures at all. For effective indexing of
MPEG-7 media descriptions, however, the capabilities of the native database so-
lutions are limited: none of the examined native solutions offers multidimensional
index structures such as R-Trees that are certainly desirable for the indexing of
complex multimedia data frequently contained in media descriptions.

XML database extensions can rely on value index structures already provided
by the extended DBMS. Database extensions that implement the structured storage
and mapping approaches for the representation of XML documents can directly use
these index structures, because they explicitly represent XML documents and their
basic contents with the modeling primitives of the underlying DBMS. Among the
investigated database extensions, this solely does not apply to ozone/XML as the
DBMS ozone does not offer any value index structures.

Concerning the database extensions that follow the unstructured storage ap-
proach for the representation of XML documents, the question comes up how the
value index structures of the extended DBMS can be applied to MPEG-7 media
descriptions buried inside CLOBs. In fact, this is not possible with Microsoft
SQLXML at all. IBM DB2 XML Extender allows to map the content of an el-
ement or an attribute value of an XML document contained in a CLOB to columns
of synchronized side table which can then be indexed with DB2’s value index struc-
tures just as any other column. Oracle XML DB supports the indexing of basic
document contents kept in a CLOB by means of functional indexes based on the
functions for XPath evaluation offered by the system.

Albeit most XML database extension thus allow one-dimensional value indexing
of the basic contents of MPEG-7 media descriptions, they – just like the examined
native XML database solutions – fall short of reasonable indexing of complex mul-
tidimensional data commonly carried by such descriptions. Event though several of
the underlying DBMSs offer multidimensional value index structures like grid index
and R-Tree index structures [IBM01a, MAA+02b, The02] that could be exploited
for that purpose in principle, it is questionable whether the multidimensional index
structures and database extensions fit together. For instance, the grid index and
R-Tree index structures shipping with IBM DB2 and Oracle can only index table
columns which are assigned specific geometric data types for the representation of
two-dimensional shapes. It is unclear, how instances of these geometric data types
can be obtained from complex multimedia data such as melody contours contained
in MPEG-7 media descriptions stored with one of the XML database extensions
based on IBM DB2 and Oracle so that the data is indexed effectively.

Likewise, PostgreSQL offers an R-Tree index structure that can index columns
of any data type as long as the data type implements a specific set of operations.
But the XML database extension Shimura et al. that is based on PostgreSQL
cannot benefit from this index structure: Shimura et al. stores all simple element
content and the content of attribute values as text in one single string column. It is
doubtable that the set of operations required by the R-Tree index structure can be
implemented for strings in such a way that the content of all elements and attribute
values is reasonably indexable.

36 CHAPTER 5. ANALYSIS

Text index structures Quite a few XML database solutions offer dedicated text
index structures that can be exploited by applications for the realization of efficient
text retrieval on MPEG-7 media descriptions. Among the native database solutions,
X-Hive/DB and Natix provide an index structure allowing the full-text indexing of
entire XML documents while eXcelon XIS, GoXML DB, Tamino, TEXTML, eXist,
Lore, and TIMBER possess index structures allowing to textually index the content
of single elements and attribute values at any level in an XML document. The native
solutions Infonyte-DB, PDOM, Xindice, and dbXML, in contrast, do not offer any
special structures for text indexing.

As with value index structures, XML database extensions can benefit from exist-
ing text index structures of the underlying DBMS for the realization of efficient text
retrieval on MPEG-7 media descriptions. As there are text index structures avail-
able for the relational DBMSs IBM DB2, Microsoft SQL Server, and Oracle that
can be applied to CLOBs and character columns [IBM01b, Mic00a, MAA+02a], the
XML database extensions IBM DB2 XML Extender, Microsoft SQLXML, and Or-
acle XML DB that keep XML documents in their original textual format in CLOBs
can directly employ these structures for the full-text indexing of entire XML docu-
ments. The database extensions XML Cartridge and Oracle XML DB/Structured
Mapping founding on the DBMS Oracle can exploit the available text index struc-
tures as well: the text index structure can be applied to the respective leaf table
columns and SQL object type fields in which both extensions store textual simple
element content and attribute values in a fine-grained fashion.

The database extensions ozone/XML, Monet XML, and Shimura et al., however,
do not support text retrieval with dedicated index structures: they do not imple-
ment text index structures themselves and the underlying DBMSs ozone, Monet,
and PostgreSQL do not provide any special text index structures either.

Path index structures Several of the investigated XML database solutions offer
index structures that can accelerate the traversal of access paths within MPEG-7
media descriptions in miscellaneous ways. Some, such as the structure index offered
by eXcelon XIS, precompute and maintain the results of evaluating a given path
expression on all XML documents in a database. Whenever an application needs
to evaluate the indexed path expression, it can directly rely on these precomputed
results instead of having to evaluate the expression itself.

Another group of path index structures offered by several database solutions
maintains the access paths by which the individual elements and attribute values
contained in the XML documents of a database can be reached from the respective
document roots. This kind of path information can be used to rule out documents or
parts of documents which will certainly be missed by a given path traversal. This is
the intention of the structure index offered by the native database solution Tamino
that helps to filter out irrelevant XML documents during the evaluation of an X-
Query expression. The signature index structure supported by Infonyte-DB and
PDOM is even able to perform this kind of filtering for parts of XML documents.

Access path information for the individual elements and attribute values of XML
documents can also be exploited to accelarate the calculation of traversal results.
Proponents of this approach are the relational database extensions Shimura et al.,
XML Cartridge, and Monet XML. Shimura et al. and XML Cartridge. These
systems maintain additional path tables which augment the elements and attribute
values kept in the edge tables with a textual representation of the access paths by
which they can be reached from their corresponding document root. Thereby, even
complex path traversals can be broken down to relatively simple string matching

5.3. MEDIA DESCRIPTION SCHEMES 37

operations on the path table. Monet XML inherently supports path indexing by
construction because it stores, as explained before, elements and attribute values in
specific tables created for the access path by which they can be reached from the
respective document roots. Traversal of an access path thus essentially consists of
selecting the rows of the table representing that path.

Yet another approach to path indexing supported by some of the investigated
XML database solutions is based on maintaing schematic summaries of the contents
of the XML documents in a database. Such schematic summaries can be as simple as
an element type name index which is available with the native database solutions
X-Hive/DB and TIMBER. Given the name of an element type, an element type
name index collects all those elements occurring the database whose types bear
that name. An application interested in the elements of a certain type can exploit
such an element type name index to directly obtain all elements of interest instead
of having to access and traverse all documents to seek out these elements itself.
DataGuides offered by the native database solution Lore constitute a more complex
schematic summary of document contents. A DataGuide is a graph that summarizes
all access paths that are possible in the XML documents contained in a database.
A DataGuide not only helps to decide whether a path traversal can yield a result
for any of the documents contained in a database. Also, as a DataGuide references
all elements or attribute values which can be reached by traversing a given path,
path traversals can be performed to a large extent on the DataGuide itself avoiding
the need to access the documents in the database.

Finally, some of the examined database solutions feature full-text index struc-
tures that can also play the role of path index structures. This is the case with
Natix, whose full-text index structure in combination with extended Access Sup-
port Relations can accelerate path traversals, as well as with Oracle XML DB,
whose full-text index structure can help to filter out XML documents which are
irrelevant for the evaluation of an XPath expression.

5.3 Media Description Schemes

MPEG-7-DDL-compliant schema catalog None of the XML database solu-
tions examined provides a schema catalog that is fully compliant to MPEG-7 DDL.
In fact, the majority of the investigated solutions – namely Infonyte-DB, PDOM,
TEXTML, Xindice, dbXML, eXist, Lore, Natix, TIMBER, Microsoft SQLXML,
ozone/XML, Monet XML, Shimura et al., and XML Cartridge – do not maintain
schema catalogs at all. They do not make use of available schema information for
the storage of XML documents.

Other database solutions, such as X-Hive/DB and IBM DB2 XML Extender,
maintain DTD-based schema catalogs. However, as pointed out before in Chap-
ter 3 DTD-based schema catalogs in general cannot be considered appropriate for
managing MPEG-7 media description schemes.

As XML Schema constitutes a large subset of MPEG-7 DDL, database solutions
that implement XML-Schema-compliant schema catalogs promise at least partial
support for the management of MPEG-7 media description schemes. eXcelon XIS,
Oracle XML DB, and Oracle XML DB/Structured Mapping provide schema cat-
alogs that more or less support the XML Schema standard and therefore can be
expected to cope with many MPEG-7 media description schemes. In contrast, the
schema catalogs of Tamino and GoXML DB implement very restricted subsets of
XML Schema not going far beyond DTDs, significantly limiting their ability to

38 CHAPTER 5. ANALYSIS

manage typical MPEG-7 media description schemes.

Validation of media descriptions All examined database solutions that main-
tain a schema catalog for the XML documents contained in a database employ
the schema information available with the catalog for document validation. Up to
the degree of MPEG-7 DDL / XML Schema supported, the database solutions eX-
celon XIS, GoXML DB, Tamino, Oracle XML DB, and Oracle XML DB/Structured
Mapping are thus able to validate MPEG-7 media descriptions.

These solutions usually perform the validation of XML documents against their
schema definition automatically during document import. Only MPEG-7 media
descriptions that are consistent with their media description schemes can thus be
inserted into a database. As Tamino and Oracle XML DB support coarse-grained
updates of XML documents only and, therefore, the update of a document is equiva-
lent to the import of a new document into the database with these systems, both so-
lutions also validate documents automatically after an update. This ensures that no
update of an MPEG-7 media description can violate its media description scheme.

eXcelon XIS, GoXML DB, and Oracle XML DB/Structured Mapping, in con-
trast, do not validate documents after updates automatically. Thus, update opera-
tions can result in MPEG-7 media descriptions inconsistent with their description
scheme. To avoid this, applications are required explicitly initiate the validation of
media descriptions after updates with these systems.

Inference of typed representations Out of all investigated database solutions,
only Oracle XML DB/Structured Mapping to some extent utilizes type information
available in the schema catalog to create typed representations of the basic con-
tents of MPEG-7 media descriptions. As wxplained before, the mapping scheme
of Oracle XML DB/Structured Mapping translates a schema definition written in
XML Schema to a relational database schema consisting of a series of SQL object
types which have appropriately typed fields to store simple element content and
the content of attribute values. When mapping an XML document to a relational
schema created in such a manner, the document’s basic contents are automatically
brought from textual to typed representation when assigned the typed field specif-
ically prepared for the respective content. Nevertheless, the ability of Oracle XML
DB/Structured Mapping to produce typed representations for MPEG-7 media de-
scriptions is limited: recall, for instance, that lists are generally assigned to textual
fields and that elements with mixed and arbitrary content as well as elements using
complex type polymorphism are kept in textual overflow stores.

The other XML database solutions that to some extent support the typed rep-
resentation of simple element content and the content of attribute values, namely,
Lore and XML Cartridge, do not maintain schema catalogs. As they therefore do
not have necessary type information at their disposal, it remains unclear how they
are supposed to infer typed representations basic document contents.

Access optimization The analyzed XML database solutions, native database so-
lutions as well as database extensions, are generally weak when it comes to exploit
schema information available within media description schemes for the optimization
of an application’s accesses to MPEG-7 media descriptions contained in a database.
Even though many database solutions come with index structures that can consid-
erably accelerate access, applications are usually forced to explicitly use existing
indexes. Just to name a representative example, the native XML database eXcelon

5.4. EXTENSIBILITY 39

XIS relies on applications to formulate XPath expressions in such a way that it is
more than obvious to apply an existing index for query evaluation. Rarely, query
processors are able to equivalently rewrite queries based on an XML document’s
schema definition such that relevant indexes are found and applied automatically.

Moreover, most database solutions do not employ schema definitions to reduce
the complexity of queries by identifying and cutting off subexpressions that are
redundant or that can never yield a result. Some systems like Infonyte-DB, PDOM,
and TIMBER rewrite queries applying universally valid transformation rules on the
basis of statistical information and heuristics in the hope that the resulting queries
are simpler to evaluate and the amount of intermediary results is reduced.

Out of the examined solutions, only Tamino and Oracle XML DB/Structured
Mapping offer more sophisticated techniques for access optimization based on the
schema definition of an XML document. Tamino employs schema information to
bring an X-Query query into a canonical form. Among others, path expressions
(which may include wildcards and traversals to indirect child nodes) occurring in
a query are replaced in the canonical form by the disjunction of all those paths
that qualify for these expressions according to the schema definition. Based on this
canonical form, it is straightforward for the query processor to decide which value
or text indexes are available for query evaluation and to apply the structure index
to filter out documents which cannot contribute to the query result.

Oracle XML DB/Structured Mapping employs the schema definition to rewrite
an XPath expression that is to be evaluated on an XML document to an equivalent
SQL query that operates on the tables and SQL object types of the relational schema
specifically created for the schema definition. The SQL query is then passed on to
the query processor of the underlying Oracle DBMS which can then apply all the
sophisticated relational query optimization techniques available with the system.

5.4 Extensibility

Extensibility with functionality The examined categories of XML database
solutions, native solutions and database extensions, differ considerably with regard
to their extensibility with application-specific functionality. Many native database
solutions, i.e., GoXML DB, Infonyte-DB, PDOM, X-Hive/DB, eXist, Lore, Natix,
and TIMBER do not provide means with which new, custom functions and proce-
dures can be integrated into these systems.

Native solutions that can be extended with application-specific functions are
eXcelon XIS, Xindice, dbXML, and Tamino. Such a functional extension is called
DXE Servlet with eXcelon XIS, XMLObject with Xindice and dbXML, and query
function with Tamino. DXE Servlets, XMLObjects, and query functions are realized
as Java classes; optionally, a Tamino query function can also be implemented as a
COM class. Though very similar, the concepts of DXE Servlets, XML Objects,
and query functions differ in the way how seamless they can be applied for the
processing of XML documents contained in a database: query functions can be
used in Tamino’s X-Query language just like any of the built-in functions whereas
both DXE Servlets as well as XMLObjects are not integrated with the respective
system’s query language and have to be explicitly invoked via dedicated APIs.

The investigated XML database extensions, in contrast, can all be augmented
with custom functions and procedures using the mechanisms for functional extension
available with the underlying DBMS. The object-oriented DBMS ozone underlying
the database extension ozone/XML can be enhanced with arbitrary classes real-

40 CHAPTER 5. ANALYSIS

izing application-specific functionality; the relational DBMSs underlying the other
examined XML database extensions all support the definition of custom stored pro-
cedures and functions. These custom procedures and functions perfectly fit together
with the XML database extensions on the level of SQL where they can be used in
queries for XML documents just like built-in functions. However, they typically can-
not be used within XML query languages often additionally supported by relational
database extensions. For example, application-specific stored functions cannot be
called within XPaths expression that are to be executed with the XPath evaluation
function on XML document stored in CLOBs using Oracle XML DB.

Extensibility with index structures Most of the examined XML database
solutions do not offer dedicated interfaces with which new index structures can be
integrated if desired by an application. Instead, database solutions usually present
themselves to application developers as monolithic systems. Out of the investigated
native XML database solutions, only X-Hive/DB offers an open interface for the
integration of new index structures into the system. However, this interface is
limited to the integration of full-text index structures only.

For XML database extensions, the question of integrating a new index structure
boils down to the question whether the underlying DBMS is extensible with new
index structures. Among the DBMSs IBM DB2, Microsoft SQL Server, Oracle,
ozone, Monet, and PostgreSQL which form the basis of the examined XML database
solutions, only Oracle and Monet can be extended with index structures without
the need to modify the system’s kernel. Oracle can integrate new index structures
into the system via the Extensible Indexing API; Monet features a microkernel that
has been specifically designed to be extensible with so-called extension modules that
can, among others, contain application-specific index structures. As a result, the
investigated XML database solutions that base on Oracle and Monet, i.e., Oracle
XML DB, Monet XML, XML Cartridge, and Oracle XML DB/Structured Mapping,
can be extended with new index structures as well.

5.5 Classic DBMS Functionality

Many of the examined native XML database solutions have remarkable deficiencies
with regard to classic DBMS functionality. Though transactions are a traditional
concept of DBMSs, a surprising number of native solutions does not offer transaction
support: Infonyte-DB and PDOM avoid the need for transactions by allowing a
database to be accessed by a single process only thereby realizing an isolated view
on a database’s contents in the truest sense of the word; TEXTML implements a
simple check-in/check-out mechanism for XML documents instead of transactions;
Xindice, dbXML, and eXist even do not provide any means to shield concurrent
applications from each other.

Those native XML database solutions that implement transaction support, i.e.,
eXcelon XIS, GoXML DB, Tamino, X-Hive/DB, Lore, Natix, and TIMBER, do
not necessarly exert fine-grained concurrency control between different transactions
concurrently accessing stored MPEG-7 media descriptions. The concurrency con-
trol mechanism of Tamino is based on coarse-grained document locks whereas X-
Hive/DB locks the entire database during updates.

With regard to fine-grained access control, the situation is even worse. Infonyte-
DB, PDOM, Xindice, dbXML, eXist, Lore, Natix, and TIMBER do not implement
any kind of access control. As a consequence, any user can access any MPEG-7

5.5. CLASSIC DBMS FUNCTIONALITY 41

media description stored with one of these systems. eXcelon XIS, TEXTML, and
X-Hive/DB at least perform user authentication when a database connection is
being established. Once user authentication has succeeded, however, full access to
the database is granted. GoXML DB goes a small step further and allows to define
access rights for individual XML documents.

The only covered native XML database solution that offers a fine-grained access
control mechanism permitting the regulation of access to the individual elements of
MPEG-7 media descriptions is Tamino. For each element type maintained within
Tamino’s schema catalog, access rights can be defined controlling access to the
elements of this type occurring within XML documents.

The analyzed native XML database solution also lack maturity with regard to
backup and recovery. Only eXcelon XIS, Tamino, X-Hive/DB, Natix, TIMBER,
and eXist support backups and maintain write-ahead logs to recover a crashed
database to a recent consistent state. But out of these solutions, just X-Hive/DB
supports incremental backups. GoXML DB, Infonyte-DB, PDOM, and Lore offer
means to perform backups as well but do not maintain write-ahead logs for recovery
to a recent consistent state. In an emergency, one has to fall back to the state of the
latest backup. Xindice and dbXML do not provide any backup and recovery support
at all but rely on a database administrator to perform manual offline backups of
hopefully consistent database snapshots via file copy.

In contrast to the native XML database solutions, the investigated XML
database extensions are built on top of traditional DBMSs which all offer mature
implementations of classic DBMS functionality. As they extend these traditional
DBMSs, the XML database extensions can directly benefit from this functionality,
especially with regard to transaction support and backup and recovery. Whether
fine-grained concurrency control and fine-grained access control are available for
access to MPEG-7 media descriptions stored with a database extension, however,
depends on the particular storage scheme for XML documents. As IBM DB2 XML
Extender, Microsoft SQLXML, and Oracle XML DB store XML documents un-
structuredly in CLOBs, they can neither exert fine-grained concurrency control
nor fine-grained access control: the relational DBMSs underlying these extensions
cannot lock or define access rights for parts of CLOBs.

In comparison, the ozone XML database extension that follows the structured
storage approach permits both fine-grained concurrency control as well as fine-
grained access control: it represents the elements and attribute values of an XML
document as individual objects and the concurrency control and access control
mechanisms of the underlying ozone DBMS operate on the object level.

The storage schemes for XML documents employed by the database extensions
Shimura et al. and XML Cartridge that also follow the structured storage approach
represent the elements and attribute values of an XML document as individual rows
in central edge tables shared among all XML documents in a database. As the
relational DBMSs underlying both extensions support row-level locking but allow
the definition of access rights for entire tables only, fine-grained concurrency control
is possible for access to MPEG-7 media descriptions stored with Shimura et al. and
XML Cartridge but no fine-grained access control.

The remaining database extension Monet XML following the structured storage
approach cannot control access to MPEG-7 media descriptions it stores. Also,
concurrency control performed by Monet XML is rather coarse-grained. This is
due to the fact that the underlying Monet DBMS does not provide any means for
access control and is only capable of locking entire database tables. Given the
storage scheme applied by Monet XML, a lock on a table corresponds to a lock

42 CHAPTER 5. ANALYSIS

on all elements or attribute values contained in any XML document stored in the
database which can be reached by the access path the table represents.

Finally, the storage scheme applied by Oracle XML DB/Structured Mapping
following the mapping approach maps the contents of XML documents to instances
of SQL object types which in detail remodel the schema definitions to which the
documents comply. As the underlying Oracle DBMS is able to fine-grainedly lock
and define access rights on SQL objects, fine-grained concurrency control and access
control can be realized for access to XML documents stored with this extension.
Regarding the storage of typical MPEG-7 media descriptions, however, the granu-
larity of both concurrency control and access control will be considerably reduced
in practice because significant portions of these descriptions can be expected to be
kept unstructuredly in CLOBs acting as overflow stores.

5.6 Summary

Summarizing one can say that none of the investigated XML database solutions
suffices all requirements for the management of MPEG-7 media descriptions. Even
though, if taking a look back at Figure 5.1, there are database extensions like
Oracle XML DB/Structured Mapping and native database solutions like eXcelon
XIS, Tamino, and X-Hive/DB which cover quite a lot of these requirements, this
should not belie the substantial limitations that are seriously compromising their
eligibility for the management of MPEG-7 media descriptions.

The main weakness of the examined solutions is that they store and treat simple
element content and the content of attribute values of MPEG-7 media descriptions
largely as text, regardless of the particular content type. This is unsatisfactory
because of the large fractions of media descriptions consisting of non-textual data
like numbers, vectors, and matrices making up technical metadata of media such as
melody contours; applications will definitely want to access and process these data
according to their type and not as text.

The source of this weakness is the fact that the inspected solutions do not
sufficiently make use of schema and type information available with media descrip-
tion schemes for the management of MPEG-7 media descriptions. As a result, the
systems often lack valuable data crucial not only for ensuring the consistency of
database content by validating media descriptions and for reasonable query opti-
mization but also for inferring the types of the basic contents of a media descrip-
tion. The majority of inspected database solutions – like Infonyte-DB, TEXTML,
Xindice, Microsoft SQLXML, Monet XML, and Shimura et al. to cite some rep-
resentative examples – totally ignore schema definitions for the storage of XML
documents. And even those database solutions that maintain schema catalogs –
such as eXcelon XIS, Tamino, GoXML DB, X-Hive/DB, IBM DB2 XML Extender,
and Oracle XML DB – primarily use the information contained therein for the vali-
dation of XML documents only. Moreover, the schema catalogs just support DTDs
or more or less XML Schema; none of the solutions fully supports MPEG-7 DDL.

Among all XML database solutions covered here, solely the relational database
extension Oracle XML DB/Structured Mapping in principle constitutes a step into
the right direction and makes use of schema definitions written in XML Schema
to manage simple element content and the content of attribute values in a typed
fashion. However, as it has been set out in detail before, the system nevertheless
represents a very high percentage of the constituents of typical MPEG-7 media
descriptions as text due to limitations of its mapping scheme, e.g., lists, matrices,

5.6. SUMMARY 43

and elements making use of complex type polymorphism.
In addition to the issue of typed representations, there are further aspects that

constrain the applicability of the examined XML database solutions for the man-
agement of MPEG-7 media descriptions. The value indexing support offered by
the database solutions is generally not sufficient. At best, the analyzed solutions
offer one-dimensional, B-Tree-based index structures for the indexing of the basic
contents of XML documents. However, no solution supports multidimensional in-
dex structures such as R-Trees for the indexing of document content. This notably
obfuscates the prospects of successfully implementing efficient multimedia retrieval
applications on large collections of MPEG-7 media descriptions with these systems.

When applying existing XML database solutions for the management of MPEG-
7 media descriptions – native database solutions as well as database extensions –
one should also be aware of the fact that rather basic DBMS functionality such
as fine-grained concurrency control and fine-grained access control cannot be taken
for granted. While several solutions, e.g., Tamino, X-Hive/DB, ozone/XML, and
Oracle XML DB/Structured Mapping, address some of these aspects, none of the
investigated solutions satisfyingly covers all.

Disregard of these fundamental deficiencies: what are strengths and weaknesses
of native XML database solutions on the one side and XML database extensions on
the other side concerning the management of MPEG-7 media descriptions?

Native XML database solutions are typically strong with regard to the represen-
tation of and access to MPEG-7 media descriptions. Taking a look at Figure 5.1, one
can see that native database solutions normally store MPEG-7 media descriptions
with a fine granularity. Usually backing these fine-grained storage representations
with an array of path, value, and text index structures, they also come with naviga-
tional APIs and dedicated XML query languages, in many cases not only allowing
fine-grained access to but also fine-grained updates of media descriptions. How-
ever, native database solutions are weak when it comes to extensibility with new
functionality and index structures and classic DBMS functionality.

XML database extensions offer a more heterogeneous picture compared to native
database solutions with regard to the representation of and access to MPEG-7 media
descriptions. It highly depends on the particular storage approach followed by
an extension with which granularity MPEG-7 media descriptions are represented,
whether and by what means fine-grained access and updates of media descriptions
are possible, and whether and which index structures of the underlying DBMS
can be exploited for the indexing of media descriptions. In this respect, database
extensions that follow the unstructured storage approach have clear deficiencies
whereas several of the database extensions that follow the structured storage and
mapping approaches are comparable to native database solutions.

The main strength of XML database extensions is that they found on long es-
tablished traditional database technology. Consequently, they can benefit from the
mature implementations of classic DBMS functionality of the underlying DBMSs.
Moreover, it has been a trend in the recent years to make traditional DBMS more
extensible with new functionality and index structures. As XML database exten-
sions can directly exploit these extension mechanisms for their own purposes, they
are also strong with respect to extensibility.

44 CHAPTER 5. ANALYSIS

Chapter 6

The Typed Document Object
Model

The previous chapter has shown that current XML database solutions – commercial
systems, open-source projects, as well as research prototypes – do not suffice the
requirements for the management of MPEG-7 media descriptions given by Chapter
3. This thesis therefore wants to develop an XML database solution that better
takes account of these requirements.

The heart of any XML database solution is a data model for XML documents.
Such a data model provides a representation of the structure and contents of XML
documents on a logical level and provides the basis for the processing of XML doc-
uments stored within a database. For the realization of an XML database solution
that is suitable for the management of MPEG-7 media descriptions, the data model
at the solution’s core must already address basic requirements for the representation
of and access to such descriptions that have been outlined earlier in Sections 3.1
and 3.2.

This chapter proposes the Typed Document Object Model (TDOM), an object-
oriented model for XML documents created with exactly these requirements in
mind. The chapter first takes a brief look onto existing data models for XML
documents unveiling their limitations concerning the representation of MPEG-7
media descriptions (6.1). Having thus fortified the need for a new model, the chapter
then illustrates and gives a definition of TDOM (6.2).

6.1 Data Models for XML Documents

A variety of data models for XML documents have been proposed in the literature,
e.g., [JLS99, GMW99, GSN99, SYU99, SKW+00, KM99]. Concerning their appli-
cation for the representation of MPEG-7 media descriptions, however, these models
suffer from mainly two weaknesses: firstly, they typically constitute variations of
rather simple edge-labeled tree and graph data models. Though they provide fine-
grained representations of MPEG-7 media descriptions in principle, these models
often ignore more subtle aspects of the descriptions’ structure like the ordering the
child nodes of an element, markup different from elements and attribute values such
as processing instructions and comments, or the distinction between attribute values
and elements. Secondly, they usually do not support typed representations: simple
element content and the content of attribute values is typically represented as text

45

46 CHAPTER 6. THE TYPED DOCUMENT OBJECT MODEL

hindering the reasonable processing of non-textual data on the basis of these mod-
els. Those few models that support typed representations (e.g., [KM99, GMW99])
only offer limited subsets of the elementary simple types predefined with MPEG-7
DDL; none of the models supports the simple type derivation methods of MPEG-7
DDL.

In addition to the models originating from research, several data models for
XML documents have appeared in the context of standardization efforts. Prominent
representatives are the XPath Data Model which constitutes the foundation for the
XPath language [CD99], the DOM Structure Model which is specified along with
the DOM API by the Document Object Model (DOM) standard [LLW+00], and the
XML Information Set [CT01]. These models generally offer detailed and accurate
representations of XML documents. But their applicability for the processing of
MPEG-7 media descriptions is limited, since they neglect the types of the basic
contents of a description representing them always as text.

The XQuery 1.0 and XPath 2.0 Data Model is currently being defined as the
foundation of the XQuery standardization effort for a common XML query language
[BCF+02]. What makes the model interesting with regard to the representation of
MPEG-7 media descriptions is that it supports the elementary data types predefined
by XML Schema for the typed representation of simple element content and the
content of attribute values. Nevertheless, difficulties concerning the use of the
XQuery 1.0 and XPath 2.0 Data Model for MPEG-7 still remain: with the exception
of lists, the current working draft does not support the far majority of the simple
type derivation methods offered by XML Schema and MPEG-7 DDL for typed
representations. Furthermore, the model is still in an unstable state. For example,
the paradigm followed for the specification of the data model has been changed
fundamentally during the standardization process. Instead of an open structural
definition, the model is now opaquely defined by means of abstract data types.

6.2 TDOM in Six Points

The deficiencies of existing data models for XML documents call for a new model
which may serve as the foundation of an XML database solution that pays attention
to the specific requirements for the management of MPEG-7 media descriptions.
With the Typed Document Object Model (TDOM), such a model is now proposed.

TDOM is an object-oriented model for XML documents that picks up the tradi-
tional DOM [LLW+00] approach and develops it further to allow a more adequate
representation of MPEG-7 media descriptions. In particular, the development of
TDOM has been geared towards supporting five elementary requirements of Chapter
3, namely the fine-grained and typed representation of MPEG-7 media descriptions,
allowing fine-grained and typed access to these descriptions, as well as permitting
flexible and fine-grained updates.

The remainder of this chapter provides a detailed and illustrated definition of
TDOM which is presented in six points closely oriented along the mentioned require-
ments. Being an object-oriented model, UML class diagrams [Ana01] are employed
for the definition of the various classes of TDOM and their interrelationships.1

1The TDOM classes defined in the subsequent class diagrams do not show any getter and
setter methods with which applications can access and manipulate the classes’ attributes and
associations. A concrete implementation of TDOM, of course, has to provide such methods. As
this is straightforward, however, they are omitted from the definition of the model for the sake of
clarity.

6.2. TDOM IN SIX POINTS 47

Whenever it is necessary to make formal statements about TDOM, the Object
Constraint Language (OCL) defined as part of the UML standard is employed.

1. TDOM is fine-grained

Similar to traditional DOM, TDOM faithfully and fine-grainedly reproduces the
structure of an XML document with an object-oriented model that permits to ac-
cess and manipulate the document’s constituents at any required granularity. Us-
ing an object-oriented model is advantageous because object-oriented concepts are
widely supported by potential implementation platforms for TDOM today, such as
most programming languages, object-oriented and object-relational DBMSs. This
promises a small gap between the model and its implementations.

Comment

+ comment : String

ProcessingInstruction

+ target : String
+ data : String

Text

+ text : String
AttributeValueElement

0..n1 0..n1

{ordered}

DocumentNode

0..1

0..n

+parentNode0..1

+childNode
0..n

{ordered}

DocumentType

+ name : String
+ systemID : String
+ publicID : String
+ internalSubset : String

Document

+ location : String

0..1

1..n

0..1

+rootNode1..n

{ordered}

0..1 10..1 1

Figure 6.1: TDOM representation of XML document structure (UML class diagram)

The class diagram of Figure 6.1 introduces the classes of TDOM that are re-
sponsible for the representation of an XML document and the detailed reproduction
of its structure. The class Document represents XML documents. In the model, a
document is identified by its storage location addressed with an URL. A document
can optionally be characterized by document type information (modeled by the
class DocumentType) that might be conveyed in its DOCTYPE section. As an entry
point to its contents, each document refers to the sequence of root document nodes
constituting the top level of its hierarchical structure, which is expressed by the
aggregation between the classes Document and DocumentNode.

Being an abstract base class, DocumentNode subsumes one class each for the rep-
resentation of the primal kinds of nodes of which an XML document may consist:
Comment represents comments, ProcessingInstruction represents processing in-
structions together with their associated source and target declarations, Text copes
with text interspersed with other document nodes in mixed content, and Element
represents elements. Through elements, the hierarchical structure of a document

48 CHAPTER 6. THE TYPED DOCUMENT OBJECT MODEL

is established – elements are the only kind of document nodes that may contain
other nodes as their child nodes. This is expressed by the aggregation between
Element and DocumentNode. Since elements can be further described by attribute
values, TDOM introduces the class AttributeValue for their representation which
is aggregated by Element.

melodyDescription:Document

:Comment audioDescriptionScheme:Element xsiType:AttributeValue

meter:Element

numerator:Element denominator:Element

melodyContour:Element

contour:Element beat:Element

:Comment :Comment

rootNoderootNode

childNode childNode

childNode

childNode

childNode

childNode

childNodechildNode

parentNode

parentNode parentNode

melodyDescription:Document

:Comment audioDescriptionScheme:Element xsiType:AttributeValue

meter:Element

numerator:Element denominator:Element

melodyContour:Element

contour:Element beat:Element

:Comment :Comment

rootNoderootNode

childNode childNode

childNode

childNode

childNode

childNode

childNodechildNode

parentNode

parentNode parentNode

Figure 6.2: Structural representation of an MPEG-7 media description (UML object
diagram)

The UML object diagram of Figure 6.2 exemplifies the structural representation
of an MPEG-7 media description with TDOM using the example melody descrip-
tion of Figure 2.5. The description itself is represented by the Document object
depicted at the top of the diagram; the document nodes contained in the descrip-
tion are represented by objects belonging to the TDOM-classes corresponding to
the particular kind of node. Via the references of the Document object to its root
nodes and the references of the Element objects to their child nodes and attribute
values, TDOM reconstructs the hierarchical structure of the example description.
Outgoing from the Document object, an application can thus traverse the structure
of the example media description and access and manipulate any desired document
node at any granularity.

There are some limitations on the allowable structure of XML documents. There
is the restriction that the attribute names and attribute namespaces of the attribute
values associated with an element must be unique. This is formally expressed in
OCL by Contraint 1. The constraint employs the shorthands attNamespace and
attName to refer to the attribute namespace and attribute name of an attribute
value. These shorthands will be defined later under Point 3.

Constraint 1 (Unique attribute values)

context Element

inv: attributeValue -> forAll(av1, av2 |

av1.attNamespace = av2.attNamespace and
av1.attName = av2.attName implies
av1 = av2)

There is the further limitation that there must be exactly one element among
the root nodes of a document. Also, there must not be a text node among the root
nodes. These restrictions are formally expressed by Constraint 2.

6.2. TDOM IN SIX POINTS 49

Constraint 2 (Root nodes)

context Document

inv: rootNode -> one(e | e.oclIsTypeOf(Element))

inv: not(rootNode -> exists(t | t.oclIsTypeOf(Text)))

The single element among the root nodes is called the root element of the doc-
ument. The term root element is formalized by Definition 1.

Definition 1 (Root element)

context Document def:
let rootElement : Element =

rootNode -> any(e | e.oclIsTypeOf(Element))

To ease navigation along the document hierarchy in future OCL expres-
sions, Definition 2 finally introduces the formal shorthands childElements and
allChildElements to refer to an element’s sequence of direct child elements and
to an element’s set of direct and indirect child elements, respectively.

Definition 2 (Child elements)

context Element def:
let childElements : Sequence(Element) =

childNode -> select(d | d.oclIsTypeOf(Element))

let allChildElements : Set(Element) =
Element.allInstances -> select(e |

childElements -> includes(e) or
childElements -> exists(c | c.allChildElements -> includes(e)))

2. TDOM is typed

Traditional DOM represents the basic contents of an XML document as text pro-
hibiting appropriate access to non-textual data. In contrast, it is TDOM’s primary
goal to exploit type information contained in media description schemes to which
MPEG-7 media descriptions comply. The idea is to keep simple content of elements
and the content of attribute values in a way that is appropriate for the particu-
lar content type. For this reason, typed representations have been made a central
concept of TDOM.

In typed representation, elements and attribute values are tightly coupled to
the element types and attributes declared in the schema definition accompanying
an XML document. According to the class diagram of Figure 6.3 which unveils more
details regarding the representation of elements and attribute values with TDOM,
an element or attribute in typed representation (indicated by the boolean attribute
typed of the classes Element and AttributeValue) is explicitly associated with
the respective element type or attribute it instantiates, i.e., it is valid to. This is
expressed by the associations between the classes Element and ElementType and
AttributeValue and Attribute respectively. Element types and attributes are
characterized by their names and namespaces and an optional scope.

Furnishing the classes ElementType and AttributeValue with the scope at-
tribute is a tribute to the fact that MPEG-7 DDL, just like other schema defini-
tion languages for XML documents, not only allows to declare element types and
attributes that are globally visible but also those that are only visible within a cer-
tain scope, e.g., a complex type. In order to distinguish different element types and

50 CHAPTER 6. THE TYPED DOCUMENT OBJECT MODEL

+attribute

SimpleTypeInstance

+ equalTo()
+ getSimpleType()

<<Interface>>

Attribute

+ name : String
+ namespace : String
+ scope : String

AttributeValue

+ typed : Boolean
+ name : String
+ namespace : String
+ content : String

0..1

0..1

0..1

+typedContent 0..1

0..1

0..n

0..1

0..n

ElementType

+ name : String
+ namespace : String
+ scope : String

Element

+ typed : Boolean
+ namespace : String
+ simpleContent : String
+ name : String

0..1
0..1

0..1
+typedSimpleContent 0..1

0..n

1

0..n

1

{ordered}

0..10..n

+elementType

0..10..n

Figure 6.3: TDOM representation of elements and attribute values (UML class
diagram)

attributes with identical names and namespaces that might exist within different
scopes of one and the same schema definition, the attribute scope contains a string
uniquely describing the scope in which the element type or attribute is visible.

The explicit association of elements and attribute values in typed representation
with their element types and attributes declared in the schema definition not only
provides an index allowing to efficiently look up all instances of a certain element
type or attribute in a document. It also opens up type information that is used to
acquire an adequate representation of the content of elements and attribute values:
elements with simple content and attribute values in typed representation do not
keep their content as text, but rather encapsulate their content within an object.
This is captured in Figure 6.3 by the aggregations between the classes Element and
AttributeValue and the interface SimpleTypeInstance, which the objects holding
the content have to implement as a minimum (this interface will be described in
more detail later under Point 5). Inside these objects, the content is kept in a
way adequate to the content type declared for the element type or attribute in the
schema definition. The objects offer methods specific to the content type that allow
applications to appropriately operate on the content.

Figure 6.4 gives an example for a better understanding of typed representations.
At the top of the Figure, the Contour element of the example MPEG-7 media
description of Figure 2.5 is shown. Below the Contour element, the objects used for
its representation are depicted in UML object diagram notation. A dashed arrow
between an object and the Contour element indicates which part of the element is
represented by the object. TDOM represents the whole element by an object of
the class Element. In typed representation, an element is explicitly associated with
the element type it instantiates. This is captured in the example by the reference
from the Element object to the ElementType object representing the element type
Contour that has been declared within the complex type MelodyContourType in
the media description scheme of Figure 2.4. It is known from this element type
declaration that the valid contents for elements of the type Contour are lists of
integer values. As the example element is kept in typed representation, its content
is thus encapsulated within an object of a class that offers an implementation for lists
with reasonable methods to work with them – the class List. Since the elements

6.2. TDOM IN SIX POINTS 51

:List

equalTo()
getSimpleType()
addElement()
elementAt()
size()
...

:Integer

value=2

equalTo()
getSimpleType()
lessThan()
...

value=2

equalTo()
getSimpleType()
lessThan()
...

...

value=1

equalTo()
getSimpleType()
lessThan()
...

:Integer

value=1

equalTo()
getSimpleType()
lessThan()
...

value=1

equalTo()
getSimpleType()
lessThan()
...

:Integer

element

element

contour:Element

typed=true

typedSimpleContent

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

:ElementType

elementType

< Contour > 2 -1 -1 -1 -1 -1 1 </Contour>

Figure 6.4: Typed representation example (UML object diagram)

of the list are known to be integer values, they are encapsulated in objects of the
class Integer providing an implementation for integer values.

With this representation of the Contour element at hand, an application can
now reasonably operate on the element. E.g., an application can query the size of
the list making up the content of the element and access its single elements, all
by invoking the appropriate methods size() and elementAt() offered by the class
List.

There are some constraints that have to be obeyed with regard to typed rep-
resentations though. It must be ensured that the content of an element in typed
representation is either simple, i.e., it is represented by an object implementing the
interface SimpleTypeInstance, or complex, i.e., its content consists of further child
nodes via the aggregation between Element and DocumentNode given in the class
diagram of Figure 6.1, both not both. This is expressed by Constraint 3.

Constraint 3 (Typed element content)

context Element

inv: typed implies
(typedSimpleContent -> notEmpty() implies
childNode -> isEmpty()) and

(childNode -> notEmpty() implies
typedSimpleContent -> isEmpty())

Moreover, it must be assured that the element type associated with a root
element in typed representation is globally visible, i.e., it may not be scoped. This
is expressed by the subsequent Constraint 4.

Constraint 4 (Typed root element)

context Document inv:
rootElement.typed implies
rootElement.elementType.scope = null

52 CHAPTER 6. THE TYPED DOCUMENT OBJECT MODEL

3. TDOM needs not to be typed

Even though it is the central goal of TDOM to exploit type information available
in schema definitions to infer an adequate, typed representation of elements and
attribute values for appropriate access, there are nevertheless situations in which
type information is not available. This might be the case, for example, if a me-
dia description scheme makes use of constructs that prohibit type inference for
parts of an MPEG-7 media description. As an example, the constructs <any> and
<anyAttribute> of MPEG-7 DDL state that an arbitrary element or attribute
value is valid as the content of a certain element type respectively. This includes
elements and attribute values for which no further schema information is available.
Obviously, it will prove difficult to create a typed representation of such elements
and attribute values.

As a fallback for such situations, TDOM offers the notion of untyped represen-
tations. In untyped representation, elements or attribute values are decoupled from
the schema definition, not being explicitly associated with the definition’s element
types or attributes. They maintain the name and namespace of their respective
element type or attribute as well as their content in the corresponding textual at-
tributes of the classes Element and AttributeValue that are depicted in the class
diagram of Figure 6.3 – with all the problems involved related to the appropriate
access to the content.

< Contour > 2 -1 -1 -1 -1 -1 1 </Contour>

contour:Element

typed=false

namespace=‘http://…’

name=‘Contour’

content=‘2 -1 -1 -1 -1 -1 1’

< Contour > 2 -1 -1 -1 -1 -1 1 </Contour>

contour:Element

typed=false

namespace=‘http://…’

name=‘Contour’

content=‘2 -1 -1 -1 -1 -1 1’

contour:Element

typed=false

namespace=‘http://…’

name=‘Contour’

content=‘2 -1 -1 -1 -1 -1 1’

Figure 6.5: Unyped representation example (UML object diagram)

The UML object diagram of Figure 6.5 illustrates the concept of untyped rep-
resentations. The diagram once more depicts the Contour element taken from the
example MPEG-7 media description of Figure 2.5 – this time, however, in untyped
representation. Again, dashed arrows indicate which parts of the object diagram
correspond to which part of the element shown at the top of the figure. The encod-
ing of the list of integer values constituting the content of the element in the textual
attribute content is especially noteworthy. There is no indication for an applica-
tion that this string represents a list. Without further knowledge, the content of
the element can thus only be processed as a string with doubtable usefulness. Even
if the application had that knowledge, it would always have to parse the string and
cast it to an appropriate internal representation before adequate access to the list
of integer values could take place.

There are some contraints with regard to untyped representations. Just as
with elements in typed representation, it must be assured that the content of an
element in untyped representation is either simple or complex. This is the purpose
of Constraint 5.

6.2. TDOM IN SIX POINTS 53

Constraint 5 (Untyped element content)

context Element

inv: not(typed) implies
(simpleContent <> null implies
childNode -> isEmpty()) and

(childNode -> notEmpty() implies
simpleContent = null)

Moreover, elements and attribute values must be created in a consistent manner:
an element or attribute value has to be either in typed or in untyped representation
but not in an odd mixture of both. I.e., an element or attribute value in typed
representation should not make use of the attributes of the classes Element and
AttributeValue that are intended for untyped representations and vice versa. This
is covered by Constraint 6.

Constraint 6 (Consistency of representations)

context AttributeValue

inv: typed implies
attribute -> notEmpty() and
typedContent -> notEmpty() and
name = null and namespace = null and content = null

inv: not(typed) implies
attribute -> isEmpty() and
typedContent -> isEmpty() and
name <> null and namespace <> null and content <> null

context Element

inv: typed implies
elementType -> notEmpty() and
name = null and namespace = null and
simpleContent = null

inv: not(typed) implies
elementType -> isEmpty() and
typedSimpleContent -> isEmpty() and
name <> null and namespace <> null

Finally, the definition of the formal shorthands attName and attNamespace that
have been used in Constraint 1 to address the name and namespace of the attribute
to which an attribute value belongs can now be provided:

Definition 3 (Attribute name and namespace)

context AttributeValue def:
let attName : String =

if typed then
attribute.name

else
name

endif
let attNamespace : String =

if typed then
attribute.namespace

else
namespace

endif

54 CHAPTER 6. THE TYPED DOCUMENT OBJECT MODEL

The definition of similar formal shorthands etName and etNamespace to address
the name and namespace of the element type of an element will also prove useful
later:

Definition 4 (Element type name and namespace)

context Element def:
let etName : String =

if typed then
elementType.name

else
name

endif
let etNamespace : String =

if typed then
elementType.namespace

else
namespace

endif

4. TDOM can be typed and untyped at the same time

It has already been mentioned before that MPEG-7 DDL offers constructs, e.g.,
<any> and <anyAttribute>, which permit the inclusion of elements and attribute
values in an MPEG-7 media description for which no further schema information
is available that could be used for the construction of typed representations. As a
consequence, TDOM has to keep these elements and attribute values in untyped
representation. Considering the advantages of typed representations, however, it is
undoubtedly unattractive to keep all the description’s other elements and attribute
values for which schema information is available in untyped representation as well,
just because of the existence of a few untypeable elements and attribute values.

For this reason, TDOM explicitly allows elements and attribute values in typed
and untyped representation to coexist in a single document. It is very well possible
that an element in typed representation has attribute values and child elements
in untyped representation among its constituents: the declaration of the element
type to which the element refers in typed representation might allow arbitrary
child elements and attribute values including those for which typed representations
cannot be inferred due to the lack of type information.

On the contrary, an element in untyped representation is not permitted to con-
tain child elements and attribute values in typed representation. In untyped rep-
resentation, the exact element type of an element is not known (only its name and
namespace) and with it the type’s declaration. Without the declaration, the exact
element types and attributes of the child elements and attribute values of the ele-
ment are not known as well and therefore the child elements and attribute values
cannot be in typed representation. This restriction is captured by Constraint 7.

Constraint 7 (Untyped representation of elements)

context Element

inv: not(typed) implies
not(childNode -> exists(e : Element | e.typed)) and
not(attributeValue -> exists(av | av.typed))

6.2. TDOM IN SIX POINTS 55

5. TDOM supports arbitrary simple types

From the perspective of MPEG-7 DDL, an object representing the simple content of
an element or the content of an attribute value in typed representation constitutes
an instance of a simple type. MPEG-7 DDL predefines a comprehensive set of
elementary simple types whose instances may occur as the content of elements and
attribute values in MPEG-7 media descriptions, as well as a variety of derivation
methods for the definition of new simple types.

For the handling of simple types and their instances, TDOM provides a generic
simple type framework. Using that framework, support for arbitrary simple types
and their instances can be smoothly integrated with TDOM which keeps the model
simple and extensible and relieves us from the need to anticipate and to hardwire
all supported simple types into the model.

SimpleTypeInstance

+ equalTo()
+ getSimpleType()

<<Interface>>

SimpleTypeInstanceFactory

+ fromString()
+ toString()
+ getSimpleType()

<<Interface>>

SimpleType

+ name : String
+ namespace : String
+ scope : String10..n 10..n

1

1

1

1

<<instantiate>>

Figure 6.6: TDOM simple type framework (UML class diagram)

The simple type framework of TDOM is presented in the class diagram of Figure
6.6. As shown in the diagram, the framework represents simple types by the class
SimpleType. A SimpleType object serves to represent either an elementary simple
type predefined by MPEG-7 DDL or a simple type specific to a certain schema
definition that has been derived from a predefined simple type using the constructs
for type derivation available with MPEG-7 DDL. TDOM attributes a simple type
with its name, namespace and an optional scope in which it is visible in a schema
definition.

TDOM represents the instances of a simple type as objects of a class offer-
ing a meaningful implementation for the instances of that type. Each of these
objects encapsulates a suitable representation of the simple type instance and of-
fers type-specific functionality that can be used by applications to appropriately
operate on the instance. The simple type framework, however, abstracts from
the concrete classes implementing a certain simple type. Instead, it demands a
minimal functionality that they have to provide which is specified by the inter-
face SimpleTypeInstance. The interface SimpleTypeInstance consists of the
methods equalTo(), which provides basic lookup functionality for simple type
instances as it can be used to compare two simple type instances for equality,
and getSimpleType(), which delivers simple type of the instance. Each simple
type keeps track of its instances which is expressed by the association between
SimpleType and SimpleTypeInstance.

Having provided a way to represent simple types and their instances, it must

56 CHAPTER 6. THE TYPED DOCUMENT OBJECT MODEL

be possible to construct simple type instances from the textual representation in
which they are conveyed in XML documents as well as to reconstruct that textual
representation from a given simple type instance. For that purpose, each simple
type references a factory for the production of its instances. TDOM demands a
minimum functionality for each of these factories which is collected by the interface
SimpleTypeInstanceFactory. The interface provides the methods fromString(),
which produces an instance of the simple type to which the factory is related from
the textual representation in which the instance is conveyed in an XML document,
toString(), which returns a textual representation of a simple type instance, and
getSimpleType(), which delivers the simple type whose instances are produced by
the factory.

Integer

+ equalTo()
+ getSimpleType()
+ lessThan()
+ greaterThan()
+ add()
+ sub()
+ mult()
+ div()
+ Integer()

IntegerFactory

+ fromString()
+ toString()
+ getSimpleType()
+ IntegerFactory()

<<instantiate>>

SimpleTypeInstance

equalTo()
getSimpleType()

<<Interface>>

List

+ equalTo()
+ getSimpleType()
+ addElement()
+ delElement()
+ size()
+ elementAt()
+ contains()
+ List()

0..n

0..n

+element
0..n{ordered}

0..n

SimpleTypeInstanceFactory

fromString()
toString()
getSimpleType()

<<Interface>>

<<instantiate>>

ListFactory

+ fromString()
+ toString()
+ getSimpleType()
+ ListFactory()

1

0..n

+elementFactory

1

0..n

<<instantiate>>

Figure 6.7: Example simple type support (UML class diagram)

Figure 6.7 gives an impression of how the simple type framework can be utilized
to support a set of simple types. In the example, support for the simple type
integer and its instances is provided. This is achieved by defining the class Integer
which, beyond type-specific methods, e.g., for adding and substracting, implements
the interface SimpleTypeInstance so that its objects are usable as the content
of elements and attribute values in typed representation. For the construction
of Integer objects from the textual representations in which integer values are
encoded in XML documents, the class IntegerFactory is supplied implementing
the Interface SimpleTypeInstanceFactory.

Likewise, TDOM can accommodate derivation methods for simple types. Figure
6.7 exemplifies the integration of a list type with TDOM. Similar to other simple
types, the classes List and ListFactory provide support for the instances of the list
type and for their construction by implementing the interfaces SimpleTypeInstance
and ListFactory, respectively. In contrast to elementary simple types such as inte-
ger, however, the construction of instances of a derived simple type typically includes
the construction of instances of the base type. In our example, the construction of a
list includes the construction of instances of the simple type of its elements. There-
fore, the factory for the list type must refer to the factory of its base type, modeled
by the aggregation between ListFactory and SimpleTypeInstanceFactory.

6.2. TDOM IN SIX POINTS 57

With these classes, lists of integer values can be adequately represented in
TDOM and constructed from the textual representation in which they are con-
veyed in XML documents; one can thus already build the typed representation of
the example Contour element of Figure 6.4. The approach outlined for the imple-
mentation of simple types can be systematically followed to the extent where all the
elementary simple types and simple type derivation methods coming with MPEG-7
DDL are supported.

In the following, the semantics of the methods of interfaces SimpleTypeInstance
and SimpleTypeInstanceFactory introduced by the simple type framework are
formally specified. Constraint 8 starts with the interface SimpleTypeInstance.

Constraint 8 (Simple type instance)

context SimpleTypeInstance::equalTo(SimpleTypeInstance sti) :

Boolean

post: sti = self implies
result = true

post: result = true implies
self.getSimpleType() = sti.getSimpleType()

context SimpleType inv:
simpleTypeInstance -> forAll(sti |

sti.getSimpleType() = self)

The first postcondition of the method equalTo() ensures that a simple type
instance is always equal to itself. The second postcondition states that, in order to
be equal, two simple type instance must be of the same simple type. The invariant
for the class SimpleType defines that the result of the method getSimpleType() on
a simple type instance is the simple type associated with the simple type instance.

Constraint 9 describes the interface SimpleTypeInstanceFactory in more de-
tail.

Constraint 9 (Simple type instance factory)

context SimpleTypeInstanceFactory::fromString(String s) :

SimpleTypeInstance

post: result <> null implies
result.getSimpleType() = self.getSimpleType()

post: result <> null implies
self.simpleType.simpleTypeInstance -> forAll(sti |

self.toString(sti) = s implies
sti.equalTo(result))

context SimpleType

inv: simpleTypeInstance -> forAll(sti1, sti2 |

simpleTypeInstanceFactory.toString(sti1) =

simpleTypeInstanceFactory.toString(sti2) implies
sti1.equalTo(sti2))

inv: simpleTypeInstanceFactory.getSimpleType() = self

The first postcondition of the method fromString() assures that an instance
of a simple type successfully constructed from a textual representation refers to the
simple type associated with the factory. The second postcondition states that if
an instance of a simple type is successfully constructed from a textual representa-
tion that is the result of the call of the method toString() on another instance

58 CHAPTER 6. THE TYPED DOCUMENT OBJECT MODEL

of the same type, then both instances are equal. In other words, fromString()
constitutes the inverse method to toString().2 In general, one can say that if call-
ing toString() on two instances of the same simple type yields the same textual
representation, then both instances are also equal to each other. This is formally
described by the first invariant of the class SimpleType in the constraint above.
Finally, the second invariant of SimpleType defines that the result of the call of the
method getSimpleType() on a simple type instance factory is always the simple
type to which the factory belongs.

6. TDOM facilitates flexible, fine-grained updates

The basic characteristics of TDOM pave the way to sophisticated updates on
MPEG-7 media descriptions. The model’s fine-grained representation of an XML
document’s structure allows applications to access any part of the document and
to perform modifications at any granularity. Moreover, the combination of the con-
cepts of typed and untyped representation of elements and attribute values offer
great flexibility with respect to updates.

To illustrate the benefit of having both typed and untyped representation avail-
able, Figure 2.5 depicts an update on the example melody media description. An
application might want to replace the Beat element by a new one. A natural way to
perform this task would be the deletion the Beat element followed by the insertion
of the new Beat element as a child of the element MelodyContour.

Did TDOM only support typed representations, it would have to be ensured
after every single update operation that every element and attribute value affected
by the update is valid with respect to the declaration of the particular element
type or attribute it is associated with in typed representation. This is very rigid.
In the example, the deletion the Beat element already violates the validity of the
MelodyContour element, since, according to the schema definition of Figure 2.4,
an element of type MelodyContour must contain exactly one element of type Beat.
Thus, the deletion and thereby the whole sequence of update operations would have
to be refused – even though the subsequent insertion of the new Beat element would
restore schema consistency.

But having the additional means of untyped representations at hand (see Figure
6.8), applications can transform elements and attribute values in typed represen-
tation (1) that are affected by an update to a corresponding untyped represen-
tation (2). Thereby, they are decoupled from the element types and attributes
of the schema definition. Any desired sequence of update operations can then be
performed without being concerned with schema validity (3). After all update op-
erations have been completed, the updated elements and attribute values can be
brought back to corresponding typed representations (4) as long as the document
is still valid with respect to the schema definition.

What is meant exactly by the terms corresponding untyped representation
and corresponding typed representation? A corresponding untyped representation
should reproduce an element or attribute value that is kept in typed representation
as faithful as possible with the means of untyped representation. Likewise, a corre-
sponding typed representation should faithfully reproduce an element or attribute
value in untyped representation by the means of typed representation.

2The opposite need not to be true. For example, one and the same float value might be
constructed from different textual representations (e.g., 123e-2 and 12.3e-1 represent the same
float value 1.23). However, calling toString() on the float value always yields just one of the
possible textual representations which does not need to be the one from which the value has been
constructed.

6.2. TDOM IN SIX POINTS 59

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

1 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

2 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

3 …

beat‘:Element

childNode

melodyContour:Element

contour:Element beat‘:Element

childNode

childNodechildNode

parentNode

4 …

Legend:

xxx:Element
Element in typed
representation

xxx:Element
Element in untyped
representation

Deletion of elementxxx:Element

xxx:Element Insertion of element

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

11 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

22 …

melodyContour:Element

contour:Element beat:Element

childNode

childNodechildNode

parentNode

33 …

beat‘:Element

childNode

melodyContour:Element

contour:Element beat‘:Element

childNode

childNodechildNode

parentNode

44 …

Legend:

xxx:Element
Element in typed
representationxxx:Element
Element in typed
representation

xxx:Element
Element in untyped
representationxxx:Element
Element in untyped
representation

Deletion of elementxxx:Element Deletion of elementxxx:Element

xxx:Element Insertion of elementxxx:Element Insertion of element

Figure 6.8: Switching between corresponding representations

Definition 5 formalizes a natural notion of correspondence for attribute values.
An attribute value av’ in untyped representation constitutes a corresponding un-
typed representation of an attribute value av in typed representation (formally:
av.CUR(av’)), if av’ refers to the name and namespace of the attribute associated
with av and if the textual content of av’ is a textual representation of the sim-
ple type instance forming the content of av. Conversely, one can also say that av
constitutes a corresponding typed representation of av’ (formally: av’.CTR(av)).

Definition 5 (Corresponding representations of attribute values)

context AttributeValue def:
let CUR(AttributeValue av) : Boolean =

typed and not(av.typed) and
attribute.namespace = av.namespace and
attribute.name = av.name and
typedContent.simpleType.simpleTypeInstanceFactory.

fromString(av.content) <> null and
typedContent.simpleType.simpleTypeInstanceFactory.

fromString(av.content).equalTo(typedContent)

let CTR(AttributeValue av) : Boolean =
av.CUR(self)

Definition 6 formally introduces a notion of correspondence for elements.3 Fol-
lowing that definition, an element e’ in untyped representation constitutes a corre-
sponding untyped representation of an element e in typed representation (formally:
e.CUR(e’)), if e’ refers to the name and namespace of the element type associated
with e. If e has simple content, it is furthermore demanded that e’ has simple con-
tent as well and the simple content of e’ is a textual representation of the simple
type instance forming the simple content of e. If e has complex content, however, it

3In the definition, the existence of the method deepEqualTo() to compare two objects for deep
equality is assumed.

60 CHAPTER 6. THE TYPED DOCUMENT OBJECT MODEL

is demanded that e’ also has complex content and the child nodes of e’ are equal
to the child nodes of e – with the exception of elements: the child elements of e’
are expected to be corresponding untyped representations of the respective child
elements of e. Finally, every attribute value of e’ must appear among the attribute
values of e or be a corresponding untyped representation of an attribute value of
e. With all these conditions fulfilled, one can conversely say that e constitutes a
corresponding typed representation of e’ (formally: e’.CTR(e)).

Definition 6 (Corresponding representations of elements)

context Element def:
let CUR(Element e) : Boolean =

typed and not(e.typed) and
elementType.namespace = e.namespace and
elementType.name = e.name and
(typedSimpleContent -> notEmpty() implies
e.simpleContent <> null and
typedSimpleContent.simpleType.simpleTypeInstanceFactory.

fromString(e.simpleContent) <> null and
typedSimpleContent.simpleType.simpleTypeInstanceFactory.

fromString(e.simpleContent).equalTo(typedSimpleContent)

) and
(childNode -> notEmpty() implies
childNode -> size() = e.childNode -> size() and
Sequence{1..childNode -> size()} -> forAll(i : Integer |

childNode -> at(i).deepEqualTo(e.childNode -> at(i)) or
(childNode -> at(i).oclIsTypeOf(Element) and
e.childNode -> at(i).oclIsTypeOf(Element) and
childNode -> at(i).CUR(e.childNode -> at(i))))

) and
(attributeValue -> notEmpty() implies
attributeValue -> size() = e.attributeValue -> size() and
attributeValue -> forAll(av1 |

e.attributeValue -> exists(av2 |

av1.deepEqualTo(av2) or av1.CUR(av2))))

let CTR(Element e) : Boolean =
e.CUR(self)

The construction of a corresponding untyped representation of an element or at-
tribute value in typed representation is straightforward as the typed representation
generally contains all the information that must be included with the corresponding
untyped representation. An attribute value in typed representation keeps the name
and namespace of the attribute with the attribute referred to by the attribute value
in typed representation. Moreover, a textual representation of the content of the
attribute value can be obtained from the simple type instance by employing the
method toString() of the associated simple type instance factory. Definition 7
furnishes the class AttributeValue with the method untype which transforms an
attribute value in typed representation to a corresponding untyped representation
in this manner. The definition also outlines a straightforward implementation of
this method as pseudocode.

Definition 7 (Untyping attribute values)

context AttributeValue::untype()

pre: self.typed

6.2. TDOM IN SIX POINTS 61

post: self@pre.CUR(self)

pseudocode:
-- change attribute value to untyped representation

self.typed := false

-- get attribute name and namespace from

-- attribute definition

Attribute att := self.attribute -> any(true)

self.name := att.name

self.namespace := att.namespace

-- remove reference to attribute definition

self.attribute := self.attribute -> excluding(att)

-- construct textual representation of content

-- from simple type instance

SimpleTypeInstance sti := self.typedContent -> any(true)

self.content := sti.simpleType.simpleTypeInstanceFactory.

toString(sti)

-- remove reference to simple type instance

self.typedContent := self.typedContent -> excluding(sti)

Likewise, an element in typed representation keeps the name and namespace of
the element type with the element type referenced. A textual representation of a
potentially existing simple content can be derived from the simple type instance rep-
resenting that simple content in typed representation via the associated simple type
instance factory. Corresponding untyped representations of any child elements and
attribute values of the element can be obtained recursively. Definition 8 augments
the class Element with the method untype which implements this approach to bring
an element in typed representation to a corresponding untyped representation.

Definition 8 (Untyping elements)

context Element::untype()

pre: self.typed

post: self@pre.CUR(self)

pseudocode:
-- change all child elements to untyped representation

foreach e1 in self.childNode ->

select(e2 : Element | e2.typed) do
e1.untype()

endforeach
-- change all attribute values to untyped representation

foreach av1 in self.attributeValue ->

select (av2 | av2.typed) do
av1.untype()

endforeach
-- change element to untyped representation

self.typed := false

-- get name and namespace of element type from

-- element type definition

ElementType et := self.elementType -> any(true)

self.name := et.name

self.namespace := et.namespace

-- remove reference to element type definition

self.elementType := self.elementType -> excluding(et)

-- construct textual representation from simple type

-- instance representing potentially existing simple

-- content

62 CHAPTER 6. THE TYPED DOCUMENT OBJECT MODEL

if self.typedSimpleContent -> notEmpty() then
SimpleTypeInstance sti := self.typedSimpleContent ->

any(true)

self.simpleContent := sti.simpleType.

simpleTypeInstanceFactory.toString(sti)

-- remove reference to simple type instance

self.typedSimpleContent := self.typedSimpleContent ->

excluding(sti)

endif

In contrast to the construction of a corresponding untyped representation, the
construction of a corresponding typed representation of an element or attribute
value in untyped representation is more complicated. This is due to the fact that
elements or attribute values in untyped representation do not, apart from the name
and namespace of their respective element type or attribute, convey type informa-
tion that would allow the construction of a valid corresponding typed representa-
tions solely on the basis of the untyped representation. Additional information in
form of a schema definition is needed. With the element types and attributes and
the associated type information contained in a schema definition, the respective
element type or attribute can be inferred to which an element or attribute value
in untyped representation is valid. Based on the inferred element type or attribute
and the associated type information, a corresponding typed representation can then
be constructed straightforwardly.

To this end, this thesis has developed typing automata. A typing automa-
ton constitutes a well-defined, executable representation of the schema and type
information carried in a schema definition that is capable of traversing an XML
document, inferring the element types and attributes to which the elements and
attribute values of the document comply, and obtaining corresponding typed rep-
resentations of these elements accordingly. We will treat typing automata in detail
in the next chapter.

Chapter 7

Typing

The previous chapter has introduced the TDOM data model for XML documents
as a basis for the development of an XML database solution that is suitable for
the management of MPEG-7 media descriptions. The design of TDOM already
addresses several of the fundamental requirements regarding the management of
MPEG-7 media descriptions. The model’s main virtue is that it offers the con-
cept of typed representation for elements and attribute values in XML documents.
With typed representations, TDOM exploits available type information contained
in schema definitions such as MPEG-7 media description schemes to represent sim-
ple element content and the content of attribute values appropriate to the particular
content type thereby allowing applications to reasonably access and process such
contents. For cases that type information is not available, TDOM still offers un-
typed representations where simple element content and the content of attribute
values is kept as text.

A central characteristic of TDOM is that representations can be switched de-
pending on the needs of a particular task. For instance, it may be useful to transform
elements and attribute values that are affected by an update operation to untyped
representation prior to the update. In that manner, they are decoupled from the
schema definition permitting updates that temporarily violate the schema. Simi-
larly, it is reasonable during the import of XML documents to TDOM, i.e., when
bringing XML documents from their textual format into TDOM representation, to
first produce a TDOM representation of the document that makes use of untyped
representation only: untyped representations can be constructed without having to
consider schema information. As a second step, the elements and attribute values
can then be brought to corresponding typed representations by exploiting schema
information for a more reasonable representation of document contents.

While the straightforward construction of corresponding untyped representa-
tions from elements and attribute values in typed representation has already been
covered, this chapter discusses in detail how, given a media description scheme
written in MPEG-7 DDL, corresponding typed representations from elements and
attribute values in untyped representation can be obtained.

The discussion starts with some basic considerations on the problem (7.1). Then,
the concept of typing automata as an executable and language-neutral formalism
for representing MPEG-7 media description schemes is proposed (7.2). Typing au-
tomata are capable of inferring and creating typed representations of elements and
attribute values. The computational complexity of the behavior of typing automata
is examined (7.3) and, in order to reduce the effort necessary for creating typed rep-

63

64 CHAPTER 7. TYPING

resentations in many practical situations, optimizations are suggested (7.4). This
chapter concludes showing how the basic typing automaton mechanism can be ex-
tended, so that even the more complex constructs of MPEG-7 DDL are supported
and the expressiveness of that language is reached (7.5).

7.1 Basic Considerations

The construction of a corresponding typed representation of an element or attribute
value in untyped representation can be regarded as a process consisting essentially of
two steps: firstly, it has to be inferred to which element types or attributes declared
in a schema definition the element or attribute value is valid (if any). Secondly, a
typed representation of the element or attribute value has to be constructed based
on the type information carried by one of the inferred declarations. While the
second step is pretty straightforward, implementing the first step on the basis of
schema definitions expressed in a schema definition language like MPEG-7 DDL
quickly shows considerable complexity.

Figure 7.1 intends to get across a presentiment of this. It shows the sample
MPEG-7 media description known from Figure 2.5 in a TDOM representation con-
sisting solely of untyped representations along with the Melody media description
scheme of Figure 2.4 to which the description complies. The element type declara-
tions spread all over the description scheme are highlighted. For the first step in
constructing typed representations, a TDOM implementation must find out which
element types the elements of the media description validly instantiate – i.e., the
implementation somehow has to infer exactly those relationships between elements
and element types which have been marked by dashed arrows in the figure.

But this inference is difficult: MPEG-7 DDL is a declarative schema definition
language. It defines no directly executable algorithm for inferring those declara-
tions in a schema definition that are validly instantiated by a particular element
or attribute value. As it can be seen at hand of the example Melody media de-
scription scheme, MPEG-7 DDL furthermore supports highly complex constructs
for the structuring of schema definitions such as complex types and complex type
derivation that further complicate validation directly on the basis of DDL syntax.

Faced with these difficulties, the adoption of an artifice common to the discipline
of compiler construction lies close at hand. In compiler construction, declarative
grammars are typically translated to various kinds of formal automata that serve
as simpler, executable intermediary representations of grammars for the purpose
of parsing. In a similar manner, MPEG-7 media description schemes could be
translated into a simpler intermediary and executable representation for the purpose
of inferring valid element types and attributes.

In the literature, several executable intermediary representations of schema defi-
nitions have been proposed for XML document validation. Proposals include rather
exotic approaches that translate schema definitions to XSLT stylesheets [Cla99]
which transform XML documents to HTML pages highlighting those places inside
these documents that are not valid [Jel99]. Another approach is to transform schema
definitions to LL(1) grammars [KV00] which are then fed into standard parser gen-
erators used for compiler construction to generate code for specialized parsers specif-
ically tailored to these schema definitions. Further approaches use various kinds of
formal automata for the intermediary representation of schema definitions, such as
finite state automata [SV02] (which can cover a restricted subset of non-recursive
schema definitions only due to their limited expressiveness), pushdown automata

7.1. BASIC CONSIDERATIONS 65

…

<complexType name=“MeterType”>
<complexContent>

<extension base=“mpeg7:AudioDType”>
<sequence>

<element name=“Numerator”>
<simpleType>

<restriction base=“integer”>
<minInclusive value=“1”/>
<maxInclusive value=“128”/>

</restriction>
</simpleType>

</element>
<element name=“Denominator”>

<simpleType>
<restriction base=“integer”>

<enumeration value=“1”/>
…
<enumeration value=“64”/>
<enumeration value=“128”/>

</restriction>
</simpleType>

</element>
</sequence>

</extension>
</complexContent>

</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
<simpleType>

<list itemType=“integer”/>
</simpleType>

</element>
<element name=“Beat”>

<simpleType>
<list itemType=“integer”/>

</simpleType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter”
type=“mpeg7:MeterType”
minOccurs=“0”/>

<element name=“MelodyContour”
type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>
…

melodyDescription:Document

rootNode

childNode

childNodechildNode childNode

childNode

childNode

parentNode

parentNode parentNode

audioDescriptionScheme:Element
typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

meter:Element
typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

melodyContour:Element
typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

denominator:Element
typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element
typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

contour:Element
typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element
typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

Figure 7.1: Typing problem

[SV02], and regular tree automata [Chi00, ML02, Mur99, Pre98, Hos00]. The lat-
ter have heavily inspired the design of several schema definition languages such as
TREX [Cla01] and RELAX-NG [CM01].

With regard to the typing problem, the adoption of regular tree automata as

66 CHAPTER 7. TYPING

an intermediary representation of MPEG-7 media description schemes is especially
attractive: regular tree automata essentially reduce the problem of validating an
XML document to the problem of successively evaluating string regular expressions.
The evaluation of string regular expressions is well-understood and there exists a
broad variety of highly efficient software libraries for this purpose. Apart from the
fact that these libraries not only simplify the implementation of regular tree au-
tomata in practice, most of these libraries – for instance, libraries that support Perl
5 regular expressions – additionally offer powerful extensions to traditional regular
expressions that prove useful to cope with more complex constructs of MPEG-7
DDL. Regular tree automata also have manageable computational complexity: it is
known that a deterministic regular tree automaton consumes a tree with a running
time linear to the number of tree nodes [CDG+02]. Last but not least, regular tree
automata permit a natural and intuitive representation of MPEG-7 media descrip-
tion schemes as we will see.

Σ={Meter, MelodyContour, Contour, Beat, Numerator,
Denominator, AudioDescriptionScheme}

Q={et1, et2, et3, et4, et5, et6, et7} D={list(integer), integer} F={et7}

δ(Meter, et5 et6) = et1 δ(MelodyContour, et3 et4) = et2
δ(Contour, list(integer)) = et3 δ(Beat, list(integer)) = et4
δ(Numerator, integer) = et5 δ(Denominator, integer) = et6
δ(AudioDescriptionScheme, et1? et2?) = et7

…

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter”
type=“mpeg7:MeterType”
minOccurs=“0”/>

<element name=“MelodyContour”
type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
<simpleType>

<list itemType=“integer”/>
</simpleType>

</element>
<element name=“Beat”>

<simpleType>
<list itemType=“integer”/>

</simpleType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MeterType”>
<complexContent>

<extension base=“mpeg7:AudioDType”>
<sequence>

<element name=“Numerator”>
<simpleType>

<restriction base=“integer”>
<minInclusive value=“1”/>
<maxInclusive value=“128”/>

</restriction>
</simpleType>

</element>
<element name=“Denominator”>

<simpleType>
<restriction base=“integer”>

<enumeration value=“1”/>
<enumeration value=“2”/>
<enumeration value=“4”/>
<enumeration value=“8”/>
<enumeration value=“16”/>
<enumeration value=“32”/>
<enumeration value=“64”/>
<enumeration value=“128”/>

</restriction>
</simpleType>

</element>
</sequence>

</extension>
</complexContent>

</complexType>

<element name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

et6

et5

et7

et1

et2

et3

et4

Figure 7.2: Example tree automaton

To give an impression of regular tree automata and how they can serve as a
means for the intermediary representation of media description schemes, Figure
7.2 depicts the example Melody media description scheme (depicted at the top of
the figure) represented as a bottom-up regular tree automaton1 (depicted at the

1Note that literature also knows of top-down regular tree automata [CDG+02]. Since these

7.1. BASIC CONSIDERATIONS 67

bottom). The figure employs the notation for regular tree automata introduced in
[Chi00].

As it can be seen to the left of the figure, a bottom-up regular tree automaton is
basically a 5-tuple consisting of the sets Σ defining the alphabet used for the naming
of tree nodes, Q defining the set of states that may be applied to the individual
tree nodes during the consumption of a tree by the automaton, D defining the set
of datatypes to which leaf node contents have to comply, F ⊆ Q defining the set of
final states indicating a successful consumption of a tree, and the function δ defining
the transition rules according to which states are applied to tree nodes.

A transition rule always takes a name n ∈ Σ and yields a state q ∈ Q. Two
different variants of transition rules are distinguished. The first variant is applicable
to leaf nodes only and takes a datatype d ∈ D as an argument in addition to n,
e.g., δ(Contour, list(integer)) = et3. Whenever a leaf node l bears the name n and
has a content that complies to d, the transition rule fires and q is applied to l. The
second variant of transition rules is applicable to inner nodes only and takes a string
regular expression over Q as an additional argument, e.g., δ(Meter, et5 et6) = et1.
Whenever an inner node i bears the name n and there exists a concatenation of
states applicable to the child nodes of i that complies to the regular expression, the
transition rules fires and q is applied to i.

A bottom-up regular tree automaton starts consuming a tree at the leaf nodes
making its way up to the root node constantly trying to apply the transition rules
to the nodes traversed. If a state f ∈ F can be applied to the root node, then the
tree has been successfully consumed by the automaton.

As Figure 7.2 exemplifies, the formalism of regular tree automata can be utilized
for the representation of the Melody media description scheme in a straightforward
manner. Every element type declared in the media description scheme is given a
textual label (et1, . . . , et7 in this case) which is indicated in the figure by grey circles
next to the declarations. These labels make up the set of states Q. The idea is that,
while consuming an XML document from the bottom up, the tree automaton applies
to an element exactly the labels of those element types that are validly instantiated
by the element. The labels of all unscoped element types in the description scheme
make up the set of final states F . Whenever the tree automaton attaches one of
these states to the root element, the document is considered valid because the root
element correctly instantiates a globally visible element type declaration.

Furthermore, the names of the element types declared in the media description
scheme (namespaces have been neglected for the sake of simplicity) make up the
alphabet of allowed tree node names Σ. The simple types used in the description
scheme for the declaration of element types with simple content constitute the
set of datatypes D (again, some details of the simple type declarations, such as
enumerations and the like, have been omitted in this example for simplicity reasons).

Finally, every element type declaration in the description scheme is translated
to a corresponding transition rule of the tree automaton. Each of these transition
rules takes the name of the declared element type as the first argument and yields
the element type’s label as its result. Depending on whether the content of the
element type is declared as simple or complex, a transition rule of the first or second
variant is created. For element types with simple content, the second argument of
the transition rule is the simple type used for the content declaration. For element
types with complex content, the content model is translated to an equivalent regular
expression based on the labels of those element types that occur in the content

classes are generally equivalent to each other, the limitation to bottom-up regular tree automata
implies no loss of generality.

68 CHAPTER 7. TYPING

model. For instance, the content model of the element type MelodyContour (which
is labeled et2) consisting of a sequence of elements of types Contour and Beat
(labeled et3 and et4, respectively) is translated to the regular expression et3 et4.
The regular expression created in this manner consitutes the second argument of
the transition rule.

melodyDescription:Document

rootNode

parentNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

et7

childNode

childNode childNode

parentNode

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

et2

et3 et4et5

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

childNodechildNode

childNode

parentNode

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

et1

et6

meter:Element

melodyDescription:Document

rootNode

parentNode

audioDescriptionScheme:Element

typed=false
namespace=‘http://…‘
name=‘AudioDescriptionScheme‘
simpleContent=null

et7

childNode

childNode childNode

parentNode

melodyContour:Element

typed=false
namespace=‘http://…‘
name=‘MelodyContour‘
simpleContent=null

contour:Element

typed=false
namespace=‘http://…‘
name=‘Contour‘
simpleContent=‘2 -1 -1…‘

beat:Element

typed=false
namespace=‘http://…‘
name=‘Beat‘
simpleContent=‘1 4 5…‘

et2

et3 et4et5

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘3‘

childNodechildNode

childNode

parentNode

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

et1

et6

meter:Element

Figure 7.3: Tree automaton application (UML object diagram)

Figure 7.3 illustrates the consumption of the example MPEG-7 media description
in TDOM representation by the constructed bottom-up regular tree automaton.
Beginning at the leaf elements of the description, the automaton ascends through the
tree structure as indicated by the dashed arrows. For every element, the automaton
fires as much transition rules as possible. The figure shows the states yielded for the
different elements of the media description as grey circles. As the applicable states
are labels representing the different element type declared in the media description
scheme, the automaton thus infers exactly those types that are instantiated by the
respective elements. Since the label et7 attached to the root element refers to the
globally visible element type AudioDescriptionScheme, the automaton has also
found that the media description as a whole is valid with regard to the Melody
media description scheme.

7.2 Typing Automata

As seen in the previous section, bottom-up regular tree automata provide an in-
tuitive formal foundation for the intermediary, language-neutral representation of
MPEG-7 media description schemes. Their execution behaviour permits the in-
ference of the element types and attributes that are instantiated by the elements
and attribute values in an MPEG-7 media description. For the aim of constructing
corresponding typed representations of elements and attribute values in untyped

7.2. TYPING AUTOMATA 69

representation within TDOM, that mechanism is therefore picked up and to devel-
oped further to what this thesis calls typing automata.

At their core, typing automata still constitute bottom-up regular tree automata.
However, they have been remodeled in an object-oriented fashion in order to be
compatible and seamlessly applicable to XML documents represented with TDOM.
During remodeling, special care has been taken to keep typing automata extensible
so that they can reach the expressiveness of MPEG-7 DDL and are thus suitable
for the representation of arbitrary MPEG-7 media description schemes. Further
exceeding the functionality of regular tree automata, typing automata are not only
capable of validating XML documents and finding the element types and attribute
values instantiated by the elements and attribute values of an XML document; they
are additionally able to produce corresponding typed representations of the elements
and attribute values on the basis of these inferred element types and attributes in
a second processing phase.

In the following, typing automata are introduced and formally specified by means
of UML and OCL. First, some basic definitions and the specification of the overall
structure of typing automata is provided (7.2.1). For simplicity, the existence of
attributes and attribute values is neglected in the ensuing definitions (we will come
back to attributes and attribute values and how they can be incorporated into
typing automata later in Section 7.5). Then, the behavior of typing automata
when they are applied to TDOM-represented XML documents is specified. This
behavioral specification is broken down into two phases: the validation phase (7.2.2),
in which the element types instantiated by the elements of an XML document are
inferred, and the typing phase (7.2.3), in which elements in untyped representation
are brought to corresponding typed representations accordingly.

7.2.1 Structure

Before starting with the structural definition of typing automata, some preliminaries
have to be addressed. In order to give a typing automaton the ability to address
element types within string regular expressions just like a regular tree automaton,
the class ElementType that represents element types within TDOM must be able
to provide a textual label uniquely identifying a given element type.

Definition 9 serves exactly that purpose. It introduces the formal shorthand
etID which delivers a textual identifier for an element type consisting of four parts
separated by the delimiter "::": the first part is always the string "et" indicating
that the ID refers to an element type. The second part consists of the scope of
the element type, followed by the namespace and the name of the element type as
the third and fourth part. The inclusion of the scope, namespace, and name of an
element type into its ID has the advantage that these data can be accessed within
string regular expressions. As it will be seen later, this facilitates the implementation
of more complex constructs supported by MPEG-7 DDL on the basis of regular
expressions.

Figure 7.4 illustrates element type IDs by showing the element types occur-
ring in the example Melody media description scheme represented as instances of
ElementType together with their IDs.

Definition 9 (Element type ID)

context ElementType def:
let etID : String =

"et::".concat(scope.concat("::".concat(

namespace.concat("::".concat(name)))))

70 CHAPTER 7. TYPING

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

et1.etID = ‘et::MelodyType::http://...::Meter’

et2.etID = ‘et::MelodyType::http://...::MelodyContour’

et3.etID = ‘et::MelodyContourType::http://...::Contour’

et4.etID = ‘et::MelodyContourType::http://...::Beat’

et5.etID = ‘et::MeterType::http://...::Numerator’

et6.etID = ‘et::MeterType::http://...::Denominator’

et7.etID = ‘et::null::http://...::AudioDescriptionScheme’namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

namespace=‘http://...’
name=‘Contour’
scope=‘MelodyContourType’

et3:ElementType

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

namespace=‘http://...’
name=‘Beat’
scope=‘MelodyContourType’

et4:ElementType

et1.etID = ‘et::MelodyType::http://...::Meter’

et2.etID = ‘et::MelodyType::http://...::MelodyContour’

et3.etID = ‘et::MelodyContourType::http://...::Contour’

et4.etID = ‘et::MelodyContourType::http://...::Beat’

et5.etID = ‘et::MeterType::http://...::Numerator’

et6.etID = ‘et::MeterType::http://...::Denominator’

et7.etID = ‘et::null::http://...::AudioDescriptionScheme’

et1.etID = ‘et::MelodyType::http://...::Meter’

et2.etID = ‘et::MelodyType::http://...::MelodyContour’

et3.etID = ‘et::MelodyContourType::http://...::Contour’

et4.etID = ‘et::MelodyContourType::http://...::Beat’

et5.etID = ‘et::MeterType::http://...::Numerator’

et6.etID = ‘et::MeterType::http://...::Denominator’

et7.etID = ‘et::null::http://...::AudioDescriptionScheme’

Figure 7.4: Example element type IDs (UML object diagram)

There may be situations in which no element type is declared in a schema def-
inition that suits a particular element in an XML document. Nevertheless, the
document does not necessarily have to be invalid: the element of unknown type
might validly occur, for example, in an element whose content is defined via the
<any> construct of MPEG-7 DDL. In order to be able to proceed with the consump-
tion of the document, a typing automaton needs a textual label for the unknown
type of the element. Definition 10 introduces the shorthand uetID for the class
Element that provides such an identifyer for an unknown element type. The IDs
delivered by uetID are very similar to those delivered by etID. The only differences
are that they always start with the prefix "uet" to distinguish them from known
element types declared in a schema definition and that the scope fraction of the ID
is always set to "null".

Definition 10 (Unknown Element type ID)

context Element def:
let uetID : String =

"uet::null::".concat(etNamespace.concat("::".concat(etName)))

After these preliminaries, the specification of typing automata can now be pro-
vided. Figure 7.5 defines the structure of a typing automaton by means of an UML
class diagram. As it can be seen from that diagram, a typing automaton, which
is modeled by the class TypingAutomaton, consists of a set of states, which are
element types represented by the TDOM class ElementType, and a set of transition

7.2. TYPING AUTOMATA 71

TypingAutomaton

ElementType

name : String
namespace : String
scope : String

0..n

0..n

+state0..n

0..n

Condition

+ evaluate()
+ type()

TransitionRule

0..n

1

0..n

1

1 0..n
+resultState
1 0..n 10..1 10..1

ComplexContentCondition

+ regExp : String

+ evaluate()
+ type()

SimpleContentCondition

+ evaluate()
+ type()

SimpleType

name : String
namespace : String
scope : String

0..n1 0..n1

Figure 7.5: Typing automaton structure (UML class diagram)

rules modeled by the class TransitionRule. Transition rules define how the states,
i.e., element types, are to be applied to the elements of a TDOM-represented XML
document when the document is consumed by the automaton. A transition rule
consists of two parts: the result state which is applied to an element when the
transition rule is applicable and a condition that decides applicability.

Conditions are represented by the abstract base class Condition which offers
two abstract methods evaluate() and type(). The method evaluate() takes an
element and the transition rule to which the condition belongs as its arguments
and returns whether the condition represented by a Condition object is satisfied
by the element or not. The method type() takes an element and the transition
rule to which the condition belongs as its arguments and transforms the element to
a corresponding typed representation in a way that depends on the particular kind
of condition.

Subsuming the conditions of transition rules under an abstract base class makes
typing automata extensible with regard to expressiveness. Different kinds of condi-
tions can be integrated with the basic typing automaton mechanism by subclassing
Condition and providing the methods evaluate() and type() until all constructs
offered by a schema definition language like MPEG-7 DDL are supported by typing
automata as well.

For the beginning, the expressiveness of typing automata is restricted to bottom-
up regular tree automata. Two kinds of conditions are introduced, namely sim-
ple content conditions and complex content conditions represented by the classes
SimpleContentCondition and ComplexContentCondition, respectively. Essen-
tially, a simple content condition refers to a simple type which is represented by
the class SimpleType of TDOM’s simple type framework. The condition is fulfilled
if an element has simple content and if this simple content is a valid instance of
the simple type referenced. A complex content condition consists of a Perl 5 string
regular expression (kept in the attribute regExp) and is fulfilled if an element has
complex content and the concatenation of the IDs of the element types applicable
to the element’s child elements satisfy the regular expression. Hence, both variants

72 CHAPTER 7. TYPING

of transition rules that are offered by traditional regular tree automata can be ex-
pressed using simple content conditions and complex content conditions within a
typing automaton as well.

Constraint 10 imposes several structural restrictions on typing automata.
Firstly, it is ensured that there exists at least one transition rule for every state
of a typing automaton that features exactly that state as its result state. Otherwise
a typing automaton would have states that would never be applied to an element.
Secondly, it is ensured that every result state of a transition rule also occurs among
the states of the typing automaton in which the transition rule is contained.

Constraint 10 (Typing automaton)

context TypingAutomaton

inv: state -> forAll(et | transitionRule -> exists(r |

r.resultState = et))

context TransitionRule

inv: typingAutomaton.state -> includes(resultState)

The structural definition of typing automata is concluded with an example. The
UML object diagram of Figure 7.6 depicts all transition rules of a typing automaton
capturing the example Melody media description scheme. Just as with the regular
tree automaton of Figure 7.2, a corresponding transition rule has been constructed
for every element type declaration contained in the scheme. Each transition rule
refers to the corresponding element type declared as its result state. Depending on
whether the element type declaration defines a simple or complex content model,
simple content conditions or complex content conditions have been created appro-
priately. Due to limitations of space, the figure refrains from using the full element
type IDs as given by Figure 7.4 within the regular expressions of complex content
conditions. Instead, ‘et.etID‘ is used as a placeholder for the ID of element type
et.

7.2.2 Validation phase

Having specified the structure of typing automata, the specification can continue
with the treatment of their behavior. As already mentioned, the consumption of
an XML document in TDOM representation by a typing automaton proceeds in
two phases. During the first of these phases, the validation phase, the element
types which the elements of the document validly instantiate are inferred. A typing
automaton does this in a way similar to bottom-up regular tree automata: the
automaton attempts to apply all transition rules to each of the document’s elements.
The element types serving as the result states of all those transition rules that are
applicable to a given element are called the element’s applicable element types.

This notion is formally concretized by Definition 11. According to the definition,
an element type et is applicable to an element e if and only if the name and
namespace of et match the element type name and namespace of e and if the
typing automaton has a transition rule which bears et as its result state and for
which its condition evaluates to true for e.

Definition 11 (Applicable element types)

context TypingAutomaton def:
let applicableElementTypes(Element e) : Set(ElementType) =

7.2. TYPING AUTOMATA 73

namespace=‘http://...’

name=‘AudioDescriptionScheme ’

scope=null

et7:ElementType

tr7:TransitionRule

regExp=‘(`et1.etID`)?(`et2.etID`)?’

c7:ComplexContentCondition

evaluate()

type()

resultState

namespace=‘http://...’

name=‘Numerator’

scope=‘MeterType’

et5:ElementType c5:SimpleContentCondition

evaluate()

type()

tr5:TransitionRule

resultState
namespace=‘http://...’

name=null

scope=‘Numerator’

st3:SimpleType

namespace=‘http://...’

name=‘Denominator’

scope=‘MeterType’

et6:ElementType c6:SimpleContentCondition

evaluate()

type()

tr6:TransitionRule

resultState
namespace=‘http://...’

name=null

scope=‘Denominator’

st4:SimpleType

namespace=‘http://...’

name=‘MelodyContour’

scope=‘MelodyType’

et2:ElementType

tr2:TransitionRule

regExp=‘`et3.etID``et4.etID`’

c2:ComplexContentCondition

evaluate()

type()

resultState

namespace=‘http://...’

name=‘Contour’

scope=‘MelodyContourType’

et3:ElementType c3:SimpleContentCondition

evaluate()

type()

tr3:TransitionRule

resultState
namespace=‘http://...’

name=null

scope=‘Contour’

st1:SimpleType

namespace=‘http://...’

name=‘Beat’

scope=‘MelodyContourType’

et4:ElementType c4:SimpleContentCondition

evaluate()

type()

tr4:TransitionRule

resultState
namespace=‘http://...’

name=null

scope=‘Beat’

st2:SimpleType

namespace=‘http://...’

name=‘Meter’

scope=‘MelodyType’

et1:ElementType

tr1:TransitionRule

regExp=‘`et5.etID``et6.etID`’

c1:ComplexContentCondition

evaluate()

type()

resultState

Figure 7.6: Example transition rules (UML object diagram)

states -> select(et | transitionRule -> exists(tr |

et = tr.resultState and
e.etName = et.name and
e.etNamespace = et.namespace and
tr.condition.evaluate(e, tr)))

74 CHAPTER 7. TYPING

An XML document is defined to be valid with regard to a typing automaton, if
there exists an applicable element type for the document’s root element that is not
scoped, i.e., that is globally visible. This is formally expressed by Definition 12.

Definition 12 (Valid document)

context TypingAutomaton def:
let valid(Document d) : Boolean =

applicableElementTypes(d.rootElement) -> exists (et |

et.scope = null)

In Definition 11, much of the complexity of validating an XML document with
regard to a typing automaton lies hidden within the method evaluate() of the
abstract class Condition. For a complete specification, the respective implementa-
tion of this method for both kinds of conditions considered so far, simple content
conditions and complex content conditions, has to be detailed.

Definition 13 specifies the behavior of the method evaluate() for the class
SimpleContentCondition. The method checks whether an element has simple
content and whether that simple content complies to the simple type referenced by
the simple content condition. Taking a closer look at the postconditions contained
in the definition, evaluate() returns false if the element passed as the method’s
argument does not have simple content, i.e., the element has either complex con-
tent or empty content. In case that the element is in typed representation and has
simple content, evaluate() returns true, if and only if an instance of the sim-
ple type referenced by the simple content condition can be successfully constructed
from the textual representation of the element’s content using the simple type in-
stance factory of TDOM’s simple type framework that is associated with the simple
type. In case that the element is in untyped representation and has simple content,
evaluate() returns true, if and only if an instance of the simple type referenced
by the simple content condition can be successfully constructed from the element’s
content.

Definition 13 (Evaluation of simple content condition)

context SimpleContentCondition::evaluate(Element e,

TransitionRule tr) : Boolean

post: e.childNode -> notEmpty() or
(e.typedSimpleContent -> isEmpty() and
e.simpleContent = null) implies
result = false

post: e.typedSimpleContent -> notEmpty() implies
result = self.simpleType.simpleTypeInstanceFactory.

fromString(e.typedSimpleContent.getSimpleType().

simpleTypeInstanceFactory.

toString(e.typedSimpleContent)) <> null

post: e.simpleContent <> null implies
result = self.simpleType.simpleTypeInstanceFactory.

fromString(e.simpleContent) <> null

Definition 14 specifies the behavior of the method evaluate() for the class
ComplexContentCondition. The method checks whether an element has complex
content and whether the IDs of the element types applicable to the element’s child
elements satisfy the string regular expression of the complex content condition.
Closer inspecting the postconditions of the definition, evaluate() always returns

7.2. TYPING AUTOMATA 75

false if the element passed as the method’s argument has simple content. If the
element does not have simple content, evaluate() returns true if and only if there
exists a sequence of element types applicable to the element’s child elements for
which holds that the sequence’s signature, i.e., the concatenation of the element
type IDs in the sequence, matches the condition’s regular expression.2

Definition 14 (Evaluation of complex content condition)

context ComplexContentCondition::evaluate(Element e,

TransitionRule tr) : Boolean

post: e.typedSimpleContent -> notEmpty() or
e.simpleContent <> null implies
result = false

post: e.typedSimpleContent -> isEmpty() and
e.simpleContent = null implies
result = tr.typingAutomaton.

applicableChildElementTypes(e) -> exists(acet |

tr.typingAutomaton.signature(acet).matches(regExp))

Definition 15 serves to clarify the meaning of the construct
applicableChildElementTypes(e) used in the previous definition to denote
sequences of element types applicable to the child elements of a given element e.
More precisely, applicableChildElementTypes(e) refers to the set of all possible
sequences that have the same size as the sequence of child elements of e and whose
members satisfy the following conditions: if the set of applicable element types
for a given child element of e is not empty, then the member of the sequence at
the position corresponding to the position of the child element below e must be
one of these applicable element types. If the set of applicable element types for a
given child element of e is empty, then the member of the sequence at the position
corresponding to the position of the child element must be the child element itself.

Definition 15 (Applicable child element types)

context TypingAutomaton def:
let applicableChildElementTypes(Element e) : Set(Sequence(OclAny)) =

Sequence(OclAny).allInstances -> select(seq |

seq -> size() = e.childElements -> size() and
Sequence{1..seq -> size()} -> forAll(i |

(applicableElementTypes(e.childElements -> at(i)) ->

notEmpty() implies
applicableElementTypes(e.childElements -> at(i)) ->

contains(seq -> at(i)) and
(applicableElementTypes(e.childElements -> at(i)) ->

isEmpty() implies
e.childElements -> at(i) = seq -> at(i)))))

For the sake of completeness, Definition 16 finally provides us with the specifi-
cation of the signature of a sequence of applicable child element types as employed
within Definition 14. This signature is simply the concatenation of all element type
IDs and unknown element type IDs of all element types and elements contained in
that sequence, respectively.

2For the definition, it is assumed that the type String predefined by OCL supplies the operation
matches which evaluates a given string against a Perl 5 regular expression and returns true if and
only if the string constitutes a valid word of the language defined by that regular expression.

76 CHAPTER 7. TYPING

Definition 16 (Signature)

context TypingAutomaton def:
let signature(Sequence(OclAny) seq) : String =

seq -> iterate(

obj : OclAny;

res : String = "";

if obj.oclIsTypeOf(ElementType) then
res.concat(obj.etID)

elseif obj.oclIsTypeOf(Element) then
res.concat(obj.uetID)

endif
)

One might get the impression that due to the mutually recursive definition of
applicableElementTypes() and applicableChildElementTypes() via the indi-
rection of the method evaluate() of the class ComplexContentCondition, the
behavior of a typing automaton during the validation phase consitutes a form of
top-down processing. However, one should consider that, according to these defini-
tions, the recursion immediately descends down to the leaf elements of a document
without performing any calculations; the applicable element types are not inferred
until the recursion ascends back up the document on its way from the leaves. Thus,
not denying its origin from bottom-up regular tree automata, a typing automaton’s
behaviour during the validation phase rather has to be considered as bottom-up
processing.

7.2.3 Typing phase

If a typing automaton has succeeded in validating an XML document in TDOM
representation and inferring the element types applicable to the document’s element
during the validation phase, it enters its second phase of processing, the so-called
typing phase. Starting out from the root element in a top-down manner, the au-
tomaton uses the applicable element types inferred during the validation phase to
transform the individual elements of the document to corresponding typed repre-
sentations.

Figure 7.7 illustrates the typing phase of a typing automaton using the example
MPEG-7 Melody media description. Beginning at the root element, the typing
automaton selects an applicable unscoped element type for the root element – et7
in this case as it is the only one available – and uses this element type to bring the
root element into a corresponding typed representation (1). Having transformed the
root element to typed representation, the automaton proceeds with the root’s child
elements and selects one of their applicable element types to produce corresponding
typed representations as well (2). In that fashion, the automaton continues on
descending down the document (3) until the leaf elements of the document have
been reached and transformed to corresponding typed representations (4).

The core of a typing automaton’s behavior during the typing phase is given by
Definition 17. This definition formally introduces the method typeElement() of the
TypingAutomaton class. The method is passed an element e and an element type
et as its parameters. As specified by the pre- and postconditions in the definition,
the method transforms e to a corresponding typed representations on the basis
of et provided that e is in untyped representation and that et is applicable to
e. The transformation recursively brings as much of the child elements of e as
possible to corresponding typed representations. More precisely, there are only two

7.2. TYPING AUTOMATA 77

melodyDescription:Document

rootNode

audioDescriptionScheme:Element

typed=false

namespace=‘http://…‘

name=‘AudioDescriptionScheme‘

simpleContent=null

parentNode

…

type()

type(et7)
parentNode

audioDescriptionScheme:Element

typed=true

childNode childNode

melodyContour:Element

typed=false

namespace=‘http://…‘

name=‘MelodyContour‘

simpleContent=null

typed=false

namespace=‘http://…‘

name=‘Meter‘

simpleContent=null

meter:Element

parentNode

…

parentNode

…

namespace=‘http://...’

name=‘AudioDescriptionScheme’

scope=null

et7:ElementType
elementType

type(et2)type(et1)

parentNode

childNode

namespace=‘http://...’

name=‘Meter’

scope=‘MelodyType’

et1:ElementType
elementType

type(et6)type(et5)

typed=true

meter:Element

childNode

denominator:Element

typed=false

namespace=‘http://…‘

name=‘Denominator‘

simpleContent=‘4‘

numerator:Element

typed=false

namespace=‘http://…‘

name=‘Numerator‘

simpleContent=‘3‘

parentNode

childNode

namespace=‘http://...’

name=‘MelodyContour’

scope=‘MelodyType’

et2:ElementType

elementType

type(et4)type(et3)

childNode

melodyContour:Element

typed=true

contour:Element

typed=false

namespace=‘http://…‘

name=‘Contour‘

simpleContent=‘2 -1 -1…‘

beat:Element

typed=false

namespace=‘http://…‘

name=‘Beat‘

simpleContent=‘1 4 5…‘

namespace=‘http://...’

name=‘Numerator’

scope=‘MeterType’

et5:ElementType

elementType

numerator:Element

typed=true

namespace=‘http://...’

name=‘Denominator’

scope=‘MeterType’

et6:ElementType

elementType

denominator:Element

typed=true

namespace=‘http://...’

name=‘Contour’

scope=‘MelodyContourType’

et3:ElementType

elementType

contour:Element

typed=true

namespace=‘http://...’

name=‘Beat’

scope=‘MelodyContourType’

et4:ElementType

elementType

beat:Element

typed=true

value=3

equalTo()

getSimpleType()

lessThan()

...

:Integer

typedSimpleContent

value=4

equalTo()

getSimpleType()

lessThan()

...

:Integer

typedSimpleContent

:List

equalTo()

getSimpleType()

addElement()

elementAt()

size()

...

typedSimpleContent

:List

equalTo()

getSimpleType()

addElement()

elementAt()

size()

...

typedSimpleContent

1 2

3

4

et7 et2et1

et3 et4et5 et6

Figure 7.7: Typing phase (UML object diagrams)

cases in which one of the direct or indirect child elements of e is not transformed
to a corresponding typed representation using one of its applicable element types:
in case that the child element has no such applicable element types or in case
that its parent element has not been transformed to typed representation either.
Consideration of the latter case is necessary because it can happen that an element
has applicable element types while its parent element has not. As a corresponding
typed representation of the parent element thus cannot be constructed and TDOM
does not allow an element in typed representation to appear among the child nodes
of an element in untyped representation, a corresponding typed representation of
the element itself also cannot be created.

The pseudocode given in the definition proposes a simple algorithm for the
implementation of this method that consists of two major steps: in the first step, a
transition rule of the typing automaton is selected that has decided in the validation
phase that et is applicable to e. I.e., the chosen transition rule must return et as
its result state and its condition must evaluate to true for e. In the second step,
the element is passed on to the type() method of the transition rule’s condition
which brings it into a corresponding typed representation in a way that depends on
the particular kind of condition.

Definition 17 (Typing elements)

context TypingAutomaton::typeElement(Element e, ElementType et)

pre: not(e.typed)
pre: self.applicableElementTypes(e) -> includes(et)

post: e.CUR(e@pre)

78 CHAPTER 7. TYPING

post: e.elementType = et

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and
self.applicableElementTypes(c) -> includes(c.elementType)) implies
self.applicableElementTypes(c) -> isEmpty() or
not(c.parentNode.typed))

pseudocode:
-- Find a transition rule which decides that the element

-- type is applicable

tr := self.transitionRule -> any(tr1 |

tr1.resultState = et and
tr1.condition.evaluate(e, tr1))

-- Type element according to the transition rule’s condition

tr.condition.type(e, tr)

Note that the proposed algorithm bears a source of inefficiency if implemented
naively. It includes the selection of a transition rule deciding that et is applicable to
e. Simply realizing this step by checking all transition rules of the typing automaton
until one is found that delivers et as its result state and whose condition evaluates
to true for e is not very efficient: this calculation has already been performed
during the validation phase – not to mention the fact, that the repeated evaluation
of a complex content condition might involve the inference of the applicable element
types of e’s child elements which has already been done in the validation phase as
well.

Nevertheless, the typeElement() method can be realized efficiently at the ex-
pense of main memory without needing to change the overall structure of the pro-
posed algorithm. While traversing an XML document from the bottom-up inferring
the applicable element types during the validation phase, the typing automaton can
cache for each element of the document (a) its applicable element types and (b) the
transition rule which decided that an element type is applicable. With these data at
hand, the selection in question merely constitutes a simple cache lookup operation.

Definition 18 specifies common characteristics of the type() method that have to
be fulfilled by every implementation of that method in the subclasses of Condition,
even though the concrete behaviour of these implementations depends on the par-
ticular kind of condition. According to the pre- and postconditions given by the
definition, all implementations of type() have in common that whenever they are
passed an element in untyped representation as their first argument which has the
same element type name and namespace as the element type acting as the result
state of the transition rule passed as their second argument and for which the condi-
tion evaluates to true, they bring the element and as much of its direct and indirect
child elements as possible into a corresponding typed representation on the basis of
the result state.

Definition 18 (Typing functionality of Conditions)

context Condition::type(Element e, TransitionRule tr)

pre: not(e.typed)
pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

7.2. TYPING AUTOMATA 79

applicableElementTypes(c) -> includes(c.elementType)) implies
tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or
not(c.parentNode.typed))

Definition 19 proposes an algorithm for the implementation of the type()
method for simple content conditions. The algorithm transforms elements with
simple content, that are in untyped representation and foe which a given simple
content condition evaluates to true, into a suitable corresponding typed represen-
tation. Following the pseudocode given by the definition, type() first changes the
basic structure of the passed element to typed representation, i.e., the element’s
type attribute is set to true, the name and namespace attributes are set to null,
and the element is associated with the element type acting as the result state of
the passed transition rule. Then, employing the factory of the simple type associ-
ated with the simple content condition, an appropriate simple type instance for the
simple element content is constructed and linked with the element. Note that this
is always possible as the preconditions of the type() method assure that a call of
the evaluate() method of the condition yields true; evaluate() already checks
whether a simple type instance can be constructed for the element content.

Definition 19 (Typing elements with simple content)

context SimpleContentCondition::type(Element e, TransitionRule tr)

pre: not(e.typed)
pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

applicableElementTypes(c) -> includes(c.elementType)) implies
tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or
not(c.parentNode.typed))

pseudocode:
-- Bring element to appropriate typed representation

e.typed := true

e.name := null

e.namespace := null

e.elementType := e.elementType -> including(tr.resultState)

-- Use the simple type instance factory associated

-- with the simple type of the condition to produce

-- an appropriate simple type instance for use as

-- typed element content

stif := self.simpleType.simpleTypeInstanceFactory

sti := stif.fromString(e.simpleContent)

-- Set simple type instance as simple content of element

e.simpleContent := null

e.typedSimpleContent := e.typedSimpleContent ->

including(sti)

Definition 20 covers an algorithm for the implementation of the type() method
for complex content conditions. The algorithm transforms elements with complex
content, that are in untyped representation and on which a given complex content
condition evaluates to true, into a suitable corresponding typed representation.
Similar to the type() method for simple content conditions, the implementation

80 CHAPTER 7. TYPING

first changes the basic structure of the passed element to typed representation.
Then, type() chooses a sequence of element types applicable to the element’s child
elements that satisfies the condition, i.e., whose signature matches the Perl 5 string
regular expression of the condition. Again, this is always possible. The evaluate()
method already checks the existence of such a sequence. At last, the child elements
of the element passed as the method’s parameter are brought to corresponding typed
representations in a way that the complex content condition remains satisfied. This
is achieved by synchronously iterating over the chosen sequence of applicable child
element types and the sequence of child elements. In case that the current member
of the sequence of applicable child element types is an element type, the method
uses this element type to bring the corresponding member in the sequence of child
elements into typed representation by recursively calling the typing automaton’s
typeElement() method.

Definition 20 (Typing elements with complex content)

context ComplexContentCondition::type(Element e, TransitionRule tr)

pre: not(e.typed)
pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

applicableElementTypes(c) -> includes(c.elementType)) implies
tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or
not(c.parentNode.typed))

pseudocode:
-- Bring element to appropriate typed representation

e.typed := true

e.name := null

e.namespace := null

e.elementType := e.elementType -> including(tr.resultState)

-- Choose a suitable sequence of applicable element

-- types for the element’s child elements.

-- The sequence’s signature must match the regular

-- expression of the condition

acet := tr.typingAutomaton.

applicableChildElementTypes(e) -> any (acet1 |

tr.typingAutomaton.contentSignature(acet1).

matches(self.regExp))

-- Type child elements according to the applicable content

-- element types

foreach i in Sequence{1..acet -> size()} do
if acet -> at(i).oclIsTypeOf(ElementType) then
tr.typingAutomaton.typeElement(e.childElements -> at(i),

acet -> at(i))

endif
endforeach

The proposed implementation of the type() method once more contains a pos-
sible source of inefficiency. Selecting a suitable sequence of applicable element types
for the child elements of the passed element such that the complex content condi-
tion evaluates to true for that sequence is inefficient if implemented naively: this

7.2. TYPING AUTOMATA 81

calculation has already taken place during the typing phase and repetition of that
calculation implies the repeated inference of the applicable element types of the
child elements.

But again, the method can be realized efficiently at the expense of memory with-
out the need of changing the overall structure of the proposed algorithm. During
the validation phase, the typing automaton can not only cache for each element of
the document its applicable element types and the transition rule which decided
applicability but also, in case that the transition rule bears a complex content con-
dition, the sequence of child element types for which the complex content condition
evaluated to true. This way, the selection in question constitutes a cache lookup
operation.

So far, the behavior of typing automata has been separated into a validation
phase and a typing phase. What is still missing is a central entry point to a typing
automaton’s behavior that interconnects both phases. Such an entry point is given
by Definition 21. The definition provides the specification of the method type()
of the class TypingAutomaton. This method takes an XML document in TDOM
representation as its parameter.

As specified by the postconditions in the definition, the method transforms
as much elements as possible to corresponding typed representations if the doc-
ument is valid with regard to the typing automaton represented by the current
TypingAutomaton object. More specifically, there are only three cases in which an
element is allowed not to constitute a corresponding typed representation compared
to its representation prior to the call of the method: the first case is that element
has already been in typed representation before the call and is still in typed repre-
sentation on the basis of one of its applicable element types. The second case is that
the element is in untyped representation and has no applicable element types. The
third case is that not only the element is in untyped representation but also its par-
ent element. Should the document be invalid with regard to the typing automaton,
type() transforms all elements of the document to untyped representation.

The pseudocode given in the definition shows a straightforward implementation
of this method. In order to obtain a clean basis for processing, the method first
brings all elements to untyped representation by calling the untype() method on
the root element. Next, the method initiates the validation phase by checking the
validity of the document and, in doing so, inferring the applicable element types
for the document’s elements. If the document is valid, the method proceeds to the
typing phase and selects an unscoped element type applicable to the root element
and employs it to create a corresponding typed representation of the root element
via typeElement().

Definition 21 (Typing documents)

context TypingAutomaton::type(Document d)

post: self.valid(d) implies
Element.allInstances -> forAll(e |

e.document = d and not(e.CUR(e@pre) and
self.applicableElementTypes(e) -> includes(e.elementType)) implies
(e.typed@pre and e.typed and
self.applicableElementTypes(e) -> includes(e.elementType)) or
(not(e.typed) and
self.applicableElementTypes(e) -> isEmpty()) or
(not(e.typed) and e.parentNode -> notEmpty() and
not(e.parentNode.typed)))

post: not(self.valid(d)) implies

82 CHAPTER 7. TYPING

not(d.rootElement.typed)
pseudocode:

-- Untype document if root element is typed

if d.rootElement.typed then
d.rootElement.untype()

endif
-- Select an arbitrary applicable unscoped element type to type

-- root element with if possible.

if self.valid(d) then
rootElementType := self.applicableElementTypes(d.rootElement) ->

any(et | et.scope = null)

-- Type root element

self.typeElement(d.rootElement, rootElementType)

endif

7.3 Computational Complexity

Having provided the core specification of typing automata, it is useful to obtain
an indicator for the computational complexity of their behavior. Therefore, this
section estimates an upper bound for the running time of the type() method of
the TypingAutomaton class given by Definition 21. This bound will be expressed in
terms of the number of elements n contained in the XML document that is to be
typed and the number of transition rules t of the typing automaton used for typing.

The estimation makes two assumptions: firstly, it is assumed that a typing
automaton caches the element types applicable to the elements of the document
during the validation phase along with the transition rules that decided applicability
and the sequences of child element types what were applied to these transition
rules. This has already been suggested in Section 7.2.3 for the implementation
of the typeElement() and type() methods of the classes TypingAutomaton and
ComplexContentCondition. Such a caching ensures that applicable element types
only need to be calculated once for each element and that the complexity of repeated
access to the cached results of this calculation is negligible for the estimation, i.e.,
O(1), if applying a suitable hashing technique.

Secondly, it is assumed that a typing automaton is deterministic, i.e., the num-
ber of applicable element types for each element is at most one. This restriction
does not imply a loss of generality. It has been proven in literature that the classes
of non-deterministic and deterministic bottom-up regular tree automata are equiv-
alent to each other [Chi00, CDG+02]: for each non-deterministic bottom-up regular
tree automaton an equivalent deterministic one can be algorithmically constructed.
Given the structural similarity between bottom-up regular tree automata and typ-
ing automata – both types of automata support the same kinds of transition rules
and the mapping between them is straightforward as it has been illustrated by
means of Figures 7.2 and 7.6 – this result also applies to typing automata.

Besides, unambiguousness is a natural quality criterion for schema design. It is
no surprise that most schema definitions for XML documents occurring in practice
are intuitively designed to be unambiguous and thus straightforwardly translate to
deterministic typing automata. The example Melody media description scheme of
Figure 2.4 and its typing automaton representation given by Figure 7.6 perfectly
illustrate this point.

Given these assumptions, the running time of the type() method of the class
TypingAutomaton in terms of n and t can be expressed as follows:

7.3. COMPUTATIONAL COMPLEXITY 83

T (n, t) =
n∑

i=1

Uei
+

n∑
i=1

Aei
+

n∑
i=1

Cei
(7.1)

Equation 7.1 becomes clear when taking a look at the algorithm proposed in Def-
inition 21. The algorithm first brings all elements of the XML document that is to
be typed to untyped representation, then initiates the validation phase in which the
element types applicable to the elements are inferred, and finally starts the typing
phase in which typed representations of the elements are produced according to the
inferred element types. For each of the document’s elements ei, i = 1 . . . n, a typing
automaton thus spends the running times Uei

to bring it to untyped representation,
Aei to infer its applicable element types, and Cei to create a corresponding typed
representation of ei on the basis of an applicable element type.

Since the production of a corresponding untyped representation of a single ele-
ment ei – if at all required because ei might already be in untyped representation –
merely involves changes to the attribute values of the Element object representing
ei and the associations it participates in, the required running time Uei

is indepen-
dent of the number of elements n in a document and the number of transition rules
t of a typing automaton. Hence:

Uei
= O(1), i = 1 . . . n (7.2)

Similarly, the production of a corresponding typed representation of a single
element ei on the basis of an applicable element type mainly involves changes to the
Element object representing ei that are independent of n and t. Moreover, since
a caching of applicable element types is assumed, the selection of the particular
applicable element type and transition rule that is used for the creation of the
corresponding typed representation constitutes an effort that is independent of n
and t as well. Therefore:

Cei
= O(1), i = 1 . . . n (7.3)

Inserting Equations 7.2 and 7.3 into Equation 7.1 yields:

T (n, t) =
n∑

i=1

O(1) +
n∑

i=1

Aei
+

n∑
i=1

O(1) = O(n) +
n∑

i=1

Aei
(7.4)

The estimation of an upper bound for the running time Aei
that has to be spent

for the inference of the applicable element types of element ei during the validation
phase is more complicated. Basically, a typing automaton attempts to apply all
of its t transition rules to ei. In case that a transition rule has a simple content
condition, the test for the transition rule’s applicability mainly involves checking
whether ei has simple content and whether a valid simple type instance can be
constructed from the textual representation of ei’s simple content (see Definition
13). This is independent of the number of elements n in the document and the
number of transition rules t of the typing automaton and thus can be estimated
with O(1).

In case that a transition rule has a complex content condition, the test for
the transition rule’s applicability mainly involves checking whether ei has complex
content and evaluating a string regular expression on the signature of the sequence
of applicable child element types of ei (see Definition 14). As it is assumed that
the typing automaton is deterministic, there exists only one such signature. It
is a well-known fact that the evaluation of string regular expressions on a string

84 CHAPTER 7. TYPING

takes linear time with regard to the length of the string [ASU86]. Since the length
of the signature of the sequence of applicable child element types of ei is roughly
proportional to the number of ei’s child elements cei

, the running time for checking
a complex content condition should not exceed O(cei

) in practice.
Therefore, Aei can be bounded as follows:

Aei
= t max(O(cei

), O(1)) = t O(cei
), i = 1 . . . n (7.5)

Inserting Equation 7.5 into Equation 7.4 delivers:

T (n, t) = O(n) + t
n∑

i=1

O(cei) (7.6)

As in general
∑n

i=1 O(fi(n)) = O(
∑n

i=1 fi(n)) [CLR90], Equation 7.6 becomes:

T (n, t) = O(n) + t O(
n∑

i=1

cei) (7.7)

Since the only element among the n elements contained in an XML document
that is not a child element of another and that is thus not covered by the sum∑n

i=1 cei
is the root element, it follows that

∑n
i=1 cei

= n− 1. Hence, Equation 7.7
can be rewritten as:

T (n, t) = O(n) + t O(n− 1) = O(t n) (7.8)

Given the bound of Equation 7.8, it can be stated that, subject to the prelim-
inary assumptions concerning caching and determinism, the running time of the
type() method of the class TypingAutomaton never grows more than linearly with
the number of transition rules t of the typing automaton on which the method is
executed. Its running time also never grows more than linearly with the number of
elements n in the XML document that is passed to type(). Given this linearity, one
can conclude that a typing automaton’s behaviour is reasonably efficient to allow
the application of even complex typing automata with large numbers of transition
rules to large XML documents.

7.4 Optimizations

Having discussed of the computional complexity of the behavior of typing automata,
it is now time to spend some thoughts on possible optimizations. The proposed al-
gorithm for the type() method of the class TypingAutomaton (see Definition 21),
which validates a document and transforms as much elements as possible to corre-
sponding typed representations, is suboptimal in many practical cases. The algo-
rithm behaves reasonably well when applied to an XML document whose TDOM
representation consists of elements in untyped representation only. This is typically
the case during the import of a document to TDOM where usually a TDOM repre-
sentation based solely on untyped representations is produced as a first step, before
applying a typing automaton in order to validate the document and to create typed
representations. In such a situation, the algorithm traverses the elements contained
in the document from the bottom up in order to calculate their applicable element
types while checking the document’s validity. Assuming a caching as described
above, the algorithm then traverses the elements from the top down for a second
time and brings them to corresponding typed representations.

7.4. OPTIMIZATIONS 85

But when applied to a document which does not just contain elements in un-
typed representation, the behaviour of the algorithm is less reasonable. Such a
situation might occur during the update of an XML document where only parts
of the document have been temporarily transformed to untyped representation in
order to decouple them from the schema definition and now need to be brought
back to typed representation. In this case, the algorithm first brings all elements
of the document to untyped representation as a first step before continuing on as
supplied before. It is rather obvious that this behaviour is far from perfect as it
ignores the typing results of previous runs of the typing automaton on the document
just because potentially very small fractions of a document have been changed and
brought to untyped representation during the update. Especially for large docu-
ments, validation and production of typed representations might have consumed
considerable processing power that should not be thrown away carelessly.

Therefore, an alternative implementation of the type() method of
TypingAutomaton similar in idea to [PV03] is now proposed that makes use of
already existing typed representations of elements. This variant is called local doc-
ument typing as it aims at limiting the effects of bringing the document’s elements
from untyped to corresponding typed representations to the immediate vicinity of
the elements in untyped representation. It attempts to preserve already existing
typed representations of elements thereby significantly reducing the number of ele-
ments that need to be traversed for the purpose of document typing in many cases
occurring in practice.

Figure 7.8 illustrates the different steps of the local document typing approach
at hand of an excerpt of the example Melody media description known from Fig-
ure 2.5 in TDOM representation. The excerpt covers the Meter element and its
child elements. It is assumed that all elements of the media description are in
typed representation with the exception of the Numerator element which is in un-
typed representation because its simple content has been changed to 5 during an
update operation. It is now intended to bring as much elements of the description
as possible, especially the Numerator element of course, to appropriate typed rep-
resentations by employing the typing automaton that represents the Melody media
description scheme with transition rules as given by Figure 7.6.

To achieve that aim, local document typing starts the typing process at the
topmost untyped elements of the document. These are all those elements that are
in untyped representation but whose parent elements are in typed representation
or, in case that the root element is in untyped representation already, the root
element itself. The topmost untyped elements subsume all elements of the document
that need to be brought to corresponding typed representations as their direct and
indirect child elements. They further constitute the boundary to those parts of the
document which already are in typed representation and which ideally should be
affected by the typing process as little as possible.

In the figure, the single topmost untyped element is the Numerator element.
Local document typing picks up that element and memorizes the element type of
its parent element, namely the element type Meter represented by the ElementType
object et1 (1). The parent element, and with it all of its direct or indirect child
elements, is transformed to a corresponding untyped representation (2). Then, its
applicable element types are determined (3). Since the memorized element type
Meter still occurs among its applicable element types, the parent element, and with
it again all of its direct or indirect child elements, is brought back immediately to
a corresponding typed representation on the basis of Meter (4). There is no need
for any further processing: the implicit assumption underlying the typed represen-

86 CHAPTER 7. TYPING

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

numerator:Element
typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element
typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer
typedSimpleContent

1

untype()

childNode

…

2

applicableElementTypes()
childNode

…

parentNode

childNode childNode

numerator:Element
typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

denominator:Element
typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

3

type(et1)
childNode

…

parentNode

childNode childNode

numerator:Element
typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘5‘

denominator:Element
typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

et1

et5 et6

…

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementTypedenominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer
typedSimpleContent

4

childNode

namespace=‘http://...’
name=‘Numerator’
scope=‘MeterType’

et5:ElementType
elementType

numerator:Element
typed=true

value=5

equalTo()
getSimpleType()
lessThan()
...

:Integer
typedSimpleContent

Figure 7.8: Local document typing (UML object diagrams)

tations of the elements located above the parent element in the document hierarchy
originating from previous runs of the typing automaton is that the parent element
validly instantiates Meter – which it still does.

Figure 7.9 illustrates the behaviour of local document typing in case that the
memorized element type of a topmost untyped element’s parent element is no longer
applicable. For this purpose, we assume that the simple content of the Numerator
element has been set to the nonsense-string invalid instead of 5 during the update
operation. In the beginning, local document typing proceeds as usual by memorizing
the element type of the parent of the Numerator element (1) and by transforming

7.4. OPTIMIZATIONS 87

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

1

untype()

childNode

…

2

applicableElementTypes()
childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

3

untype()

childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

et6

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

1

untype()

childNode

…

parentNode

childNode

namespace=‘http://...’
name=‘Meter’
scope=‘MelodyType’

et1:ElementType
elementType

typed=true

meter:Element

childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

namespace=‘http://...’
name=‘Denominator’
scope=‘MeterType’

et6:ElementType
elementType

denominator:Element

typed=true

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

value=4

equalTo()
getSimpleType()
lessThan()
...

value=4

equalTo()
getSimpleType()
lessThan()
...

:Integer

typedSimpleContent

1

untype()

childNode

…

2

applicableElementTypes()
childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

3

untype()

childNode

…

parentNode

childNode childNode

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

numerator:Element

typed=false
namespace=‘http://…‘
name=‘Numerator‘
simpleContent=‘invalid‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

denominator:Element

typed=false
namespace=‘http://…‘
name=‘Denominator‘
simpleContent=‘4‘

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

typed=false
namespace=‘http://…‘
name=‘Meter‘
simpleContent=null

meter:Element

et6

Figure 7.9: Failing local document (UML object diagrams)

the parent element to a corresponding untyped representation (2). When deter-
mining the applicable element types of the parent element, however, one finds that
the memorized element type is no longer applicable (3). The parent element even
does no longer have any applicable element types. This is due to the fact that
the Numerator element has no applicable element types (the only transition rule of
the typing automaton potentially suitable for the Numerator element, tr5, expects
integer content according to Figure 7.6) and thus transition rule tr1 of the typing
automaton is no longer satisfied by the parent element as well. As a consequence,
the implicit assumption underlying the typed representation of the element located
above the parent element in the document hierarchy that the parent element con-
stitutes a valid instantiation of the element type Meter does not hold anymore.

Local document typing responds to this situation by considering the parent
element as the new topmost untyped element and relaunches processing as supplied
above. In the worst case (which happens to occur in the example), this may result
in a cascading untyping of parent elements until the root element of the document is
reached and transformed to a corresponding untyped representation (and with it all
elements of the document). Local document typing then checks whether there exists
an applicable unscoped element type for the root element. If it does, it constructs a
corresponding typed representation of the root element on the basis of the unscoped
element type. If it does not, the document is invalid and all of its elements remain
in untyped representation.

88 CHAPTER 7. TYPING

In the following, an alternative implementation of the method type() of the class
TypingAutomaton that realizes the local document typing algorithm is specified. As
a prelimary, the notion of the topmost untyped elements of a document is formalized
in Definition 22.

Definition 22 (Topmost untyped elements)

context Document def:
let topmostUntypedElements : Set(Element) =

Element.allInstances -> select(e |

not(e.typed) and e.document = self and
(e.parentNode -> isEmpty() or
e.parentNode.typed))

Definition 23 provides the pseudocode describing the new implementation of the
type() method. Throughout the implementation, a set of elements that are to
be brought to typed representation is maintained. This set is initialized with the
topmost untyped elements of the document. As long as there are still elements in
this set and the document has not been found to be invalid, one of these elements is
selected successively. For each selected element, the implementation distinguishes
whether the element constitutes the root element of the document or not. In case
that the selected element is the root element, the implementation behaves exactly
like the conventional implementation of the type() method of Definition 21: it
chooses an applicable unscoped element type and brings the root element to a
corresponding typed representation accordingly. If such an element type exists,
typing of the document is finished; if not, the document is considered invalid and
processing terminates.

In case that the selected element is not the root element of the document, the
element type of element’s parent is stored in a temporary variable and the parent
element is transformed to a corresponding untyped representation. If the stored
element type is still applicable to the parent element, it is transformed back to a
corresponding typed representation using that element type. Any of the parent
element’s child elements potentially existing in the set of elements that are to be
brought to typed representation are removed from that set: their typing has been
already been covered by the construction of the corresponding typed representation
of their parent.

If the stored element type is no longer applicable to the parent element, the
parent element remains in untyped representation. It is further added to the set
of elements to be brought to typed representation. Again, its child elements are
removed from this set as well, since their typing will be covered by the typing of
the parent element.

Definition 23 (Local variant of document typing)

context TypingAutomaton::type(Document d)

post: self.valid(d) implies
Element.allInstances -> forAll(e |

e.document = d and not(e.CUR(e@pre) and
self.applicableElementTypes(e) -> includes(e.elementType)) implies
(e.typed@pre and e.typed and
self.applicableElementTypes(e) -> includes(e.elementType)) or
(not(e.typed) and
self.applicableElementTypes(e) -> isEmpty()) or
(not(e.typed) and e.parentNode -> notEmpty() and

7.4. OPTIMIZATIONS 89

not(e.parentNode.typed)))
post: not(self.valid(d)) implies

not(d.rootElement.typed)
pseudocode:

-- Assume valid document

invalid := false

-- Retrieve the elements that need to be brought to typed

-- representation

toType := d.topmostUntypedElements

-- As long as the document is not invalid, iteratively

-- select one these elements

while toType -> notEmpty() and not(invalid) do
-- Select arbitrary element for typing

element := toType -> any(true)

if element = d.rootElement then
-- The root element needs to brought to typed representation.

-- Use applicable unscoped element type for that purpose

if not(self.applicableElementTypes(element) ->

exists(et | et.scope = null)) then
-- As there is no such element type, the document

-- is invalid

invalid := true

else
-- Create corresponding typed representation of the

-- root element using the unscoped element type.

rootElementType := self.applicableElementTypes(element) ->

any(et | et.scope = null)

self.typeElement(element, rootElementType)

-- Typing of the document is finished

toType := Set{}
endif

else
-- Memorize the type of the chosen element’s parent

parentType := element.parentNode.elementType

-- Bring parent element to untyped representation

element.parentNode.untype()

if self.applicableElementTypes(element.parentNode) ->

includes(parentType) then
-- As the memorized element type is still applicable,

-- bring the parent element to a corresponding typed

-- representation on the basis of that type

self.typeElement(element.parentNode, parentType)

-- Ignore all of the parent’s child elements for the

-- further creation of typed representations.

toType := toType -> excludingAll(

element.parentNode.childNode)

else
-- The memorized element type is no longer applicable.

-- Add the parent element to the set of elements that

-- are to be brought to typed representation.

toType := toType -> including(element.parentNode)

-- Ignore all of the parent’s child elements for

-- the further creation of typed representations

toType := toType -> excludingAll(

element.parentNode.childNode)

90 CHAPTER 7. TYPING

endif
endif

endwhile

It is noteworthy that, assuming that a typing automaton caches for each element
the applicable element types, the respective transition rules that decided applica-
bility, as well as the sequence of child element types for which the transition rules
evalutated to true as suggested before, the local variant of document typing never
performs worse than traditional document typing given by Definition 21. The worst
case for local document typing occurs when the single topmost untyped element of a
document is a leaf element for which the existing typed representations of all its di-
rect and indirect parent elements, including the root element, cannot be preserved.
In this situation, local document typing essentially performs two major operations
at every element while ascending from the leaf element to the document root from
the bottom up: the first operation is that every direct or indirect parent element of
the leaf element, and with it recursively all of its child elements, is brought to a cor-
responding untyped representation. This implies that once local document typing
has arrived at the root element, all elements of the document have been transformed
to corresponding untyped representations. As the implementation of the method
untype() of the class Element as proposed by Definition 8 cancels its recursion
whenever hitting an element that already is in untyped representation, it is assured
that every element is only brought to untyped representation once. The second
operation is that the applicable element types of every parent element traversed
and its child elements are inferred. If these are cached by the typing automaton as
assumed, inference has also taken place only once for each element when the root
element has been reached. Given that there exists an unscoped element type ap-
plicable to the root element, local document typing finally performs a third major
operation on every element of the document: it uses this element type to bring the
root element and recursively the other document’s elements to corresponding typed
representations.

In this worst case situation for local document typing, traditional document
typing basically performs the same three major operations on each element as well,
but only in different order: since the root element is in typed representation (the
single topmost untyped element is a leaf element), every element with the exception
of the leaf element is brought to a corresponding untyped representation. Then,
the applicable element types of the root element, and with these recursively the
applicable element types for all elements of the document, are inferred. Finally, the
root element and the other elements of the document are brought to corresponding
typed representations.

In the best case for traditional document typing, i.e., all elements of a document
are in untyped representation, local document typing does not exceed the complexity
of traditional document typing either. As in this case the topmost untyped element
of the document is the root element, local document typing behaves exactly the
same as traditional document typing.

In many other cases however – especially after document updates during which
only small fractions of a document have been changed to untyped representation –
local document typing can be expected to perform substantially more efficient than
traditional document typing because existing typed representations are preserved
if possible. Thereby, the number of elements for which corresponding typed and
untyped representations are created and applicable element types are inferred can
often be reduced. As a consequence, local document typing is in any case preferable
to traditional document typing.

7.5. EXTENSIONS 91

7.5 Extensions

Up to this point, typing automata have been restricted to the expressiveness of regu-
lar tree automata by supporting only two kinds of conditions within transition rules:
simple content conditions and complex content conditions. Apart from traditional
simple content and complex content declarations, however, MPEG-7 DDL permits
the use of additional constructs for declaring the content models of the element
types and attributes of a schema definition. As it is the aim to use typing automata
as an intermediary representation of MPEG-7 media description schemes, it should
be examined how these constructs can be expressed within typing automata.

In the following, several MPEG-7 DDL constructs that face common usage
within MPEG-7 media description schemes are examined. For each of these con-
structs, it is investigated whether they are already expressible by the basic typing au-
tomaton mechanism supporting simple and complex content conditions only. If not,
appropriate extensions are sketched. Thereby it is shown that typing automata con-
stitute an intermediary representation of schema definitions that is flexible enough
to be extended up to the expressiveness of MPEG-7 DDL.

This remainder of this section starts out by examining the representation of
any, repeated, and empty content declarations within typing automata (7.5.1). It
then investigates the representation of mixed content declarations (7.5.2) as well as
complex type declarations (7.5.3). Finally, it is explored how attribute declarations
can be covered within a typing automaton (7.5.4).

7.5.1 Any, repeated, and empty content declarations

With complex content conditions, typing automata provide a very flexible means
for restricting valid element contents which is already capable of expressing quite
a few additional constructs offered by MPEG-7 DDL. This is due to the fact that
complex content conditions make use of expressive Perl 5 string regular expressions
to determine permissible sequences of applicable element type IDs for an element’s
child elements.

Employing such Perl 5 string regular expressions, complex content conditions
are well-suited, for example, to represent occurrences of the <any> construct within
MPEG-7 DDL schema definitions. For a given element type, <any> specifies that ar-
bitrary elements are eligible to appear within the elements of that type. This can be
easily expressed by a transition rule that employs a complex content condition with
the string regular expression ((et::.*|uet::null)::.*::.*)*3 which matches
any sequence of known and unknown element type IDs. In order to understand
that regular expression, it should be mentioned that within Perl 5 string regular
expressions . matches any character (except linebreaks) and hence .* matches an
arbitrary sequence of characters.

Since the namespace of an element type is an integral part of its ID, complex
content conditions are also suited to model occurrences of <any> that further re-
strict the content model of an element type to a certain namespace. For instance,
a transition rule with a complex content condition containing the string regular
expression ((et::.*|uet::null)::http://www.example.org::.*)* can be used
to limit the contents of the elements of a given type to elements with types that
originate from the namespace http://www.example.org.

3For the sake of clarity, any quoting backslashes are omitted within the Perl 5 string regular
expressions to come that would normally be necessary in order to distinguish character data from
reserved characters.

92 CHAPTER 7. TYPING

Furthermore, Perl 5 string regular expressions enable a painless mapping of
repeated content declarations to complex content conditions. Not only optional
and arbitrarily repeatable content can be modeled using the standard regular
expression operators ? and *. Also, explicitly declared minimum and max-
imum occurrences of repeatable content can be directly expressed within Perl
5 string regular expressions using curly brackets. For example, a transition
rule with a complex content condition containing the string regular expression
(et::MelodyType::http://...::Meter){1,5} allows the elements of a certain
type to consist of one up to five elements of type Meter with the scope MelodyType.

Finally, curly brackets also permit complex content conditions to enforce empty
content. The regular expression .{0,0} matches empty strings only. As Definitions
15 and 16 assure, the signature of a sequence of applicable child element types
for a given element – on which complex content conditions evaluate their string
regular expressions during the validation phase – is an empty string if and only if
the element has empty content.

7.5.2 Mixed content declarations

MPEG-7 DDL allows the declaration of mixed content. Permitting mixed content
means that it is valid to intersperse arbitrary text fragments between an elements’
child nodes. TDOM represents such text fragments by the means of text nodes,
i.e., instances of the class Text. When examining the support of typing automata
for mixed content, one finds that text nodes have not played any role so far for
document validation and typing. When determining the applicable element types of
an element and when bringing it to a corresponding typed representation, complex
content conditions restrict themselves to the element’s child elements and their
applicable element types completely ignoring any other kinds of document nodes.
Given this situation, the question is not whether typing automata accept mixed
content whenever it is allowed – they always do because text nodes are simply
overlooked – but rather how typing automata can be brought to reject mixed content
whenever it is not permitted.

One solution to do this is to introduce a dedicated unmixed content condition.
An unmixed content condition is a secondary condition that is not self-contained
like a simple or complex content condition. Instead, it augments another condition
with additional checks and operations. During the validation phase, an unmixed
content condition verifies that no text nodes are interspersed with the child elements
of an element in addition to checking the augmented condition. During the typing
phase, an unmixed content condition behaves exactly like the augmented condition
because the notion of typed representation applies to elements and attribute values
only and not to text nodes and is thus independent of mixed content.

The basic idea of secondary conditions is shown in the class diagram of Figure
7.10. The diagram introduces an abstract class SecondaryCondition as a subclass
of Condition. This class subsumes all secondary conditions, among others the
class UnmixedContentCondition for unmixed content conditions. The association
between SecondaryCondition and Condition ensures that a secondary condition
always augments another condition, which may be a simple content condition or
complex content condition but just as well another secondary condition. Thus,
arbitrarily long chains of secondary conditions can be produced that ultimately
refer to a simple content condition or complex content condition. In effect, this
paves the way to the representation of very complex content models within the
transition rules of a typing automaton.

7.5. EXTENSIONS 93

UnmixedContent
Condition

+ evaluate()
+ type()

ComplexTypePolymorphism
Condition

+ name : String
+ namespace : String

+ type()
+ evaluate()

AttributeCondition

+ evaluate()
+ type()

Condition

+ evaluate()
+ type()

SecondaryCondition

1

0..1

+augmented
1

0..1

Figure 7.10: Secondary conditions (UML class diagram)

…
<complexType name=“MelodyType”>

<complexContent>
<extension base=“mpeg7:AudioDSType”>

<sequence>
…
<element name=“MelodyContour”

type=“mpeg7:MelodyContourType”
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
…

<element name=“Beat”>
…

</sequence>
</extension>

</complexContent>
</complexType>
…

namespace=‘http://...’
name=‘MelodyContour’
scope=‘MelodyType’

et2:ElementType

tr2:TransitionRule

regExp=‘`et3.etID``et4.etID`’

c2:ComplexContentCondition

evaluate()
type()

resultState

et4

et3

et2

:UnmixedContentCondition

evaluate()
type()

augmented

Figure 7.11: Example mapping of unmixed element content declaration (UML ob-
ject diagram)

Figure 7.11 illustrates the use of unmixed content conditions for the represen-
tation of element type declarations contained in MPEG-7 DDL schema definitions
whose content models do not permit mixed content. In that figure, the declaration
of the element type MelodyContour contained in the complex type MelodyType
within the Melody media description scheme is mapped to transition rule tr2 just
as before in Figure 7.6. But as the MelodyContour declaration does not permit
mixed content, the transition rule’s complex content condition c2 is augmented

94 CHAPTER 7. TYPING

with a further unmixed content condition to obtain a more faithful mapping.
Definition 24 outlines a formal specification of the behaviour of evaluate() and

type() methods for the class UnmixedContentCondition so that instances of this
class can be used like in Figure 7.11 to prevent the occurrence of mixed content.
According to the postcondition provided for the specification of evaluate(), the
method first checks whether the passed element has text nodes among its child
nodes. If it has, the unmixed content condition already evaluates to false. Other-
wise, the result of the evaluate() method is identical to the result of the augmented
condition’s evaluate() method. As an unmixed content condition behaves like the
augmented condition for the construction of typed representations, the pseudocode
given for the type() method of UnmixedContentCondition simply delegates all its
calls to the type() method of the augmented condition.

Definition 24 (Unmixed content condition)

context UnmixedContentCondition::evaluate(Element e,

TransitionRule tr) : Boolean

post: result = not(e.childNode -> exists(d | d.oclIsTypeOf(Text)) and
self.augmented.evaluate(e, tr)

context UnmixedContentCondition::type(Element e, TransitionRule tr)

pre: not(e.typed)
pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

applicableElementTypes(c) -> includes(c.elementType)) implies
tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or
not(c.parentNode.typed))

pseudocode:
self.augmented.type(e, tr)

7.5.3 Complex type declarations

MPEG-7 DDL offers complex type declarations as a powerful and flexible construct
for organizing the structure of schema definitions which, as the reader has already
been able to observe by means of the sample Melody media description scheme,
faces extensive use within MPEG-7 media description schemes. A complex type
essentially constitutes a named complex content model which can be referenced
within an element type declaration in order to define the contents valid for the
element type. Given their relevance for MPEG-7, it is clearly of interest to examine
how complex type declarations are represented within typing automata.

Inspection of the mapping scheme used for the translation of the Melody media
description scheme of Figure 2.4 to the set of transition rules depicted by Figure
7.6 reveals that there is no one-to-one correspondence between complex type dec-
larations and transition rules. Instead, a complex type declaration is implicitly
covered by the complex content conditions of all those transition rules that repre-
sent element type declarations where the complex type is used to define the element
type’s content model. E.g, the complex type MeterType is not translated to a ded-
icated transition rule. But it is used to create the complex content condition c1 of

7.5. EXTENSIONS 95

the transition rule tr1 which represents the declaration of the element type Meter
because Meter’s content model is defined by means of MeterType.

This kind of mapping imposes no problems as long as complex types are not
interrelated. However, MPEG-7 DDL allows to derive complex types from each
other in order to organize them into a kind of specialization hierarchy. As it has
been explained in detail in Chapter 2, MPEG-7 makes heavy use of this feature for
the organization of its media description schemes. Based on complex type derivation
hierarchies, MPEG-7 DDL permits polymorphism via the xsi:type attribute.

The problem with the mapping scheme used so far for translating MPEG-7
DDL schema definitions to typing automata is that it completely ignores com-
plex type polymorphism. Because of this – and as an observant reader might
have already noticed – we were forced to fall back on some black magic during
the translation of the Melody media description scheme to the transition rules of
Figure 7.6 so that the example media description of Figure 2.5 is valid with re-
gard to the typing automaton. Although the content model of the element type
AudioDescriptionScheme is defined by the complex type AudioDSType, we clair-
voyantly knew that the example description would employ complex type poly-
morphism and fill the content of its root element according to the complex type
MelodyType. Thus, constructed transition rule tr7 has been constructed as if the
the content model of AudioDescriptionScheme had been defined by MelodyType
right from the beginning.

To obtain support for complex type polymorphism, an extended mapping scheme
is suggested. In that scheme, every element type declaration is translated to a
corresponding transition rule just as before. But whenever the content model within
an element type declaration is defined by means of a complex type from which
other complex types are derived, an additional transition is introduced for each
of the directly or indirectly derived complex types. Such an additional transition
bears the element type of the original element type declaration as its result state;
its condition basically constitutes a complex content condition that represents the
effective content model which is defined by the derived complex type. Effectively, a
transition rule is created for every of the element type’s content models that could be
potentially instantiated by an element of that type via complex type polymorphism
by means of an xsi:type attribute value.

It must be observed that this form of mapping might result in a proliferation of
transition rules for a typing automaton that represents an MPEG-7 DDL schema
definition with a deep complex type derivation hierarchy and element types whose
content models are defined by complex types located in the upper parts of this
hierarchy. But this is not so much a problem of typing automata and the extended
mapping scheme. It is rather a tribute to the high expressiveness and considerable
complexity inherent to the concepts of complex type derivation and complex type
polymorphism any MPEG-7 DDL schema processor has to deal with. In order to
allow reasonable handling of (a potentially large number of) alternative transition
rules for one and the same element type declaration introduced by complex type
derivation, typing automata should be given a means that helps them to quickly
decide for one of these alternative rules during the validation phase when complex
type polymorphism occurs inside a document.

Thus, the introduction of complex type polymorphism conditions as a further
kind of secondary condition is suggested. Complex type polymorphism conditions
are represented by the class ComplexTypePolymorphismCondition in the class dia-
gram of Figure 7.10. A complex type polymorphism condition maintains the name
and namespace of a given complex type as indicated by the attributes name and

96 CHAPTER 7. TYPING

namespace. During the validation phase, a complex type polymorphism verifies
whether the element for which the condition is evaluated features an xsi:type at-
tribute value addressing the name and namespace of the complex type maintained
by the condition. Only if this relatively simple check has been successfully passed,
the condition augmented by the complex content condition is also evaluated. Since
complex type polymorphism conditions only serve to decide for one of the alter-
native transition rules representing a single element type declaration more quickly
but do not otherwise influence the creation of corresponding typed representations
once an appropriate transition rule has been chosen, they exactly behave like the
augmented conditions during the typing phase.

Complex type polymorphism conditions are applied in the extended mapping
scheme in that way that the complex content condition of every transition rule
which has been additionally introduced for an element type declaration due to com-
plex type derivation is augmented by an appropriate complex type polymorphism
condition addressing the name and namespace of the particular derived complex
type.

regExp=‘(`et8.etID`)*’

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr9:TransitionRule

resultState

regExp=‘(`et8.etID`)*(`et1.etID`)?(`et2.etID`)?’

c9:ComplexContentCondition

evaluate()
type()

augmented

:ComplexTypePolymorphismCondition

evaluate()
type()

namespace=‘http://...’
name=‘MelodyType’

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr8:TransitionRule

resultState

c8:ComplexContentCondition

evaluate()
type()

augmented

namespace=‘http://...’
name=‘AudioDescriptionScheme’
scope=null

et7:ElementType

tr10:TransitionRule

resultState

regExp=‘(`et8.etID`)* `et3.etID``et4.etID`’

c10:ComplexContentCondition

evaluate()
type()

augmented

:ComplexTypePolymorphismCondition

evaluate()
type()

namespace=‘http://...’
name=‘MelodyContourType’

<complexType name=“MelodyType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Meter” …
minOccurs=“0”/>

<element name=“MelodyContour” …
minOccurs=“0”/>

</sequence>
</extension>

</complexContent>
</complexType>

<complexType
name=“AudioDSType”>
<sequence>

<element name=“Header” …
minOccurs=“0”
maxOccurs=“unbounded”/>

</sequence>
</complexType>

<element
name=“AudioDescriptionScheme”
type=“mpeg7:AudioDSType”/>

…

<complexType name=“MelodyContourType”>
<complexContent>

<extension base=“mpeg7:AudioDSType”>
<sequence>

<element name=“Contour”>
…

<element name=“Beat”>
…

</sequence>
</extension>

</complexContent>
</complexType>

et8

et7

et4

et3

et2

et1

Figure 7.12: Example mapping of complex type derivation hierarchy (UML object
diagram)

Figure 7.12 provides an example that illustrates the extended mapping scheme

7.5. EXTENSIONS 97

and the application of complex type polymorphism conditions. The top of the
figure shows an excerpt of the Melody media description scheme consisting of the
complex types MelodyContourType and MelodyType as well as the element type
AudioDescriptionScheme as already known from Figure 2.4. In addition, the dec-
laration of the complex type AudioDSType is provided that is used to define the con-
tent model of AudioDescriptionScheme. AudioDSType specifies a content model
consisting of an arbitrarily repeatable sequence of elements of type Header.

The bottom of the figure depicts the mapping of the AudioDescriptionScheme
element type declaration to the transition rules of a typing automaton according to
the suggested extended mapping scheme. First of all, the element type declaration
is translated to the transition rule tr8 as usual. tr8 employs the complex condi-
tion c8 to restrict the allowable contents of AudioDescriptionScheme elements to
arbitrarily long sequences of Header elements as demanded by AudioDSType. In a
second step, further transition rules with AudioDescriptionScheme as their result
state are created for each complex type derived from AudioDSType. In this exam-
ple, these are the complex types MelodyType and MelodyContourType which lead
to the transition rules tr9 and tr10. The conditions of tr9 and tr10 are made up of
complex type polymorphism conditions which reference the names and namespaces
of the respective complex types. Both conditions further augment complex content
conditions that model the effective content models defined by the complex types.
I.e., condition c9 restricts the permitted content of AudioDescriptionScheme ele-
ments to arbitrarily long sequences of Header elements followed by optional Meter
and MelodyContour elements as defined by the complex type MelodyType; con-
dition c10 restricts the permitted content to arbitrarily long sequences of Header
elements followed by Contour and Beat elements as defined by the complex type
MelodyContourType.

Given these transition rules, the element type AudioDescriptionScheme is only
applicable to an element inside an XML document, if (a) the element complies to
transition rule tr8 by satisfying the complex content condition c8 or if (b) the ele-
ment complies to transition rule tr9 or tr10 by satisfying complex content condition
c9 or c10, respectively, and further bears an xsi:type attribute value referring to
the corresponding complex type MelodyContourType or MelodyContourType.

We conclude the treatment of the representation of complex types within typ-
ing automata by sketching a suitable specification of the evaluate() and type()
methods for the class ComplexTypePolymorphismCondition within Definition 25.
For the purpose of the definition, it is assumed that there exist the operators
name and namespace for strings that allow to extract the name and the namespace
out of a qualified reference to a complex type. The postcondition of evaluate()
states that the method checks whether the element passed to the method pos-
sesses an attribute value with the attribute name type and the attribute names-
pace http://www.w3.org/2001/XMLSchema-instance – i.e., an xsi:type attribute
value – whose content refers to the name and namespace of the complex type main-
tained by the current complex type polymorphism condition before evaluating the
condition it augments. The implementation that is suggested by the pseudocode
for the type() method simply delegates its call to the condition augmented by the
complex type polymorphism condition.

Definition 25 (Complex type polymorphism condition)

context ComplexTypePolymorphismCondition::evaluate(Element e,

TransitionRule tr) : Boolean

post: result = e.attributeValue -> exists(av |

98 CHAPTER 7. TYPING

av.attName = "type" and
av.attNamespace = "http://www.w3.org/2001/XMLSchema-instance" and
av.content.name = self.name and
av.content.namespace = self.namespace) and

self.augmented.evaluate(e, tr)

context ComplexTypePolymorphismCondition::type(Element e,

TransitionRule tr)

pre: not(e.typed)
pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

applicableElementTypes(c) -> includes(c.elementType)) implies
tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or
not(c.parentNode.typed))

pseudocode:
self.augmented.type(e, tr)

7.5.4 Attribute declarations

MPEG-7 DDL, just like any other XML schema definition language, allows to re-
strict for each element type the attribute values eligible to appear within the el-
ements instantiating that element type in an XML document. For this purpose,
content models specified by means of complex type declarations inside MPEG-7
DDL schema definitions can be enhanced with additional attribute declarations.
The different kinds of attribute declarations supported by MPEG-7 DDL mainly
comprise those already known from classic DTDs. The essential difference between
attribute declarations in MPEG-7 DDL and DTDs is DDL’s support for strong typ-
ing that allows to restrict the permissible domain of the values of an attribute to a
simple type.

Regarding this support for strong typing and given the fact that MPEG-7 media
description schemes considerably make use of that support to define attributes that
carry non-textual data, it is no surprise that TDOM’s notion of typed representation
not only encompasses elements but also attribute values. In order to be considered
an adequate intermediary representation of an MPEG-7 DDL schema definition,
typing automata should consequently provide support for the representation of at-
tribute declarations that facilitate the validation of attribute values occurring in a
document and the production of corresponding typed representations of these val-
ues. So far, however, the specification of typing automata has intentionally ignored
attribute values for simplicity.

In the following, an extension of typing automata for the representation of at-
tribute declarations is outlined. Just like the other extensions suggested so far,
this extension introduces a dedicated kind of secondary condition, namely attribute
conditions which are represented by the class AttributeCondition in the diagram
of Figure 7.10. An attribute condition basically consists of a collection of attribute
declarations. If an attribute condition is used to augment a transition rule’s con-
dition, not only the augmented condition is evaluated during the validation phase
whenever the transition rule is applied to an element; it is also verified whether the
attribute values of the element conform to the attribute declarations collected by

7.5. EXTENSIONS 99

the attribute condition. During the typing phase, the attribute condition behaves
like the augmented condition but additionally transforms the attribute values of the
element to corresponding typed representations in a way that suits the attribute
declarations to which the attibute values comply.

RequiredAttribute
Declaration

+ evaluate()
+ type()

AnyAttributeDeclaration

+ namespace : String

+ evaluate()
+ type()

AttributeDeclaration

+ evaluate()
+ type()

AttributeCondition

+ evaluate()
+ type()

1..n1 1..n1

Attribute

name : String
namespace : String
scope : String

SimpleType

name : String
namespace : String
scope : String

SingleAttribute
Declaration

1
0..n

1
0..n

1

0..n

1

0..n

OptionalAttribute
Declaration

+ evaluate()
+ type()

SimpleTypeInstance

equalTo()
getSimpleType()

<<Interface>>

0..1 0..1
+defaultValue
0..1 0..1

FixedAttribute
Declaration

+ evaluate()
+ type()1

0..1

+fixedValue 1

0..1

Figure 7.13: Attribute condition structure (UML class diagram)

The class diagram of Figure 7.13 provides further details on the structure sug-
gested for attribute conditions and attribute declarations. According to the di-
agram, an attribute condition collects at least one attribute declaration all of
which are subsumed by the abstract base class AttributeDeclaration. At-
tribute declarations are categorized into single attribute declarations and any at-
tribute declarations as modeled by the subclasses SingleAttributeDeclaration
and AnyAttributeDeclaration. The abstract notion of single attribute declara-
tions subsumes basic attribute declarations that essentially permit a single value of
the attribute (addressed by the association to the class Attribute) to appear within
an element, if the content of the attribute value originates from the domain of the
simple type (addressed by the association to the class SimpleType). In the dia-
gram, the single attribute declarations considered are fixed, optional, required, and
prohibited attribute declarations represented by corresponding subclasses. These
represent the usual basic kinds of attribute declarations that are supported by most
XML schema definition languages: required attribute declarations enforce the in-
stantiation of a given attribute within an element. Optional attribute declarations
allow the instantiation of a given attribute within an element but do not enforce it.
A default value in form of a simple type instance can be specified for the case that an
optional attribute is not instantiated. Fixed attribute declarations behave like op-
tional attribute declarations but rigidly restrict the allowable contents of attribute

100 CHAPTER 7. TYPING

values to the simple type instance provided as the fixed value. Finally, prohibited
attribute declarations forbid the instantiation of an attribute within an element.
Support for further kinds of attribute declarations could be integrated into this
structure by additional subclasses of SingleAttributeDeclaration if necessary.

An any attribute declaration, in contrast, allows the occurrence of arbitrary
attribute values within an element whose attribute namespaces can be optionally
limited to the namespace contained in AnyAttributeDeclaration’s namespace at-
tribute. This facilitates the representation of the <anyAttribute> construct of
MPEG-7 DDL within transition rules of a typing automaton.

There are a few restrictions concerning the structure of attribute conditions
which are formally expressed by Constraint 11. The first restriction is that the
names and namespaces of the attributes referred to by single attribute declarations
must be unique in order to avoid conflicting declarations. I.e., there may be no
two different single attribute conditions which refer to attributes that bear the
same name and namespace. The second restriction is that if an optional attribute
declaration refers to a default value, that default value must be a valid instance
of the simple type addressed by the attribute declaration. The third restriction is
quite similar: the fixed value of a fixed attribute declaration must be an instance
of the simple type that is referenced by the declaration.

Constraint 11 (Restrictions on attribute conditions)

context AttributeCondition

inv: attributeDeclaration -> forAll(sad1, sad2 :

SingleAttributeDeclaration |

sad1.attribute.namespace = sad2.attribute.namespace and
sad1.attribute.name = sad2.attribute.name implies
sad1 = sad2)

context OptionalAttributeDeclaration

inv: defaultValue -> notEmpty implies
defaultValue.getSimpleType() = simpleType

context FixedAttributeDeclaration

inv: fixedValue.getSimpleType() = simpleType

Figure 7.14 provides an example how attribute conditions can be used to rep-
resent attribute declarations occurring in an MPEG-7 media description scheme.
The right part of the figure shows the declaration of the complex type AudioDSType
which has been enhanced by an attribute declaration permitting the optional use of
an attribute id of type ID and by a declaration on the basis of the <anyAttribute>
construct further allowing the use of arbitrary attributes as long as they originate
from the namespace http://www.mpeg7.org/.

The left part of the figure shows the representation of the declaration of
the element type AudioDescriptionScheme, whose content model is defined via
AudioDSType, by means of a transition rule. For the figure, complex type poly-
morphism is neglected for the sake of clarity. As one can observe, the attribute
declaration is straightforwardly mapped to an attribute condition within the tran-
sition rule. The attribute condition augments a complex content condition that
restricts allowable element contents to arbitrarily long sequences of Header ele-
ments in accordance to AudioDSType. The attribute condition models the declara-
tion of the id attribute with an optional attribute declaration which references an
Attribute object representing id and a SimpleType object modeling the simple

7.5. EXTENSIONS 101

namespace=‘http://...’

name=‘AudioDescriptionScheme’

scope=null

et7:ElementType

tr8:TransitionRule

resultState

regExp=‘(`et8.etID`)*’

c8:ComplexContentCondition

evaluate()

type()

augmented

…

<complexType name=“AudioDSType”>

<sequence>

<element name=“Header” …

minOccurs=“0”

maxOccurs=“unbounded”/>

</sequence>

<attribute name=“id” type=“ID”

use=“optional”/>

<anyAttribute

namespace=“http://www.mpeg7.org/”/>

</complexType>

…

<element

name=“AudioDescriptionScheme”

type=“mpeg7:AudioDSType”/>

…

et8

et7

:AttributeCondition

evaluate()

type()namespace=‘http://...’

name=‘ID’

scope=null

:SimpleType

namespace=‘http://...’

name=‘id’

scope=‘AudioDSType’

:Attribute

:AnyAttributeDeclaration

evaluate()

type()

namespace=‘http://www.mpeg-7.org/’

:OptionalAttributeDeclaration

evaluate()

type()

Figure 7.14: Example mapping of attribute declarations (UML object diagram)

type ID. The <anyAttribute> construct is mapped to an any attribute declaration
whose namespace property is set to http://www.mpeg7.org/.

Definition 26 details the behaviour of attribute conditions during the valida-
tion and typing phases of a typing automaton by outlining a specification of the
evaluate() and type() methods of the class AttributeCondition. Since an at-
tribute condition essentially constitutes a container for various kinds of attribute
declarations, the specification of both methods relies on a fixed set of function-
ality that has to be offered by an attribute declaration. As already indicated by
the abstract methods of the abstract base class AttributeDeclaration in the class
diagram of Figure 7.13, any concrete subclass of AttributeDeclaration that repre-
sents a particular kind of attribute declaration must provide appropriate implemen-
tations for the methods evaluate() and type() similar to a condition’s methods of
the same name: evaluate() expects an attribute value as its parameter and returns
true if the attribute value constitutes a valid instantiation of the current attribute
declaration; type() takes an attribute value in untyped representation as its pa-
rameter and transforms the attribute value to a corresponding typed representation
in a manner that is appropriate for the current attribute declaration.

According to the postconditions that are given in Definition 26 for the
evaluate() method of the class AttributeCondition, an attribute condition per-
forms the following checks on an element during the validation phase of a typing
automaton in addition to evaluating the augmented condition: it is first verified for
each attribute value of the element whether there exists an attribute declaration
within the attribute condition that is validly instantiated by the attribute value.
It is further ensured that every required attribute declaration of the condition is
satisfied by one of the element’s attribute values. Finally, it is ascertained that no
attribute value satisfies a prohibited attribute declaration that might be potentially
contained within an attribute condition.

Provided that an element in untyped representation is passed to
AttributeCondition’s type() method for which the current attribute condition
evaluates to true, the pseudocode suggested for the implementation of that method

102 CHAPTER 7. TYPING

first brings the element and as much of its direct and indirect child elements as pos-
sible to corresponding typed representations by delegating its call to the augmented
condition. Then, type() tries to transform each of the element’s attribute values in
untyped representation to a corresponding typed representation using the type()
method of an attribute declaration which the attribute value validly instantiates.
There is always at least one such attribute declaration since this has already been
ensured by evaluate(). Note that there is one case where the construction of a cor-
responding typed representation of an attribute value might not be possible which
is expressed by the last of type()’s postconditions: in case that the attribute value
instantiates an any attribute declaration only. Any attribute declarations, however,
lack important type information, i.e. the instantiated attribute and the simple type
forming the domain of its values, that is necessary for the construction of typed
representations.

Definition 26 (Attribute condition)

context AttributeCondition::evaluate(Element e,

TransitionRule tr) : Boolean

post: result = e.attributeValue -> forAll(av |

self.attributeDeclaration -> exists(ad | ad.evaluate(av))) and
self.attributeDeclaration -> forAll(rad :

RequiredAttributeDeclaration |

e.attributeValue -> exists(av | rad.evaluate(av))) and
self.attributeDeclaration -> forAll(pad :

ProhibitedAttributeDeclaration |

not(e.attributeValue -> exists(av | pad.evaluate(av)))) and
self.augmented.evaluate(e, tr)

context AttributeCondition::type(Element e, TransitionRule tr)

pre: not(e.typed)
pre: tr.resultState.name = e.etName

pre: tr.resultState.namespace = e.etNamespace

pre: self.evaluate(e, tr)

post: e.CUR(e@pre)

post: e.elementType = tr.resultState

post: e.allChildElements -> forAll(c |

not(c.CUR(c@pre) and tr.typingAutomaton.

applicableElementTypes(c) -> includes(c.elementType)) implies
tr.typingAutomaton.applicableElementTypes(c) -> isEmpty() or
not(c.parentNode.typed))

post: e.attributeValue -> forAll(av |

not(av.CUR(av@pre)) implies
self.attributeDeclaration -> exists(sad :

AnyAttributeDeclaration | sad.evaluate(av)) and
self.attributeDeclaration -> size() = 1)

pseudocode:
-- Invoke behaviour of augmented condition

self.augmented.type(e, tr)

-- Type all attribute values in untyped representation which

-- validly instantiate a single attribute declaration

foreach av in e.attributeValue -> select(untyped) do
iad := self.attributeDeclaration -> any(ad | ad.evaluate(av))

iad.type(av)

endforeach

7.5. EXTENSIONS 103

We conclude the treatment of attribute conditions by showing how implementa-
tions of the evaluate() and type() methods of attribute declarations could look
like. For brevity, we restrict ourselves to optional attribute declarations and any
attribute declarations that are used for the example of Figure 7.14. The implemen-
tations of both methods for optional attribute declarations are covered by Definition
27. evaluate() delivers true for an attribute value if (a) the attribute name and
namespace of the attribute value match the name and namespace of the attribute
addressed by the current optional attribute declaration and if (b) an instance of
the simple type addressed by the optional attribute declaration can be constructed
from the textual representation of the attribute value’s content. type() uses the
attribute and simple type associated with the optional attribute declaration to
straightforwardly the attribute value that is passed passed to the method to typed
representation.

Definition 27 (Optional attribute condition)

context OptionalAttributeCondition::evaluate(AttributeValue av) :

Boolean

post: result = (av.attName = self.attribute.name) and
(av.attNamespace = self.attribute.namespace) and
(av.attNamespace = self.attribute.namespace) and
(av.typedContent -> notEmpty() implies
self.simpleType.simpleTypeInstanceFactory.

fromString(av.typedContent.getSimpleType().

toString(av.typedContent)) <> null) and
(av.typedContent -> isEmpty() implies
self.simpleType.simpleTypeInstanceFactory.

fromString(av.content) <> null)

context OptionalAttributeCondition::type(AttributeValue av)

pre: not(av.typed)
pre: self.evaluate(av)

post: av.CUR(av@pre)

pseudocode:
-- Bring the attribute value to an appropriate typed

-- representation.

av.typed := true

av.name := null

av.namespace := null

av.attribute := av.attribute -> including(self.attribute)

-- Use the simple type instance factory associated

-- with the simple type of the optional attribute condition

-- to produce an appropriate simple type instance for use as

-- typed attribute value content

stif := self.simpleType.simpleTypeInstanceFactory

sti := stif.fromString(av.simpleContent)

-- Set simple type instance as simple content of element

av.simpleContent := null

av.typedSimpleContent := av.typedSimpleContent ->

including(sti)

Definition 28 treats the evaluate() and type() methods of any attribute dec-
larations. evaluate() returns true if the attribute namespace of the attribute
value matches the namespace referred to by the current any attribute declaration.
Because an any attribute declaration does not carry sufficient information for the

104 CHAPTER 7. TYPING

construction of a corresponding typed representation of the attribute value that is
passed to type(), the method attempts to delegate its call to a single attribute
declaration that is also validly instantiated by the attribute value. Should no such
single attribute declaration exists, the attribute value remains in untyped represen-
tation.4

Definition 28 (Any attribute condition)

context AnyAttributeCondition::evaluate(AttributeValue av) : Boolean

post: result = self.namespace <> null implies
av.attNamespace = self.namespace

context AnyAttributeCondition::type(AttributeValue av)

pre: not(av.typed)
pre: self.evaluate(av)

post: self.attributeCondition -> exists(ad :

not(ad.oclIsTypeOf(AnyAttributeCondition)) and
ad.evaluate(av)) implies
av.CUR(av@pre)

pseudocode:
-- Check whether attribute value also instantiates a

-- single attribute declaration.

if self.attributeCondition.attributeDeclaration -> exists(sad :

SingleAttributeDeclaration | sad.evaluate(av)) then
-- If so, use single attribute declaration to produce

-- a corresponding typed representation of the attribute

-- value, because this can’t be done on the basis of an

-- any attribute declaration.

isad := self.attributeCondition.attributeDeclaration ->

any(sad : SingleAttributeDeclaration | sad.evaluate(av))

isad.type(av)

endif

4Note that in this case, the element to which the attribute value belongs still remains in typed
representation.

Chapter 8

Implementation

With TDOM and typing automata, we have laid important foundations for an XML
database solution that suffices the requirements of Chapter 3 and is thus suitable
for the management of MPEG-7 media descriptions. In this chapter, we describe
the implementation of a Java-based prototype of such a database solution, the
Persistent Typed Document Object Model (PTDOM), whose architecture is shown
in Figure 8.1.

PTDOM

Simple Type
Framework

Document
Manager

Query
Evaluator

Index
Framework

Routine
Framework

Schema
Catalog

<<storage backend>>

ObjectStore

Figure 8.1: PTDOM architecture (UML component diagram)

The components of the depicted architecture address the requirements for the
management of MPEG-7 media descriptions in a number of ways:

• Representation of media descriptions: The document manager employs

105

106 CHAPTER 8. IMPLEMENTATION

TDOM to fine-grainedly store and represent all the XML documents that
are managed with PTDOM. In combination with the simple type framework,
the document manager also provides a typed representation of basic document
contents.

• Access to media descriptions: By means of TDOM, the document manager
already gives applications fine-grained and typed navigational access to XML
documents. By TDOM’s support for both typed and untyped representa-
tions, the document manager also permits flexible, fine-grained updates. A
further way to fine-grained document access is given by the query evaluator
component which realizes an XPath query processor.

Value index structures are brought into PTDOM by the index framework that
supplies hash tables, B-Trees, and even multidimensional R-Trees; support for
text index structures could be integrated with that framework as well.

Finally, path indexing support within PTDOM is realized via TDOM’s concept
of typed representations: since elements and attribute values in typed repre-
sentation are tightly coupled to the element types and attributes in the schema
definitions they instantiate allowing to immediately obtain all instances of a
given element type or attribute, these schema definitions can serve as path
indexes comparable to DataGuides [GW97] of the Lore system.

• Media description schemes: For the management of the schema definitions to
which the documents in the document manager are valid, PTDOM features
an MPEG-7 DDL-compliant schema catalog. The catalog is able to produce
equivalent typing automata for its schema definitions which are employed not
only for validation but also for the inference of typed representations. Al-
though not yet realizing a full-fledged query optimizer, the query evaluator
also utilizes the schema definitions within the catalog for an optimized evalu-
ation of XPath expressions.

• Extensibility: The index framework not only supplies a rich set of ready-to-use
value index structures. It also permits to flexibly integrate new unordered,
ordered, and multidimensional index structures with PTDOM making the
system extensible with index structures. The routine framework further allows
the integration of arbitrary user-defined routines which may be used for the
querying of XML documents, making PTDOM extensible with functionality.
With the simple type framework, it is even possible to integrate support for
new simple types and simple type derivation methods.

• Classic DBMS functionality: For classic DBMS functionality, PTDOM re-
lies on the object-oriented DBMS ObjectStore [eXc00] which it employs as
its storage backend. Thereby, PTDOM inherits ObjectStore’s mature trans-
action support and backup and recovery functionality, as well as the system’s
fine-grained, page-based concurrency control. PTDOM even gains flexibility as
there exists the PSEPro [eXc01b] small-scale in-process variant of ObjectStore
making PTDOM configurable as both a server-based as well as an in-process
database solution. In future, we plan to replace ObjectStore with a dedi-
cated XML storage manager, like the ones proposed by [KM99, FHK+02] or
[HMF99].1

1Concerning potential objections with regard to the “nativity” of PTDOM when realized on
top of ObjectStore, one should bear in mind that, according to Chapter 4, we regard PTDOM

8.1. SIMPLE TYPE FRAMEWORK 107

The following sections present the individual components of PTDOM in more
detail (8.1 – 8.6). This chapter concludes with some experimental results which
indicate the overall viability of the PTDOM approach and the prospects it offers
(8.7).

8.1 Simple Type Framework

The simple type framework component of the PTDOM prototype provides an im-
plementation of TDOM’s simple type framework which has already been introduced
in Chapter 6. With this component, it is thus possible to enhance PTDOM with
support for arbitrary simple types, elementary as well as derived.

<<interface>>
SimpleTypeInstance

+equalTo()
+getSimpleType()

<<interface>>
SimpleTypeInstanceFactory

+fromString()
+toString()
+getSimpleType()

<<instantiate>>

SimpleTypeInstance
FactoryHome

+registerFactory()
+newFactory()
+unregisterFactory()

<<instantiate>>

1

1

0..n

1
SimpleType

Figure 8.2: Simple type framework component (UML class diagram)

The class diagram of Figure 8.2 presents the overall structure of the simple type
framework component. As one can see, the component constitutes a direct imple-
mentation of TDOM’s simple type framework. The entry point to the component
is given by the simple type instance factory home, represented by the class of the
same name in the diagram. It serves as a central registry for all simple type instance
factories in PTDOM. To make support for a certain simple type available, the class
providing the factory for the instances of that type needs to be registered with the
simple type instance factory home under the type’s name and namespace. Via the
method newFactory() which is passed the name and namespace of the simple type
of which a factory is desired, the simple type instance factory home is capable of
dynamically instantiating a registered factory class.

Applying the simple type framework in this manner, we have integrated support
for all the simple type derivation methods as well as many of the elementary simple
types offered by MPEG-7 DDL into PTDOM.

8.2 Document Manager

The document manager serves as a central registry responsible for managing all
XML documents stored with PTDOM. The document manager is capable of im-
porting XML documents into PTDOM as well as exporting them back into an

as a native XML database solution as long as it completely encapsulates the ObjectStore storage
backend. In a similar manner, the commercial XML database solution eXcelon XIS that also
founds on ObjectStore is commonly regarded as native. One should furthermore consider that
ObjectStore is an object-oriented DBMS following a rather low-level page server architecture not
very different from storage managers like Shore [CDF+94] which constitutes the storage backend
of the native research prototype Timber [JAC+02].

108 CHAPTER 8. IMPLEMENTATION

external format. Founding on TDOM and the simple type instance mechanism
supplied by the simple type framework, it provides applications with fine-grained
and appropriately typed representations of the documents stored with PTDOM
giving them fine-grained and type-adequate navigational access to their contents as
well as allowing their fine-grained manipulation.

DocumentHome

+addDocument()
+delDocument()
+getDocument()
+importDocument()
+exportDocument()
+registerFormatHandler()
+unregisterFormatHandler()

<<interface>>
DocumentFormatHandler

+ import()
+ export()

<<instantiate>>

XMLHandler

Document
+location: URI

1 0..n 1 1..n

+rootNode

{ordered}
DocumentNode

Comment

DocumentType

ProcessingInstruction

Text Element

AttributeValue

1

0..n {ordered}

0..1

0..n {ordered}

+childNode

1

0..1

Figure 8.3: Document manager overview (UML class diagram)

The class diagram of Figure 8.3 gives an overview of the document manager
component. The entry point to the document manager is formed by the so-called
document home which is represented by a corresponding class. The document
home acts as a container of all documents stored with PTDOM. As indicated in the
right part of the diagram, the document manager makes use of a straightforward
implementation of TDOM as introduced in Chapter 6 for the representation of the
documents in the document home.

For the import and export of XML documents to and from the docu-
ment manager, handlers for document formats, i.e., classes that implement the
DocumentFormatHandler interface, can be registered with the document home, in
principle allowing to integrate support for other storage formats than the tradi-
tional text format defined by the XML standard [BPSMM00] such as the MPEG-7
binary exchange format BiM [ISO01a] with PTDOM increasing the flexibility of
the system. Whenever the methods importDocument() or exportDocument() of
the document home are called in order to import or export an XML document, the
schema home looks up and dynamically instantiates the particular handler which
has been registered for the desired import or export format and defers the task to
the corresponding methods of that handler.

8.3 Schema Catalog

A central component of PTDOM is its schema catalog. It manages the various
schema definitions to which the XML documents stored with PTDOM comply. The
schema catalog is able to import and export arbitrary schema definitions written
in MPEG-7 DDL (support for other schema definition languages can be integrated
as well), ensures the integrity of these definitions, keeps a fine-grained and accu-
rate representation of the schema information they carry, and maintains equivalent

8.3. SCHEMA CATALOG 109

typing automata.
The rich information contained in the schema catalog is exploited throughout

PTDOM in a number of ways. The typing automata are used for validation of the
documents contained in the document manager and for the construction of typed
representations of their elements and attribute values. As typed representations of
elements and attribute values in TDOM are tightly interlinked with the element
types and attribute values they instantiate, the schema catalog also serves as a
path index allowing to quickly obtain all elements and attribute values for a given
element type or attribute in a schema definition. Finally, the detailed representation
of schema information within the catalog can also serve a rich decision base for
sophisticated query optimization.

SchemaHome

+addSchema()
+delSchema()
+getSchema()
+importSchema()
+exportSchema()
+registerLanguageHandler()
+unregisterLanguageHandler()

<<interface>>
SchemaLanguageHandler

+import()
+export()

<<instantiate>>

Notation

Constraint

. . .

ElementType Type

SimpleType

. . .

0..n

+baseType
 0..1

Attribute

0..n

0..n

ComplexType

ContentModel
1

0..n

SequenceCM ChoiceCM

. . .GroupCM

1 +valueType

0..n
 1
+contentType

0..n

ElementCM

1

0..n

. . .

1..n

0..n

{ordered}

SchemaComponent

0..n

0..n

includes

DDLHandler

Schema
+location: URI
. . .
+checkIntegrity()
+getAutomaton()

SchemaComponent
+name: String
+namespace : URI
+scope : String
+checkIntegrity()

1 0..n

0..n

0..n

SimpleType

+newFactory()

Elementary
SimpleType

DerivedSimple
Type

0..1

0..n

MinInclDerived
SimpleType

ListDerived
SimpleType

. . .
<<interface>>

SimpleTypeInstance
Factory

 <
<

in
st

an
tia

te
>

>

1 3

2

XDRHandler TypingAutomaton

<
<

in
st

an
tia

te
>

>

1

1

Figure 8.4: Schema catalog overview (UML class diagrams)

The class diagram to the upper left (1) of Figure 8.4 gives an overview of the
basic structure of PTDOM’s schema catalog which is very similar to the organiza-
tion the document manager. Just as the document home acting as a container for
all XML documents stored with PTDOM forms the entry point to the document
manager, a schema home that serves as a container for all the schema definitions
stored with PTDOM forms the entry point to the schema catalog; just as document
format handlers can be registered with the document home to integrate support for
new storage formats for the import and export of XML documents, schema lan-
guage handlers can be registered with the document home to integrate support for

110 CHAPTER 8. IMPLEMENTATION

other schema definition languages than MPEG-7 DDL for the import and export of
schema definitions. Within our prototypical implementation, we have also realized
an XDR [FT98] handler.

Schema definitions (represented by the class of the same name in the diagram)
are identified by the storage location from which they have been imported and are
organizable in an inclusion lattice permitting a flexible modularization of schema
definitions. Schema definitions are regarded as containers of the schema components
which are declared inside these definitions, such as simple types, element types,
and attributes. The schema catalog subsumes all the different kinds of schema
components under one common abstract base class named SchemaComponent. This
base class defines that any schema component can bear a name and namespace
(potentially scoped) but leaves the representational details of the different kinds of
schema components to subclasses provided for them.

In addition to that, SchemaComponent demands that its subclasses supply ap-
propriate implementations of the abstract method checkIntegrity() which vali-
date the consistency and integrity constraints associated with the respective kinds
of schema components represented by these subclasses. For example, the imple-
mentation of this method in that particular subclass which represents attributes
should ensure that a potentially declared default value matches an attribute’s value
type. In that manner, PTDOM’s schema catalog is enabled to ensure the con-
sistency and integrity of the schema definitions it manages by successively calling
checkIntegrity() on each of a schema definition’s schema components as it is
done in the checkIntegrity() method of the Schema class.

For the purpose of validating and typing the XML documents kept by the doc-
ument manager, the catalog’s schema definitions are furthermore able to compile
themselves to equivalent typing automata via the method getAutomaton(). The
schema catalog provides a full implementation of the typing automaton mechanism
as it has been described in Chapter 7 making use of local document typing. To
speed up successive calls to getAutomaton(), schema definitions actually cache the
compiled typing automata and keep them consistent with the schema components
they contain.

Up to this point, schema definitions have been regarded as mere collections of ab-
stract schema components. In order to permit the utilization of the schema catalog
as a rich source of schema information for further exploitation for the management
of XML documents, a detailed model for schema definitions must be provided that
concretely defines the different kinds of schema components available as well as
their structure and interrelationships. This model should be expressive enough to
allow the representation of arbitrary media description schemes written in MPEG-7
DDL.

For this reason, it has been decided to closely orientate the model for schema
definitions used within the schema catalog of PTDOM along the XML Schema Com-
ponent Data Model [TBM+01] which comes with the XML Schema standard and is
able to capture the contents of XML Schema definitions in detail. Slightly enhanced
to cover the DDL-specific extensions, the model is expressive enough to faithfully re-
produce the different constituents of any MPEG-7 media description scheme. Since
comparisons of existing schema definition languages for XML documents show that
XML Schema (and thus MPEG-7 DDL as well) exceeds the expressiveness of most
other XML schema definition languages [LC00], PTDOM and its schema catalog
can also be expected to be of use in application domains in which other schema
definition languages play dominant roles – as long as only appropriate handlers for
these languages are supplied.

8.4. ROUTINE FRAMEWORK 111

The class diagram to the bottom (2) of Figure 8.4 gives a coarse overview of
the model summarizing the different kinds of schema components essentially distin-
guished and highlighting major relationsships between them. The model differenti-
ates – apart from notations and constraints such as uniqueness and key constraints
– types, both simple and complex, element types, attributes, and content models.
As the associations in the diagram indicate, the model also faithfully reproduces
the relationships between these kinds of schema components, for instance, that the
content of element types and attributes is defined using complex types and simple
types, that complex types can be derived from other simple and complex types, etc.

By the use of typing automata for document validation and typing via typing
automata as well as the connection between element types and attributes with the
elements and attribute values in typed representation, the schema catalog is closely
coupled to the document manager. The schema catalog is further coupled to the
simple type framework, as illustrated by the class diagram to the upper right (3) of
Figure 8.4. The diagram provides more insight into how simple type declarations are
represented within the catalog’s model for schema definitions by showing an excerpt
of the subclass hierarchy below the base class SimpleType which had been previously
abbreviated by dots in Figure 8.4 (2). As one can see, the model basically distin-
guishes elementary simple types coming with a schema definition language – their
occurrences in schema definitions are modeled by the class ElementarySimpleType
– and simple types that are derived from other simple types within a schema def-
inition – subsumed under the abstract base class DerivedSimpleType. For every
simple type derivation method supported by XML Schema and MPEG-7 DDL, the
model provides a subclass of DerivedSimpleType to represent simple types that
have been derived with that method.

For a comfortable construction of instances of simple types represented in this
fashion, SimpleType requires its subclasses to implement the abstract method
newFactory() such that it delivers a suitable simple type instance factory of the
simple type framework for a given simple type. The implementation of this method
within the class ElementarySimpleType simply looks up and returns that factory
which has been registered with the simple type instance home for the instances of
the given predefined simple type. The implementations of newFactory() within the
subclasses of DerivedSimpleType likewise look up and deliver those factories which
have been registered with the simple type instance home for the instances of sim-
ple types that have been derived via the methods corresponding to the respective
subclasses. They additionally look up, however, the factories for their respective
base types and chain them together appropriately: as already explained before in
Chapter 6, the construction of instances of derived simple types usually depends on
the construction of the instances of their base types.

8.4 Routine Framework

The routine framework allows the integration of user-defined routines with PTDOM
which are similar in concept to classic stored procedures and functions of relational
DBMSs. Thereby, it is possible to extend the system with arbitrary functionality for
the reasonable querying and processing of XML documents stored with PTDOM.

The class diagram of Figure 8.5 gives an overview of the routine framework. The
routine home (modeled by a corresponding class in the diagram) keeps track of all
routines existing within PTDOM. As expressed by the class Routine, each of these
routines is characterized by its name and signature: its allowable input parameters

112 CHAPTER 8. IMPLEMENTATION

RoutineHome

+addRoutine()
+delRoutine()
+getRoutine()

<<interface>>
RoutineImplementation

+ execute()

Routine
+name
+call()
+registerRoutineImplementation()

Type

SimpleTypeComplexType

+returnValue 0..1
0..n

0..n 0..n
+parameter

{ordered}1 0..n

 <<instantiate>>

Figure 8.5: Routine framework overview (UML class diagram)

described by a sequence of simple or complex types taken from a schema definition
within the schema catalog and its return value described by a further type in case
that the routine constitutes a function. If an input parameter or the return value
is specified via a simple type, the routine expects to be passed as this parameter
or delivers as its return value an instance of that simple type (or one of its derived
types); if a parameter or the return value is specified by means of a complex type,
the routine expects to be passed as this parameter or delivers as its return value an
element in typed representation whose content is filled according to that complex
type (or one of its derived types).

The behavior of a routine is provided by a dedicated implementation class which
is registered with the routine. The routine framework demands the implementation
class to realize the RoutineImplemenation interface enforcing the existence of the
method execute(). This method takes an array of objects as its input parameters,
performs the functionality expected from a given routine, and delivers the routine’s
return value as an object. A routine is invoked via the method call() of the class
Routine which like execute() is passed an array of objects as the input parameters
to the routine. After typechecking these parameters against the routine’s signature,
call() dynamically instantiates an object of the registered implementation class
and delegates processing to this object’s execute() method. The result delivered
by execute() is again typechecked and given back as the the routine call’s return
value.

The separation of routines from the implementations of their behavior has the
advantage that similar routines can share implementations. It would be indeed te-
dious if dozens of very similar implementation classes had to be provided to integrate
equals() functions into PTDOM, each of which compares two instances of a given
simple type for equality. Instead, it can be exploited that the SimpleTypeInstance
interface of the simple type framework already ensures that every instance of a
simple type is able to compare itself against another via the method equalTo().
Therefore, a single generic implementation class on the basis of equalTo() can be
provided that can then be shared among all equals() functions. One still has the
option to replace this generic implementation class with a more specific one should
this be desirable for a certain equals() function.

Given this overall organization of the routine framework, the integration of a
new routine into PTDOM thus requires the provision of an appropriate implemen-
tation class that realizes the routine’s functionality, the creation of an appropriate
Routine object that captures the name as well as the signature of the routine, the
registration of the implementation class with that object, and the registration of the

8.5. INDEX FRAMEWORK 113

Routine object with the routine home applying the method addRoutine(). In this
manner, a comprehensive set of routines, e.g., the XQuery and XPath functions and
operators [MMRW02], can be systematically integrated into PTDOM. A subset of
these routines has already been realized.

To retrieve routines registered with the routine home, the class RoutineHome
offers the method getRoutine() which is passed the name of the routine and the
signature desired, i.e., the desired types of the input parameters and the desired type
of the return value. If a routine with that name and signature has been registered,
this routine is returned. If not, all compatible routines are looked up. Obeying
the contravariance rule, a routine is considered compatible if it has the desired
name, the types of its input parameters either match the types desired for the input
parameters or are base types of these types, and the type of its return value either
matches the type desired for the return value or is derived from this type. Out of
these compatible routines, getRoutine() similar to CLOS [Ste90] returns the most
specific one.

8.5 Index Framework

The index framework makes value index structures available with PTDOM. It not
only provides a rich set of such value index structures including hash tables, B-
Trees, and R-Trees; it also facilitates the seamless integration of arbitrary further
value index structures – unordered, ordered, as well as spatial ones – into PTDOM.
The index framework is thus comparable in function to interfaces such as the Ora-
cle Extensible Indexing API [GD02] that allow the integration of new value index
structures into object-relational DBMSs.

The class diagram of Figure 8.6 gives more insight into the index frame-
work which closely collaborates with the schema catalog and document manager.
Within the framework, value index structures are represented by the interface
IndexStructure. A value index structure is attached to either an element type
or an attribute within one the schema catalog’s schema definitions. The frame-
work gathers these indexable schema components under the common interface
IndexableSchemaComponent. The value index structure then indexes all the doc-
ument nodes along their content which validly instantiate the indexable schema
component it is attached to within the documents maintained by the document
manager, namely, the attribute values or elements in typed representation based on
the schema component. The framework subsumes these indexed document nodes
under the interface IndexedDocumentNode.

As indicated by the methods offered by IndexStructure and
IndexableSchemaComponent and the bidirectional association between both
interfaces, each value index structure not only knows the indexable schema
component it is attached to; also, each indexable schema component in the schema
catalog vice-versa keeps track of all the value indexes attached to it. This is
exploited by PTDOM for the maintenance of index consistency: whenever elements
or attribute values in a document are changed in a way that affects value index
structures associated with element types or attributes in the schema catalog, the
affected index structures are updated by removing and/or inserting the elements
or attribute values in question via the removeNode() and insertNode() methods
that are provided by every value index structure. For instance, when an element
in untyped representation is brought to typed representation during document
import, the value index structures attached to the element type on which the newly

114 CHAPTER 8. IMPLEMENTATION

IndexStructureHome

+registerIndexStructure()
+newIndexStructure()
+unregisterIndexStructure()

<<instantiate>>

<<interface>>
IndexStructure

+setIndexedComponent()
+getIndexedComponent()
+insertNode()
+removeNode()

<<interface>>
IndexableSchemaComponent

+getIndexStructures()
+addIndexStructure()
+removeIndexStructure()
+getContentType()

1

0..n+indexedComponent

ElementTypeAttribute

<<interface>>
IndexedDocumentNode

+getContent()

Element AttributeValue

<<interface>>
UnorderedIndexStructure

+getNodesEqualTo()

<<interface>>
OrderedIndexStructure

+getNodesEqualTo()
+getNodesLessThan()
+getNodesGreaterThan()

<<interface>>
SpatialIndexStructure

+getNodesEqualTo()
+getNodesOverlapping()
+getNodesMeeting()
+getNodesDisjointTo()
+getNodesContainedBy()
+getNodesContaining()

HashTable B-Tree R-Tree

0..n

0..n +indexedNodes

RoutineHome

Routine

<<use>>

<<use>>

Figure 8.6: Index framework overview (UML class diagram)

constructed typed representation is based are updated by inserting the element via
insertNode().

The index framework distinguishes unordered, ordered, and spatial value index
structures. These categories are represented by corresponding specializations of
the IndexStructure interface. The framework can be straightforwardly extended
with support for further categories of values index structures such as text index
structures by providing further specializations of the IndexStructure interface.
Each specialized interface defines the methods that are supported by the given
category of value index structures for the retrieval of indexed document nodes. For
example, spatial value index structures offer methods that allow to, being passed
an instance of the content type2 of the respective indexable schema component
they are attached to (which can be obtained via the method getContentType()
of IndexableSchemaComponent), retrieve all the document nodes they index whose
content is equal to, overlapping with, meeting with, disjoint to, contained by, or

2Just like routine parameters in the routine framework, an instance of the content type of an
indexable schema component constitutes an appropriate simple type instance if the content type
is given by a simple type. If it is given by a complex type, a suitable instance is an element in
typed representation filled according to that complex type.

8.6. QUERY EVALUATOR 115

containing the passed instance of the content type.
To integrate a concrete value index structure into the index framework, one has

to supply a class that implements the index structure and supports the respective
subinterface of IndexStructure for the category to which the value index structure
belongs. This class must then be registered under a unique name with the frame-
work’s index structure home (represented by the corresponding class in the diagram)
which serves as a registry of all value index structures available with PTDOM. Us-
ing that name, applications can then dynamically instantiate that index structure
via the method newIndexStructure() offered by the index structure home and at-
tach the structure to an indexable schema component. The index framework already
ships with classes that implement hash tables, B-Trees, and R-Trees as ready-to-use
examples of unordered, ordered, and spatial value index structures.

It is noteworthy that the implementations of the value index structures com-
ing with the index framework are tied to the routine framework. The R-Tree
implementation, for instance, expects that the functions intersects(), meets(),
contains(), interSectionArea(), union(), and area() are registered with the
framework’s routine home for the content type of the indexable schema component
to which an R-Tree is going to be attached. The R-Tree implementation employs
these functions to organize the document nodes instantiating the schema compo-
nent along their content in an R-Tree structure as well as to realize the retrieval
functionality of the SpatialIndexStructure interface.

Founding the implementation of value index structures on routines of the routine
framework is generally a good strategy as it broadens their applicability: applica-
tions can provide specialized implementations of these routines that consider the
semantics of the application data to be indexed. For example, a song retrieval ap-
plication based on MPEG-7 melody descriptions could provide implementations
of the routines required by PTDOM’s R-Tree implementation for the complex
type MelodyContourType of Figure 2.4 considering the semantics of melody con-
tours. When applying an R-Tree index structure to index the elements of type
MelodyContour whose content is defined by means of MelodyContourType, this
index structure could then be exploited to quickly and meaningfully retrieve all
melody contours from the document manager which contain the contour of a melody
fragment hummed by a user.

8.6 Query Evaluator

The components introduced so far provide a rich foundation for an efficient evalua-
tion of queries on XML documents stored with PTDOM. Query evaluation can take
advantage of the fine-grained and typed representation of XML document contents
within the TDOM-based document manager for fine-grained and typed access to
document contents, of the detailed representation of schema definitions within the
schema catalog not just as a basis for query optimization but also – due to the
coupling of elements and attribute values in typed representation in the document
manager’s documents to their respective element types and attibutes – for path
indexing, of the routines provided by the routine framework for adequate process-
ing of document contents, and of the rich set of value indexes offered by the index
framework for speed-up of query evaluation. PTDOM’s query evaluator component
constitutes a first step towards a query processor that uses these opportunities.

Essentially, the query evaluator component (an overview of which is given by
the class diagram of Figure 8.7) provides an implementation of the PTDOM query

116 CHAPTER 8. IMPLEMENTATION

QueryTranslatorHome

+addTranslator()
+delTranslator()
+getTranslator()

<<interface>>
QueryTranslator

+ translate()

AlgebraOperator

+execute()
+nestOperator()
+unnestOperator()
+getNestedOperators()

NaiveXPathTranslator

0..1

0..n

{ordered}

+nestedOperator

 <<instantiate>>

OptimizedXPathTranslator

 <<instantiate>>

Documents ChildNodes

ElementsByType . . .

Figure 8.7: Query evaluator component overview (UML class diagram)

algebra [Rei03]. We have specifically developed this algebra to efficiently evaluate
XPath expressions on all documents within the document manager that are valid
to a given schema definition in the schema catalog exploiting PTDOM’s specifics.3

The query evaluator component implements the different operators of the algebra
– each of which takes one or more sets of document nodes4 and yields a set of doc-
ument nodes as its result – as individual subclasses of the class AlgebraOperator.
Within these subclasses, the behavior of the operators is realized by appropriate
implementations of the abstract method execute() which returns the set of docu-
ment nodes produced by an operator as an iterator to avoid the full materialization
of these potentially large sets in memory. The sets of document nodes to which an
operator’s behavior is applied are either given by the result sets of other operators –
the operators of the PTDOM query algebra can be nested to form operator trees as
it is expressed by the ordered reflexive aggregation to the top right of the diagram
– or taken from a queue of document node sets that has been passed to execute()
in case an operator constitutes a leaf of the operator tree.

The query evaluator component further supplies a query translator home (mod-
eled by a corresponding class) with which arbitrary query translators can be regis-
tered, classes supporting the QueryTranslator interface that are capable of produc-
ing equivalent PTDOM query algebra operator trees out of XPath expressions. The
query evaluator component already ships with a translator which naively translates
XPath expressions to the algebra as well as an optimized translator that exploits
the path indexing abilities of schema definitions and value index structures to more

3Although not explicitly treated in this thesis, the algebra allows to limit the evaluation of
XPath expressions to single documents as well.

4For compatibility with the XPath data model for XML documents [FMN02], not just the
different kinds of document nodes distinguished by TDOM are considered as eligible document
nodes for the operators of the PTDOM query algebra - i.e., elements, comments, processing in-
structions, and text nodes - but also attribute values and documents themselves. For the purpose
of path traversal, a document’s root nodes are considered as its child nodes and attribute values
are regarded as child nodes of the elements they belong to.

8.6. QUERY EVALUATOR 117

likely generate more efficient operator trees.

PTDOM query algebra

General operators

documents(ns, s) Delivers all documents in the
document manager valid to

Schema Definition s in the schema

catalog ignoring the Node Set ns.

childNodes(ns) Delivers the direct child nodes of all

the nodes contained in Set ns.

descendantNodes

(ns)

Delivers all direct and indirect child

nodes of the nodes in Set ns.

parentNodes(ns) Delivers all parent nodes of the

nodes in Set ns.

ascendantNodes

(ns)

Delivers all direct and indirect
parent nodes of the nodes in Set

ns.

union(ns1, ns2) Calculates the union of the two sets

of nodes ns1 and ns2.

Intersection

(ns1, ns2)

Calculates the intersection of the

two sets of nodes ns1 and ns2.

difference(ns1,

ns2)

Calculates the difference between

the two sets of nodes ns1 and ns2.

filterByParent-

Nodes(ns1, ns2)
Selects all nodes from Set ns1

which have a direct parent node in

Set ns2.

filterByAscendant-

Nodes(ns1, ns2)
Selects all nodes from Set ns1 which

have a direct or indirect parent node

in Set ns2.

filterByChild-

Nodes(ns1, ns2)

Selects all nodes from Set ns1

which have a direct child node in

Set ns2.

filterByDescendant-

Nodes(ns1, ns2)

Selects all nodes from Set ns1 which

have a direct or indirect child node in

Set ns2.

filterByName(ns,

name, namespace)

Select all nodes from Set ns which

have name name and namespace

namespace.

filterByKind(ns, k) Delivers all nodes from Set ns that

are of the given class (=document,
element, root element, attribute
value, processing instruction,
comment, text, doctype).

filterByPosition

(ns, p)

Select all nodes from Set ns which

are the p-th child node (p=1,...,

n, last) of their parent nodes.

filterByExistence

(ns, operatortree)

Selects all nodes n from Set ns for

which holds that

operatortree({n}) returns at

least one node in the same
document.

filterByConst-

Predicate(ns,

operatortree, c,

p)

Selects all nodes n from Set ns for

which holds that the binary boolean

predicate function p taken from

the routine framework being

passed the content of one node n1

from operatortree({n})

(elements and attribute values of

the same document than n only)

and constant c (simple type

instance or element) yields true.

filterByPredicate

(ns, operatortree1,

operatortree2, p)

Selects all nodes n from Set ns for

which holds that the binary boolean

predicate function f taken from the

routine framework being passed the

content of one node n1 (elements

and attribute values of the same

document than n only) from

operatortree1({n}) and one

node n2 (elements and attribute

values of the same document than n

only) from operatortree2({n})

yields true.

Specialized operators

elementsByType

(ns, et)

Delivers all elements within the
document manager’s documents
which instantiate the given Element

Type et declared in one of the

schema catalog’s schema
definitions, ignoring the Node Set

ns.

valuesByAttribute

(ns, at)

Delivers all attribute values within the
document manager’s documents
which instantiate the given Attribute

at declared in one of the schema

catalog’s schema definitions,

ignoring the Node Set ns.

elementsByConst-

Index(ns, et, rm,

c)

Retrieves indexed elements from a
value index defined on Element

Type et supporting the retrieval

method rm by passing constant c

(simple type instance or element)

to rm, ignoring the Node Set ns.

valuesByConstIndex

(ns, at, rm, c)

Retrieves indexed attribute values
from a value index defined on

Attribute at supporting the retrieval

method rm by passing constant c

(simple type instance or element) to

rm, ignoring the Node Set ns.

elementsByIndex

(ns, et, rm)

Retrieves indexed elements from a
value index defined on Element

Type et supporting the retrieval

method rm by successively

passing the content of each node

in Set ns (elements and attribute

values only) to rm.

valuesByIndex(ns,

at, rm)

Retrieves indexed attribute values
from a value index defined on

Attribute at supporting the retrieval

method rm by successively passing

the content of each node in Set ns

(elements and attribute values only)

to rm.

Figure 8.8: PTDOM query algebra overview

Figure 8.8 gives an overview of the major operators of the PTDOM query al-
gebra. Roughly, these can be divided into two groups. The first group consists
of general operators that constitute more or less direct mappings of the various
location steps supported by the XPath language. These operators – although oper-

118 CHAPTER 8. IMPLEMENTATION

ators like filterByConstPredicate benefit from the fact that (simple) content of
elements and attribute values in typed representation is kept in type-adequate and
efficient simple type instances and not just as text and that arbitrary user-defined
functions registered with the routine framework can be employed as predicates for
comparison – do not rely on any specific characteristics of PTDOM. Employing only
these operators, most XPath expressions can be straightforwardly expressed in the
PTDOM query algebra, as it is actually done by the naive query translator.

:FilterByName
name="Meter"

1

melody:Schema:Documents
schema

:Descendant
Nodes

nestedOperator

nestedOperator

:FilterByKind
k="element"

nestedOperator

:Integer
value=128

p

: FilterByConstPredicate
p="equals"

nestedOperator

:FilterByName
name="Denominator"

:ChildNodes

nestedOperator

:FilterByKind
k="element"

nestedOperator

operatorTree

2

:ElementsByType

et

:Integer
value=128

p

: FilterByConstPredicate
p="equals"

nestedOperator

:FilterByName
name="Denominator"

:ChildNodes

nestedOperator

:FilterByKind
k="element"

nestedOperator

operatorTree

et3:ElementType
namespace="http://..."
name= "Meter"
scope="MelodyType"

:ElementsByConstIndex
rm="getNodesEqualTo"

:elementsByType

et

nestedOperator

et3:ElementType
namespace="http://..."
name= "Meter"
scope="MelodyType"

:Integer
value=128

p

:FilterByChildNodes

nestedOperator

3

et6:ElementType
namespace="http://..."
name= "Denominator"
scope="MeterType"

et

4

:ElementsByConstIndex
rm="getNodesEqualTo"

:Integer
value=128

p

nestedOperator

et6:ElementType
namespace="http://..."
name= "Denominator"
scope="MeterType"

et

:ParentNodes

:FilterByName
name="Meter"

nestedOperator

Figure 8.9: Query algebra example (UML object diagrams)

The object diagram to the upper left (1) of Figure 8.9 illustrates how the XPath
expression //Meter[Denominator/data() = 128] can be evaluated on the XML
documents within PTDOM’s document manager that are valid to the Melody de-
scription scheme of Figure 2.4 using the query algebra’s general operators. Outgoing
from the document nodes of those documents that comply to the schema definition
selected via the documents operator at the bottom, the depicted operator tree ex-
pensively traverses all direct and indirect child nodes of these document nodes via
the descendantNodes operator on the search for Meter elements. Out of all these
Meter elements, the filterByConstPredicate operator forming the root of the
operator tree selects those elements employing an appropriate equals() function

8.6. QUERY EVALUATOR 119

registered with the routine framework’s routine home that have a Denominator
element among their child nodes with an integer simple content of 128.

The second group of operators of the PTDOM query algebra consists of special-
ized operators designed to utilize the path indexing capabilities of schema definitions
within PTDOM as well as the value index structures offered by PTDOM’s index
framework. The operators elementsByType and valuesByAttribute exploit that
elements and attribute values in typed representation are tightly coupled to the el-
ement types and attributes they instantiate to immediately obtain all elements and
attribute values inside the document manager’s documents that instantiate a given
element type or attribute of one in the schema catalog’s schema definitions. The up-
per right (2) object diagram of Figure 8.9 shows an alternative operator tree for the
expression //Meter[Denominator/data() = 128] which, assuming that all Meter
elements are kept in typed representation, employs an elementsByType operator to
avoid the costly search for Meter elements over all nodes of the documents valid to
the Melody description scheme by directly obtaining all elements instantiating the
element type Meter.

Furthermore, the second group features operators that allow to obtain elements
and attribute values from a value index that might be attached to an element type
or attribute within a schema definition. Instead of explicitly navigating from every
Meter element to its child elements in order to perform the (possibly fruitless) check
whether there is an Denominator element with a simple content of 128, the object
diagram to the bottom left (3) of Figure 8.9 employs an elementsByConstIndex
operator to obtain all Denominator elements with a simple content of 128 from a
value index that has been attached to the element type Denominator. The root
of the operator tree consists of an filterByChildNodes operator that lets pass
only those Meter elements which are parent elements of one of the Denominator
elements retrieved from the index. As shown by the object diagram to the bottom
right (4), this operator tree can even be further simplified. To avoid the filter-
ing of potentially many Meter elements which do not have child nodes among the
Denominator elements retrieved from the index, one can directly navigate from the
retrieved Denominator elements to their parent elements and select all those with
the element type Meter (if it is known from the schema definition, that Denominator
elements always appear as children of Meter elements, the latter step is even un-
necessary).

The optimized query translator shipping with the query evaluator component
– albeit not performing query optimization in the traditional sense – tries to pro-
duce more efficient operator trees compared to the naive translator by applying
an heuristic translation function that makes intensive use of the second group of
operators of the PTDOM query algebra. An excerpt of this translation function is
given by Figure 8.10. The function avoids, if possible, expensive access to all doc-
uments valid to the schema definition on which the XPath expression is evaluated
via documents operators as well as full document traversals via descendantNodes
operators. Essentially, this is achieved by picking named element types and at-
tributes that form the beginning of XPath expressions or the beginning of subex-
pressions starting with //, translating them to corresponding elementsByType and
valuesByAttribute operators, and using these operators as anchor points tree rel-
ative to which the rest of the expression is being translated. Furthermore, the
translation function makes use of value index structures for the translation of con-
ditions via elementsByConstIndex, elementsByIndex, valuesByConstIndex, and
valuesByIndex operators if possible.

As an illustration of how the heuristic translation function works, the

120 CHAPTER 8. IMPLEMENTATION

Heuristic translation function hs() for an optimized transformation of

XPath expressions to PTDOM query algebra operator trees on the basis of Schema Definition s.

Navigational expressions

Note: ets is an element type declared in Schema Definition s.

1. hs(/)=

 documents(ns,s)

2. hs(/*)=

 filterByKind(

 childNodes(

 documents(ns,s)),

 ”element”)

3. hs(//*)=

 filterByKind(

 descendantNodes(

 documents(ns,s)),

 ”element”)

4. hs(/ets)=

 filterByKind(

 elementsByType(

 ns,ets),

 ”root element”)

5. hs(//ets)=

 elementsByType(ns,ets)

6. hs(E/*)=

 filterByKind(

 childNodes(hs(E)),

 ”element”)

7. hs(E//*)=

 filterByKind(

 descendantNodes(

 hs(E)),

 ”element”)

8. hs(E/ets)=

 filterByKind(

 filterByName(

 childNodes(hs(E)),

 ets),

 ”element”)

9. hs(E//ets)=

 filterByAscendant-

 Nodes(

 elementsByType(ns,

 ets),

 hs(E))

.

Conditions (normal translation)

Note: § serves as a marker to indicate that a condition relative to the condition’context node in the XPath expression is being translated.

10. hs(E1[E2])=

 filterByExistence(

 hs(E1),hs(§E2))

11. hs(E1[E2/data() p c])=

 filterByConst-

 Predicate(hs(E1),

 hs(§E2),c,p)

12. hs(E1[E2/data() p

 E3/data()])=

 filterByPredicate(

 hs(E1),hs(§E2),

 hs(§E3),p)

13. hs(§/E)=

 hs(/E)

14. hs(§//E)=

 hs(//E)

15. hs(§*)=

 filterByKind(

 childNodes(ns),

 ”element”)

16. hs(§ets)=

 filterByKind(

 filterByName(

 childNodes(ns),ets),

 ”element”)

. . .

Conditions (exploitation of value index structures)

Note: it is assumed that a value index structure offering retrieval method rmp equivalent to predicate

function p is attached to element type ets.

17. hs(E[ets/data() p c])=

 filterByChildNodes(

 hs(E),

 elementsByConst-

 Index(ns,ets,rmp,c))

18. hs(E1[ets/data() p

 E3/data()])=

 filterByChildNodes(

 hs(E1),

 elementsByIndex(

 hs(E1/E3),ets,rmp))

19. hs(E1[ets/data() p

 /E3/data()])=

 filterByChildNodes(

 hs(E1),elementsBy-

 Index(hs(/E3),ets,

 rmp))

. . .

Figure 8.10: Heuristic XPath translation overview

optimized query translator will transform the example XPath expression
//Meter[Denominator/data() = 128] to operator tree (2) of Figure 8.9 by ap-
plying rules 11, 16, and 5 of Figure 8.10 if no value index structures are attached
to the element type Denominator. If they are, the optimized query translator will
produce operator tree (3) via rules 17 and 5.

From the fact that in case a value index structure is attached to element type
Denominator, operator tree (3) will be produced instead of operator tree (4) which is
likely to be more efficient, it can be easily seen that the optimized query translator
can only be regarded as a first step towards an optimized query evaluation and
definitely constitutes no subsitute for a dedicated query optimizer which exploits
the rich schema information available with PTDOM’s schema catalog to transform
operator trees to more efficient representations. Future work should therefore be
directed at integrating a sophisticated query optimizer into the query evaluator
component.

8.7. EXPERIMENTAL RESULTS 121

8.7 Experimental Results

So far, we have been emphasizing the conceptual benefits of PTDOM’s schema-
aware approach to XML document management with regard to database consis-
tency, treatment of non-textual document contents, path indexing, and opportuni-
ties for query optimization. Compared to schema-ignoring approaches like Xindice,
TEXTML, eXist, etc., the obvious drawback of PTDOM’s approach is – apart from
its inherent dependency on the availability of schema definitions – its higher com-
plexity resulting from the efforts required for document validation, the typing of
basic document contents, and the linking of elements and attribute values to their
element types and attributes in schema definitions for path indexing.

In this section, we present initial experimental results providing evidence that
this complexity should be acceptable for many XML database applications in prac-
tice and that PTDOM offers not just purely conceptual but also directly noticable
benefits in terms of query performance. The experiments are based on a working
Java prototype that almost fully implements the PTDOM architecture as described
in this chapter and that employs PSEPro as its storage backend. An Athlon XP
3000+ 2.12 GHz PC with 512 MB DDR RAM and a Western Digital 180GB hard
disk running Windows XP served as the computional platform for the experiments.
All experiments were conducted five times, dropping the highest and lowest numbers
and reporting the average of the middle three.

Schema definition import

Size 342,292 bytes

Parsing and integrity check 1,182 msec

Compilation to typing
automaton 4,463 msec

Persistent storage 1,261 msec

Total 6,906 msec

Figure 8.11: Results of schema definition import

The first experiment measures the effort required to import a complex MPEG-7
DDL schema definition into the schema catalog of an empty PTDOM database.
As a veritable stress test for our prototype, we have compiled all media description
schemes predefined by the MPEG-7 standard [ISO01c, ISO01d, ISO01e] into a single
schema definition consisting of more than 370 complex type declarations organized
in a deeply nested derivation hierarchy and exceeding 300KB in size.

The table of Figure 8.11 presents the outcome of this experiment. The ta-
ble breaks down how much of the total duration required for the import of the
schema definition was spent on parsing the schema definition into the catalog’s in-
ternal model and checking the integrity of its schema components, on compiling the
schema definition into an equivalent typing automaton, and on storing both schema
definition and typing automaton via the PSEPro storage backend.

The effort spent on compiling the typing automaton is about four times larger
than the effort spent on parsing and checking the integrity of the schema definition,
both consuming about 80% of the total import time of 6.9 sec. Assuming that in
typical application scenarios the import of schema definitions can be expected to
happen rather infrequently compared to the import of documents and considering

122 CHAPTER 8. IMPLEMENTATION

the high complexity of the imported definition, the measured total import time is
an acceptable result for an expectedly one-time effort.

Document import

DB 1 DB 2 DB 3

Number of
documents 50 100 200

Smallest
document

Document
average

Largest
document

Smallest
document

Document
average

Largest
document

Smallest
document

Document
average

Largest
document

Size 794
bytes

22,323
bytes

104,157
bytes

1,910
 Bytes

21,195
bytes

102,146
bytes

495
bytes

22,328
bytes

106,037
bytes

Parsing and
validation 15 msec 254 msec 1,578 msec 16 msec 218 msec 1,687 msec 16 msec 239 msec 1,641 msec

Typing 15 msec 201 msec 781 msec 16 msec 221 msec 1,328 msec 16 msec 278 msec 1,109 msec

Persistent
storage 15 msec 367 msec 1,953 msec 47 msec 369 msec 2,000 msec 15 msec 509 msec 1,594 msec

Total 45 msec 822 msec 4,312 msec 79 msec 808 msec 5,015 msec 47 msec 1,026 msec 4,344 msec

Figure 8.12: Results of document import

The second experiment measures the effort required for importing XML docu-
ments following the schema definition of the first experiment into PTDOM’s doc-
ument manager. For this purpose, we prepared three test sets of 50, 100, and 200
randomly generated MPEG-7 media descriptions each consisting of possibly up to
500 melody descriptions complying to the description scheme of Figure 2.4. For
each of these test sets, we prepared a dedicated database with the schema defini-
tion of the first experiment already imported into the schema catalog. Into these
databases, we then successively imported the documents of the corresponding test
sets.

The table of Figure 8.12 shows the outcome of the second experiment. For each
database, the table summarizes how much of the total duration required for the
import of a document was spent on parsing and validating the document against the
schema definition of the first experiment using the typing automaton compiled from
that definition, on typing the document’s contents – i.e., constructing corresponding
typed representations of the document’s elements and attribute values linking them
to the element types and attributes they instantiate in the schema catalog and
creating appropriate simple type instances for their content – again using the typing
automaton, and on making the document persistent via PSEPro. Numbers are given
for the smallest and largest document in each test set as well as for the document
average.

Not going into the exact numbers (considering the complexity of the schema
definition, we think that the the efforts for document validation and typing are rea-
sonable for the given document sizes), the interesting observation that can be made
on this experiment is that the effort required for document typing is fairly equal
to the effort required for document validation and parsing (for larger documents
even less), on the average consuming about 25% of the total import time. Thus,
if an application is already willing to take the effort of validating XML documents
when importing them into a database as a means of ensuring database consistency,
it should mostly be able to afford the additional effort of document typing as well.
In such scenarios, PTDOM’s schema-aware approach proves viable. If, however,
an application has so harsh time constraints not allowing to spend the additional
typing effort or even to validate a document before importing it into a database
(with all incurring problems such as delegating the responsibility for a consistent

8.7. EXPERIMENTAL RESULTS 123

database state to applications), PTDOM certainly cannot be the XML database
solution of choice.

Document querying

DB 1 DB 2 DB 3

Naive
translator

Optimized
translator

Naive
translator

Optimized
translator

Naive
translator

Optimized
translator

1. //Meter 5,359 msec
(5,363 hits)

844 msec
(5,363 hits)

9,812 msec
(9,905 hits)

1,344 msec
(9,905 hits)

22,609 msec
(21,100 hits)

2,719 msec
(21,100 hits)

2. //Meter[Denominator
/data()=4]

(Hashtable attached to
Denominator)

8,906 msec
(674 hits)

2,812 msec
(674 hits)

16,375 msec
(1,270 hits)

6,984 msec
(1,270 hits)

37,468 msec
(2,659 hits)

15,301 msec
(2,659 hits)

3. //Meter[Denominator
/data()=4]
(No indexing)

8,906 msec
(674 hits)

5,422 msec
(674 hits)

16,375 msec
(1,270 hits)

10,110 msec
(1,270 hits)

37,468 msec
(2,659 hits)

21,859 msec
(2,659 hits)

4. //Meter/Denominator 5,265 msec
(5,363 hits)

2,390 msec
(5,363 hits)

9,953 msec
(9,905 hits)

4,234 msec
(9,905 hits)

23,266 msec
(21,100 hits)

8,171 msec
(21,100 hits)

5. //AudioDescription-
Scheme/*//Beat

5,922 msec
(6,144 hits)

1,672 msec
(6,144 hits)

11,422 msec
(11,833 hits)

2,953 msec
(11,833 hits)

23,890 msec
(24,786 hits)

6,438 msec
(24,786 hits)

Figure 8.13: Results of document querying

So far, we have been mainly concerned with the costs of choosing PTDOM for
XML document management. We now want to highlight the benefits to be earned.
The third experiment measures the time required by the query evaluator component
to evaluate five XPath expressions on the three databases created in the second
experiment. The experiment opposes optimized query translation, which makes
intensive use of the specialized operators of the PTDOM query algebra tailored
to exploit the path indexing abilities of the schema catalog and the value index
structures of the index framework, and naive query translation, which utilizes the
algebra’s general operators only.

The table of Figure 8.13 presents the outcome of this experiment. As one would
expect, optimized query translation outruns naive query translation considerably.
For Queries 1 to 4, the elementsByType operator which exploits the path indexing
abilities of PTDOM’s schema catalog can be brought into play to avoid the evalua-
tion of costly // document traversals. Queries 2 and 3 further show that respectable
performance gains can be achieved from available value index structures when us-
ing optimized query translation, even in spite of the suboptimal utilization of these
structures that has already been explained before in Section 8.6.

Significant increase in performance is also achieved for Query 5. Despite the fact
that there is at least one Beat element below an AudioDescriptionScheme element
in every document of our test sets and even though the optimized translator pro-
duces a quite complicated operator tree (which selects all AudioDescriptionScheme
and Beat elements via elementsByType operators and filters all those Beat el-
ements which have one of the AudioDescriptionScheme elements in the same
document among their ancestors) naive query translation (which simply traverses
down all elements in every document on the search for Beat elements below
AudioDescriptionScheme elements) still cannot compete.

The third experiment shows once more the desirability of a dedicated query
optimizer. With knowledge of the schema definition in the catalog, an optimizer
could, as already illustrated in Section 8.6, not just get even more out of the value
index structure for the evaluation of Query 2. It could further simplify Query 5 to
//Beat which optimized translation could execute in a time comparable to Query 1.
While not yet possessing such a query optimizer, the PTDOM architecture with the

124 CHAPTER 8. IMPLEMENTATION

rich schema information available in its schema catalog at least provides an ideal
ground for its realization.

Chapter 9

Conclusion

In the present thesis, the application of XML database solutions for the manage-
ment of MPEG-7 media descriptions has been explored. After an introduction to
the area of metadata, metadata standards for digital media and MPEG-7, an ex-
tensive set of requirements has been developed that should be met by an XML
database solution in order to be suitable for the management of MPEG-7 media
descriptions. The set comprises requirements addressing the representation of and
the access to MPEG-7 media descriptions, requirements treating the management
of media description schemes to which MPEG-7 media descriptions comply, as well
as requirements concerning extensibility and classic DBMS functionality.

Against these requirements, an exhaustive number of representative XML
database solutions, native XML database solutions as well as XML extensions of
traditional DBMS, have been analyzed. The analysis has revealed considerable
deficiencies of the examined systems seriously threatening their qualification for
the management of MPEG-7 media descriptions. The major problem with current
XML database solutions, native solutions as well as database extensions, is that
they largely neglect schema and type information available with media description
schemes for the storage of and the access to media descriptions. As a consequence,
large amounts of non-textual technical metadata typically contained in MPEG-7
media descriptions, such as frequency spectrums, color distributions, and object
motion vectors, is simply treated as text, significantly hindering access and mean-
ingful processing of these data.

This weakness has its origin in the fact that the schema catalogs offered by
the examined solutions are not able to adequately handle MPEG-7 DDL schema
definitions. Actually, quite a few of the examined solutions do not provide schema
catalogs at all; and those who do usually employ the schema information contained
therein for the validation of XML documents only but not for the typed storage of
XML document contents.

A further weakness of the examined solutions is the lack of multidimensional
value index structures obstructing the implementation of efficient multimedia re-
trieval applications on top of them. Also, the analysis has shown that profound
extensibility with functionality and index structures as well as classic DBMS func-
tionality like transaction support, fine-grained concurrency and access control, and
mature backup support cannot be taken for granted.

Facing the deficiencies of current XML database solutions, this thesis has made
three substantial contributions towards an XML database solution that better suits
the needs of the management of MPEG-7 media descriptions.

125

126 CHAPTER 9. CONCLUSION

Firstly, TDOM has been proposed as an object-oriented model for XML docu-
ments that is well-suited for the representation of MPEG-7 media descriptions. The
central characteristics of TDOM can be summarized as follows:

• TDOM provides a detailed representation of an XML document permitting
applications to access and manipulate its contents at any desired level of
granularity.

• TDOM supplies the concept of typed representations with which the basic
contents of an XML document are represented in a manner appropriate to
the particular content type that has been declared within the schema defini-
tion to which the document complies. On the basis of typed representations,
applications can reasonably access and process even complex non-textual con-
tents such as vectors, lists, and matrices.

• TDOM provides a simple type framework allowing to integrate support for
arbitrary simple data types and simple type derivation methods for use with
typed representations.

• For cases where schema and type information is not available or where it
is desired to represent XML document contents decoupled from any schema
definition, TDOM offers untyped representations. These simply keep basic
XML document contents as text just as traditional DOM.

• TDOM permits to pragmatically switch between typed and untyped repre-
sentations depending on the needs of a particular task. This gives a lot of
flexibility in working with the model, for instance when importing XML doc-
uments to TDOM or during document updates.

Secondly, typing automata have been proposed as an intermediary representa-
tion of schema definitions for XML documents which essentially can be characterized
along these lines:

• Typing automata are an executable formalism for the intermediary representa-
tion of schema definitions for XML documents that is in principle independent
of any particular XML schema definition language.

• Typing automata are able to validate XML documents in TDOM represen-
tation against the schema definition they represent and to infer and create
appropriate typed representations of their contents.

• Typing automata are reasonably efficient. They can validate and type XML
documents in a running time linear to the number of elements contained in
the document and the number of transition rules of which they consist.

• Typing automata can be extended up to the expressiveness of MPEG-7
DDL. Therefore, they constitute an adequate means for the representation
of MPEG-7 media description schemes.

Thirdly, equipped with TDOM and typing automata, the implementation of the
PTDOM database prototype on the basis of the object-oriented DBMS ObjectStore
has been described. Summarizing, the prototype has the following properties:

127

• PTDOM applies typing automata for the realization of a schema catalog that
manages schema definitions for XML documents; it applies TDOM for the
realization of a document manager component that manages XML documents
instantiating these schema definitions.

• PTDOM’s schema catalog and the document manager are tightly coupled:
not only are the typing automata from the schema catalog used to create
typed representations of the contents of the stored XML documents thereby
giving applications typed access. Also, the schema catalog interconnects the
individual attributes and element types in the schema definitions it manages
with those attribute values and elements that instantiate them within the
stored XML documents.

• The tight interconnection of schema definitions and instantiating XML doc-
uments constitutes a path index that opens up new ways of accessing XML
document contents. This has been illustrated with a sketch of an XPath
evaluator component that exploits these opportunities.

• Provided that an application scenario already allows to take the effort to vali-
date documents while importing them into a database as a means of ensuring
database consistency, the additional effort to produce type basic document
contents as well as interlinking elements and attribute values with the ele-
ment types and attributes they instantiate is likely to be acceptable as well.

• PTDOM supports a broad array of simple types for basic XML document
contents, a variety of value index structures like hashtables, B-Trees, and
even multidimensional R-Trees, as well as user-defined routines.

• PTDOM is profoundly extensible with new simple types, value index struc-
tures, and user-defined routines.

• PTDOM offers mature support for classic DBMS functionality which is inher-
ited from the underlying DBMS ObjectStore serving as the storage backend.

As a consequence of these characteristics, the PTDOM prototype constitutes an
XML database solution that satisfies most of the requirements for the management
of MPEG-7 media descriptions and that is thus highly qualified for this purpose.

The impact of the present thesis is not just limited to the management of MPEG-
7 media descriptions. TDOM, typing automata, and PTDOM constitute generic
results that are applicable to the management of arbitrary XML documents. Hence,
the contributions this thesis lay important foundations for a new generation of gen-
eral XML database solutions that thoroughly exploit available schema and type
information for the adequate storage of XML documents. The existence of such
XML database solutions is highly desirable in any application domain in which
data-centric XML documents with large amounts of non-textual data have to be
managed. Examples of such domains are electronic data interchange and the ex-
change of scientific data.

The results of this thesis pave the way to future research work:

• As it has already been illustrated by means of an XPath evaluator, the tight
coupling of schema definitions with the XML documents instantiating these
definitions that is performed by PTDOM opens up new access paths to XML
document contents. It would be interesting to investigate how these access
paths can be exploited for an efficient implementation of a full-fledged XML

128 CHAPTER 9. CONCLUSION

query or transformation language, such as XQuery and XSLT. It would also be
interesting to examine how this coupling can be exploited for the realization
of sophisticated query optimizers.

• PTDOM could be integrated with a generic tool suite for the management
of MPEG-7 media descriptions and description schemes. Such a suite could
include tools for editing media description schemes, tools for editing media
descriptions following these description schemes, as well as search tools for
the retrieval of media descriptions. As such tools are intended for use by end
users, the challenge is to provide tools that on the one hand are generically
applicable but on the other hand hide the technical peculiarities of MPEG-
7 DDL and the XML representation of MPEG-7 media descriptions behind
intuitive user interfaces.

• With TDOM, typing automata, and PTDOM, this thesis has supplied the
means necessary to set up a generically applicable database for MPEG-7 me-
dia descriptions. It would be interesting to examine how such an MPEG-7
database can be integrated into a larger multimedia database which not only
manages media descriptions but also media data and multimedia composi-
tions and which supports the full process of content production: from raw
media production, media postprocessing, authoring of multimedia content,
and annotation with descriptional metadata to media dissemination and pre-
sentation.

Bibliography

[AIT00] AITF. Categories for the Description of Works of Art. AITF Standard
Version 2.0, Art Information Task Force (AITF), September 2000.

[Ana01] Analysis & Design Platform Task Force. Unified Modeling Language
(UML). OMG Available Specification Version 1.4, Object Manage-
ment Group (OMG), September 2001.

[AQM+97] S. Abiteboul, D. Quass, J. McHugh, et al. The Lorel Query Language
for Semistructured Data. Journal of Digital Libraries, 1(1), 1997.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullmann. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, Massachussetts, 1986.

[BAOG98] K. Böhm, K. Aberer, M.T. Öszu, and K. Gayer. Query Optimiza-
tion for Structured Documents Based on Knowledge on the Docu-
ment Type Definition. In Proc. of the IEEE Forum on Research and
Technology Advances in Digital Libraries (ADL ’98), Santa Barbara,
California, April 1998.

[BCF+02] S. Boag, D. Chamberlin, M.F. Fernandez, et al. XQuery 1.0: An XML
Query Language. W3C Working Draft, World Wide Web Consortium
(W3C), November 2002.

[BK89] E. Bertino and W. Kim. Indexing Techniques for Queries on Nested
Objects. IEEE Transactions on Knowledge and Data Engineering,
1(2), 1989.

[BK95] P.A. Boncz and M.L. Kersten. Monet – An Impressionist Sketch of
an Advanced Database System. In Proc. of the Basque International
Workshop on Information Technology (BIWITT’95), San Sebastian,
Spain, July 1995.

[BKS98] S. Boll, W. Klas, and A. Sheth. Overview on Using Metadata to Man-
age Multimedia Data. In A. Sheth and W. Klas, editors, Multimedia
Data Management: Using Metadata To Integrate and Apply Digital
Media. McGraw-Hill, New York, 1998.

[BM01] P.V. Biron and A. Mahotra. XML Schema Part 2: Datatypes. W3C
Recommendation, World Wide Web Consortium (W3C), May 2001.

[Bou02] R. Bourret. XML Database Products. Online Article, available un-
der http://www.rpbourret.com/xml/XMLDatabaseProds.htm, May
2002.

129

130 BIBLIOGRAPHY

[BPSMM00] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. Extensible
Markup Language (XML) 1.0 (Second Edition). W3C Recommenda-
tion, World Wide Web Consortium (W3C), October 2000.

[BR94] K. Böhm and T.C. Rakow. Metadata for Multimedia Documents.
ACM SIGMOD Record, 23(4), 1994.

[CD99] J. Clark and S. DeRose. XML Path Language (XPath). W3C Recom-
mendation Version 1.0, World Wide Web Consortium (W3C), Novem-
ber 1999.

[CDF+94] M.J. Carey, D.J. DeWitt, M.J. Franklin, et al. Shoring Up Persistent
Applications. In Proc. of the 1994 ACM SIGMOD International Con-
ference on Management of Data (ACM SIGMOD 1994), Minneapolis,
Minnesota, May 1994.

[CDG+02] H. Comon, M. Dauchet, R. Gilleron, et al. Tree Automata Tech-
niques and Applications. Unpublished Book Manuscript, October
2002. Available at: http://www.grappa.univ-lille3.fr/tata/tata.pdf.

[CFS99] K. Curtis, P.W. Foster, and F. Stentiford. Metadata – The Key to
Content Management Services. In Proc. of the 3rd IEEE Meta-Data
Conference, Bethesda, Maryland, April 1999.

[Chi00] B. Chidlovskii. Using Regular Tree Automata as XML Schemas. In
Proc. of the IEEE Advances in Digital Libraries 2000 (ADL 2000),
Washington, D.C., May 2000.

[Cla99] J. Clark. XSL Transformations (XSLT). W3C Recommendation,
World Wide Web Consortium (W3C), November 1999.

[Cla01] J. Clark. TREX – Tree Regular Expressions for XML Language
Specification. Specification, Thai Open Source Software Center, Ltd.,
February 2001.

[CLKR02] B. Chang, E. Litani, J. Kesselman, and R. Rahman. Document Object
Model (DOM) Level 3 Abstract Schemas Specification. W3C Note
Version 1.0, World Wide Web Consortium (W3C), July 2002.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo-
rithms. The MIT Press, Cambridge, Massachussetts, 1990.

[CM01] J. Clark and M. Murata. RELAX NG Specification. OASIS Com-
mittee Specification, Organization for the Advancement of Structured
Information Standards (OASIS), December 2001.

[CRF00] D.D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query
Language for Heterogeneous Data Sources. In Proc. of the 3rd Inter-
national Workshop on the Web and Databases (WebDB 2000), Dallas,
Texas, May 2000.

[CT01] R. Cowan and R. Tobin. XML Information Set. W3C Recommenda-
tion, World Wide Web Consortium (W3C), October 2001.

[DCM99] DCMI. Dublin Core Metadata Element Set. DCMI Recommendation
Version 1.1, Dublin Core Metadata Initiative (DCMI), July 1999.

BIBLIOGRAPHY 131

[DFF+98] A. Deutsch, M. Fernandez, D. Florescu, et al. XML-QL: A Query
Language for XML. In Proc. of the W3C Query Languages Workshop
(QL’98), Boston, Massachussets, December 1998.

[DFS99] A. Deutsch, M. Fernandez, and D. Suciu. Storing Semistructured
Data with STORED. In Proc. of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 1999), Philadelphia,
Pennsylvania, June 1999.

[DN01] Y. Duchesne and P. Nyfeld. Ozone Developer’s Guide. System Docu-
mentation Version 1.0, SMB GmbH, 2001.

[EN94] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems
– Second Edition. The Benjamin/Cummings Publishing Company,
Redwood City, California, 1994.

[eXc00] eXcelon Corp. Java API User Guide. System Documentation Release
6.0 Service Pack 5, eXcelon Corp., June 2000.

[eXc01a] eXcelon Corp. Managing DXE. System Documentation Release 3.5,
eXcelon Corp., December 2001.

[eXc01b] eXcelon Corp. PSE Pro for Java API User Guide. System Documen-
tation Release 6.0 Service Pack 5, eXcelon Corp., April 2001.

[Fal01] D.C. Fallside. XML Schema Part 0: Primer. W3C Recommendation,
World Wide Web Consortium (W3C), May 2001.

[FBY92] W.B. Frakes and R. Baeza-Yates, editors. Information Retrieval –
Data Structures & Algorithms. Prentice Hall, Upper Saddle River,
New Jersey, 1992.

[FHK+02] T. Fiebig, S. Helmer, C.C. Kanne, G. Moerkotte, et al. Anatomy of
a Native XML Base Management System. The VLDB Journal, 11(4),
2002.

[FK99] D. Florescu and D. Kossmann. Storing and Querying XML Data Using
an RDBMS. IEEE Data Engineering Bulletin, 22(3), 1999.

[FK01] N. Fatemi and O.A. Khaled. Indexing and Retrieval of TV News Pro-
grams Based on MPEG-7. In Proc. of the IEEE International Confer-
ence on Consumer Electronics (ICCE 2001), Los Angeles, California,
June 2001.

[FM00] T. Fiebig and G. Moerkotte. Evaluating Queries on Structure with
Extended Access Support Relations. In Proc. of the World Wide Web
and Databases, Third International Workshop (WebDB 2000), Dallas,
Texas, May 2000.

[FM01] T. Fiebig and G. Moerkotte. Algebraic XML Construction and its
Optimization in Natix. World Wide Web, 4(3), 2001.

[FMN02] M. Fernandez, J. Marsh, and M. Nagy. XQuery 1.0 and XPath 2.0
Data Model. W3C Working Draft, World Wide Web Consortium
(W3C), November 2002.

132 BIBLIOGRAPHY

[FS98] M. Fernandez and D. Suciu. Optimizing Regular Path Expressions
Using Graph Schemas. In Proc. of the Fourteenth International Con-
ference on Data Engineering (ICDE ’98), Orlando, Florida, February
1998.

[FT98] C. Frankston and H.S. Thompson. XML-Data Reduced. Unpublished
Draft of W3C Note Version 0.21, University of Edinburgh, July 1998.

[GB97] R.V. Guha and T. Bray. Meta Content Framework Using XML. W3C
Note, World Wide Web Consortium (W3C), June 1997.

[GD02] W. Gietz and C. Dupree. Oracle 9i Data Cartridge Developer’s Guide
. System Documentation Release 2 (9.2), Oracle Corp., March 2002.

[GG98] V. Gaede and O. Günther. Multidimensional Access Methods. ACM
Computing Surveys, 30(2), 1998.

[Gil98] A.J. Gilliland-Swetland. Defining Metadata. In M. Baca, editor, In-
troduction to Metadata: Pathways to Digital Information. Getty In-
formation Institute, Los Angeles, California, 1998.

[GMW99] R. Goldman, J. McHugh, and J. Widom. From Semistructured Data
to XML: Migrating the Lore Data Model and Query Language. In
Proc. of the ACM SIGMOD Workshop on The Web and Databases
(WebDB ’99), Philadelphia, Pennsylvania, June 1999.

[Gre00] J. Greenberg, editor. Metadata and Organizing Educational Resources
on the Internet. The Haworth Information Press, New York, 2000.

[GSN99] G. Gardarin, F. Sha, and T.D. Ngoc. XML-Based Components for
Federating Multiple Heterogeneous Data Sources. In Proc. of the 18th
International Conference on Conceptual Modeling (Conceptual Mod-
eling - ER ’99), Paris, France, November 1999.

[GW97] R. Goldman and J. Widom. DataGuides: Enabling Query Formula-
tion and Optimization in Semistructured Databases. In Proc. of the
23rd International Conference on Very Large Data Bases (VLDB ’97),
Athens, Greece, August 1997.

[HAA+02] S. Higgins, N. Agarwal, A. Agrawal, et al. Oracle 9i XML Database
Developer’s Guide – Oracle XML DB. System Documentation Release
2 (9.2), Oracle Corp., March 2002.

[HMF99] G. Huck, I. Macherius, and P. Fankhauser. PDOM: Lightweight Per-
sistency Support for the Document Object Model. In Proc. of the
Workshop “Java and Databases: Persistence Options” of the 14th
Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’99), Denver, Col-
orado, November 1999.

[Hos00] H. Hosoya. Regular Expression Types for XML. PhD thesis, University
of Tokyo, Japan, 2000.

[HS02] J. Hunter and C. Seyrat. Description Definition Language. In B.S.
Manjunath, P. Salembier, and T. Sikora, editors, Introduction to
MPEG-7. John Wiley & Sons, West Sussex, UK, 2002.

BIBLIOGRAPHY 133

[IBM00] IBM Corp. IBM DB2 Universal Database – XML Extender Admin-
istration and Programming. System Documentation Version 7, IBM
Corp., 2000.

[IBM01a] IBM Corp. IBM DB2 Spatial Extender – User’s Guide and Reference.
System Documentation Version 7, IBM Corp., June 2001.

[IBM01b] IBM Corp. IBM DB2 Universal Database – Text Extender Admin-
istration and Programming. System Documentation Version 7, IBM
Corp., March 2001.

[IEE02] IEEE P1484.12 Learning Object Metadata Working Group. Draft
Standard for Learning Object Metadata. IEEE Final Draft Standard
P1484.12.1-2002, IEEE Learning Technology Standards Committee
(LTSC), July 2002.

[Inf02] Infonyte GmbH. Infonyte-DB – User Manual and Programmers Guide.
System Documentation Version 2.0.2, Infonyte GmbH, May 2002.

[ISO99] ISO/IEC JTC 1/SC 29/WG 11. MPEG-7: Context, Objectives and
Technical Roadmap, V.12. ISO/IEC Document N2861, International
Organization for Standardization/International Electrotechnical Com-
mission (ISO/IEC), July 1999.

[ISO00] ISO/IEC JTC 1/SC 34. SGML Applications – Topic Maps. ISO/IEC
International Standard ISO/IEC 13250:2000, International Organiza-
tion for Standardization/International Electrotechnical Commission
(ISO/IEC), February 2000.

[ISO01a] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multime-
dia Content Description Interface – Part 1: Systems. ISO/IEC Final
Draft International Standard 15938-1:2001, International Organiza-
tion for Standardization/International Electrotechnical Commission
(ISO/IEC), November 2001.

[ISO01b] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multi-
media Content Description Interface – Part 2: Description Defini-
tion Language. ISO/IEC Final Draft International Standard 15938-
2:2001, International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC), September 2001.

[ISO01c] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multime-
dia Content Description Interface – Part 3: Visual. ISO/IEC Final
Draft International Standard 15938-3:2001, International Organiza-
tion for Standardization/International Electrotechnical Commission
(ISO/IEC), July 2001.

[ISO01d] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multime-
dia Content Description Interface – Part 4: Audio. ISO/IEC Final
Draft International Standard 15938-4:2001, International Organiza-
tion for Standardization/International Electrotechnical Commission
(ISO/IEC), June 2001.

134 BIBLIOGRAPHY

[ISO01e] ISO/IEC JTC 1/SC 29/WG 11. Information Technology – Multi-
media Content Description Interface – Part 5: Multimedia Descrip-
tion Schemes. ISO/IEC Final Draft International Standard 15938-
5:2001, International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC), October 2001.

[IXI01] IXIASOFT Inc. Creating Client Applications for TEXTML Server –
Programmer’s Guide. System Documentation Version 2.1, IXIASOFT
Inc., December 2001.

[JAC+02] H.V. Jagadish, S. Al-Khalifa, A. Chapman, et al. TIMBER: A Native
XML Database. The VLDB Journal, 11(4), 2002.

[Jel99] R. Jelliffe. Using XSL as a Validation Language. Draft Technical
Document, Academia Sinica, Taipei, Taiwan, January 1999. Available
at: http://www.ascc.net/xml/en/utf-8/XSLvalidation.html.

[Jel02] R. Jelliffe. The Schematron Assertion Language 1.5. Specification
Version 1.5, Academia Sinica, Taipei, Taiwan, October 2002.

[JLS99] H.V. Jagadish, L.V.S. Lakshmanan, and D. Srivastava. Hierarchical
or Relational? A Case for a Modern Hierarchical Data Model. In Proc.
of the IEEE Workshop on Knowledge and Data Engineering Exchange
(KDEX’99), Chicago, Illinois, November 1999.

[KM99] C.C. Kanne and G. Moerkotte. Efficient Storage of XML Data. Tech-
nical Report 8/99, University of Mannheim, Germany, August 1999.

[KMRT96] T. Krauskopf, J. Miller, P. Resnick, and W. Treese. PICS Label Dis-
tribution Label Syntax and Communication Protocols. W3C Recom-
mendation Version 1.1, World Wide Web Consortium (W3C), October
1996.

[Kos02] H. Kosch. MPEG-7 and Multimedia Database Systems. ACM SIG-
MOD Record, 31(2), 2002.

[KSS95] V. Kashyap, K. Shah, and A. Sheth. Metadata for Building the
Multimedia Patch Quilt. In S. Jajodia and V.S. Subrahmanian, ed-
itors, Multimedia Database Systems: Issues and Research Directions.
Springer Verlag, London, UK, 1995.

[KV00] M. Kempa and V.Linnemann. Efficient Parsing of XML Documents
without Limitations: DTD implies LL(1) Grammar (in German).
Technical Report: Schriftenreihe der Institute für Informatik und
Mathematik A-00-21, University of Lübeck, Germany, December 2000.

[KW01] T. Kunieda and Y. Wakita. XML Schema Dynamic Mapped Multi-
media Content Description Tool. In Proc. of the 20th International
Conference on Conceptual Modeling (ER 2001), Yokohama, Japan,
November 2001.

[LBK02] P.M. Lewis, A. Bernstein, and M. Kifer. Databases and Transac-
tion Processing – An Application-Oriented Approach. Addison-Wesley,
New York, 2002.

BIBLIOGRAPHY 135

[LC00] D. Lee and W.W. Chu. Comparative Analysis of Six XML Schema
Languages. ACM SIGMOD Record, 29(3), 2000.

[LLW+00] A. Le Hors, P. Le Hégaret, L. Wood, et al. Document Object Model
(DOM) Level 2 Core Specification. W3C Recommendation Version
1.0, World Wide Web Consortium (W3C), November 2000.

[LLW+03] A. Le Hors, P. Le Hégaret, L. Wood, et al. Document Object Model
(DOM) Level 3 Core Specification. W3C Working Draft Version 1.0,
World Wide Web Consortium (W3C), June 2003.

[LM00] A. Laux and L. Martin. XUpdate – XML Update Language. XML:DB
Working Draft 2000-09-14, XML:DB Initiative, September 2000.

[LS99] O. Lassila and R.R. Swick. Resource Description Framework (RDF)
Model and Syntax Specification. W3C Recommendation, World Wide
Web Consortium (W3C), February 1999.

[MAA+02a] C. McGregor, O. Alonso, S. Alpha, et al. Oracle Text – Reference.
System Documentation Release 2 (9.2), Oracle Corp., March 2002.

[MAA+02b] C. Murray, D. Abugov, N. Alexander, et al. Oracle Spatial – User’s
Guide and Reference. System Documentation Release 2 (9.2), Oracle
Corp., March 2002.

[Mar02] J.M. Martinez. MPEG-7 – Overview of MPEG-7 Description Tools,
Part 2. IEEE MultiMedia, 9(3), 2002.

[Met98] Metadata Ad Hoc Working Group. Content Standard for Digital
Geospatial Metadata. FDGC Standard FGDC-STD-001-1998, Fed-
eral Geographic Data Committee (FGDC), June 1998.

[Mey02] W.M. Meyer. eXist User’s Guide. System Documentation Version
0.71, 2002.

[Mic00a] Microsoft Corp. Microsoft SQL Server 2000 – Creating and Maintain-
ing Databases. System Documentation, Microsoft Corp., 2000.

[Mic00b] Microsoft Corp. Microsoft SQL Server 2000 – SQLXML 2.0. System
Documentation, Microsoft Corp., 2000.

[MKP02] J.M. Martinez, R. Koenen, and F. Pereira. MPEG-7 – The Generic
Multimedia Content Description Standard, Part 1. IEEE MultiMedia,
9(2), 2002.

[ML02] M. Mani and D. Lee. XML to Relational Conversion using Theory of
Regular Tree Grammars. In Proc. of the First VLDB Workshop on
Efficiency and Effectiveness of XML Tools and Techniques (EEXTT
2002), Hongkong, China, August 2002.

[MMRW02] A. Malhotra, J. Melton, J. Robie, and N. Walsh. XQuery 1.0 and
XPath 2.0 Functions and Operators. W3C Working Draft, World
Wide Web Consortium (W3C), November 2002.

[Møl03] A. Møller. Document Structure Description 2.0. Specification Version
2.0, BRICS, University of Aarhus, Denmark, 2003.

136 BIBLIOGRAPHY

[MS99] T. Milo and D. Suciu. Index Structures for Path Expressions. In Proc.
of the 7th International Conference on Database Theory (ICDT 1999),
Jerusalem, Israel, January 1999.

[MSS02] B.S. Manjunath, P. Salembier, and T. Sikora, editors. Introduction to
MPEG-7. John Wiley & Sons, West Sussex, UK, 2002.

[Mur99] M. Murata. Hedge Automata: a Formal Model for XML Schemata.
Draft Technical Document, Fuji Xerox Information Systems, Fuji Xe-
rox Co., Ltd., Tokyo, Japan, October 1999.

[Net02] Network Development and MARC Standards Office. MARC 21 Con-
cise Format for Bibliographic Data. Library of Congress Standard
2002 Concise Edition, Library of Congress, October 2002.

[NIS02] NISO. Data Dictionary – Technical Metadata for Digital Still Im-
ages. NISO Draft Standard NISO Z39.87-2002, National Information
Standards Organization (NISO), June 2002.

[NL99a] F. Nack and A.T. Lindsay. Everything You Wanted to Know About
MPEG-7: Part 1. IEEE MultiMedia, 6(3), 1999.

[NL99b] F. Nack and A.T. Lindsay. Everything You Wanted to Know About
MPEG-7: Part 2. IEEE MultiMedia, 6(4), 1999.

[PH01] L. Poola and J. Haritsa. SphinX: Schema-conscious XML Indexing.
Technical Report TR-2001-04, Database Systems Lab, Indian Institute
of Science, Bangalore, India, 2001.

[PM01] S. Pepper and G. Moore. XML Topic Maps (XTM) 1.0. Top-
icMaps.Org Specification, TopicMaps.org Consortium, August 2001.

[Pre98] P. Prescod. Formalizing XML and SGML Instances with Forest
Automata Theory. Draft technical document, School of Computer
Science, University of Waterloo, Canada, May 1998. Available at:
http://www.prescod.net/forest/shorttut.

[PV03] Y. Papakonstantinou and V. Vianu. Incremental Validation of XML
Documents. In Proc. of the 9th International Conference on Database
Theory (ICDT 2003), Siena, Italy, January 2003.

[Rei03] M. Reis. Eine optimierte Algebra zur Auswertung von XPath-
Ausdrücken in einem Typed DOM (in German). Diploma Thesis,
Dept. of Computer Science and Business Informatics, University of
Vienna, Austria, 2003.

[RLS98] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL).
In Proc. of the W3C Query Languages Workshop (QL’98), Boston,
Massachussets, December 1998.

[SK98] A. Sheth and W. Klas, editors. Multimedia Data Management: Using
Metadata To Integrate and Apply Digital Media. McGraw-Hill, New
York, 1998.

BIBLIOGRAPHY 137

[SKW+00] A. Schmidt, M. Kersten, M. Windhouwer, et al. Efficient Relational
Storage and Retrieval of XML Documents. In Proc. of the Third Inter-
national Workshop on the Web and Databases (WebDB 2000), Dallas,
Texas, May 2000.

[Sof01a] Software AG. Tamino X-Query. System Documentation Version 3.1.1,
Software AG, November 2001.

[Sof01b] Software AG. User Guide. System Documentation Version 3.1.1, Soft-
ware AG, November 2001.

[ST01] A. Salminen and F.W. Tompa. Requirements for XML Document
Database Systems. In Proc. of the ACM Symposium on Document
Engineering 2001 (DocEng ’01), Atlanta, Georgia, November 2001.

[Sta01] K. Staken. dbXML Developers Guide 0.5. System Documentation
Version 1.0, The dbXML Project, September 2001.

[Sta02] K. Staken. Xindice Developers Guide 0.7. System Documentation
Version 1.0, The Apache Software Foundation, March 2002.

[Ste90] G.L. Steele. Common Lisp: The Language. Digital Press, Maynard,
Massachussetts, Second edition, 1990.

[STH+99] J. Shanmugasundaram, K. Tufte, G. He, et al. Relational Databases
for Querying XML Documents: Limitations and Opportunities. In
Proc. of the 25th International Conference on Very Large Data Bases
(VLDB ’99), Edinburgh, Scotland, September 1999.

[SV02] L. Segoufin and V. Vianu. Validating Streaming XML Documents. In
Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS 2002), Madison, Wisconsin,
June 2002.

[SYU99] T. Shimura, M. Yoshikawa, and S. Uemura. Storage and Retrieval of
XML Documents Using Object-Relational Databases. In Proc. of the
Database and Expert Systems Applications, 10th International Con-
ference (DEXA ’99), Florence, Italy, September 1999.

[TBM+01] H.S. Thompson, D. Beech, M. Maloney, et al. XML Schema Part
1: Structures. W3C Recommendation, World Wide Web Consortium
(W3C), May 2001.

[TDCZ02] F. Tian, D.J. DeWitt, J. Chen, and C. Zhang. The Design and Per-
formance Evaluation of Alternative XML Storage Strategies. ACM
SIGMOD Record, 31(1), 2002.

[The02] The PostgreSQL Global Development Group. The PostgreSQL 7.3de-
vel Documentation. System Documentation Version 7.3, The Post-
greSQL Global Development Group, 2002.

[Thu02] B. Thuraisingham. XML Databases and the Semantic Web. CRC
Press, Boca Raton, Florida, 2002.

138 BIBLIOGRAPHY

[TIHW01] I. Tatarinov, Z.G. Ives, A.Y. Halevy, and D.S. Weld. Updating XML.
In Proc. of the 2001 ACM SIGMOD International Conference on Man-
agement of Data (ACM SIGMOD 2001), Santa Barbara, California,
May 2001.

[VRA02] VRA Data Standards Committee. VRA Core Categories. VRA Stan-
dard Version 3.0, Visual Resources Assocation (VRA), February 2002.

[WK02a] U. Westermann and W. Klas. A Typed DOM for the Man-
agement of MPEG-7 Media Descriptions. Technical Re-
port TR-2002301, Dept. of Computer Science and Busi-
ness Informatics, University of Vienna, Austria, March 2002.
Available at http://www.informatik.univie.ac.at/institute/-
index.html?staffPublication-8=8.

[WK02b] U. Westermann and W. Klas. An Analysis of XML Database So-
lutions Concerning the Management of MPEG-7 Media Descrip-
tions. Technical Report TR-2002302, Dept. of Computer Science
and Business Informatics, University of Vienna, Austria, Septem-
ber 2002. Available at http://www.informatik.univie.ac.at/institute/-
index.html?staffPublication-8=8.

[WK03a] U. Westermann and W. Klas. A Typed Representation
and Type Inference for MPEG-7 Media Descriptions. Tech-
nical Report TR-2003301, Dept. of Computer Science and
Business Informatics, University of Vienna, Austria, February
2003. Available at http://www.informatik.univie.ac.at/institute/-
index.html?staffPublication-8=8.

[WK03b] U. Westermann and W. Klas. An Analysis of XML Database Solutions
for the Management of MPEG-7 Media Descriptions. ACM Computing
Surveys, 35(4), 2003.

[WK03c] U. Westermann and W. Klas. PTDOM – A Native Schema-
Aware XML Database Solution. Technical Report TR-
2003303, Dept. of Computer Science and Business Infor-
matics, University of Vienna, Austria, December 2003.
Available at http://www.informatik.univie.ac.at/institute/-
index.html?staffPublication-8=8. Currently under review for VLDB
Journal.

[WK04] U. Westermann and W. Klas. A Typed DOM for the Management of
MPEG-7 Media Descriptions. Accepted for publication in Multimedia
Tools and Applications, 2004.

[Woo99] P.T. Wood. Optimising Web Queries Using Document Type Defini-
tions. In Proc. of the 2nd Workshop on Web Information and Data
Management (WIDM’99), Kansas City, Missouri, November 1999.

[X-H02] X-Hive Corp. X-Hive/DB 2.1 – Manual. System Documentation Re-
lease 2.0.2, X-Hive Corp., May 2002.

[XML01] XML Global Technologies, Inc. GoXML DB Administrator Help. Sys-
tem Documentation Version 2.0.1, XML Global Technologies, Inc.,
December 2001.

BIBLIOGRAPHY 139

[XML03] XML:DB Initiative for XML Databases. Frequently Asked
Questions about XML:DB. Online Article, available under
http://www.xmldb.org/faqs.html, February 2003.

[YBL+01] K. Yoon, S.Y. Bae, J.E. Lee, et al. MPEG-7 Based News Browsing:
Description Extraction, Browsing and Exchange. Proceedings of SPIE,
4518, 2001.

140 BIBLIOGRAPHY

Lebenslauf

Name: Gerd Utz Westermann
Wohnhaft: Hebragasse 5/25

A-1090 Wien
Geboren: 17. Februar 1973 in Hüttental, heute Siegen, Deutschland
Vater: Gerd Friedrich Westermann, Studiendirektor
Mutter: Marie-Luise Westermann, geb. Henners, Verkäuferin
Nationalität: deutsch
Familienstand: ledig

Schule, Ausbildung und Studium

1979 - 1983 Gemeinschaftsgrundschule Krombach, Deutschland
1983 - 1992 Friedrich-Flick-Gymnasium, Kreuztal, Deutschland

Abschluß: Abitur (Note: 1,7)
1992 - 1993 Wehrdienst
1993 - 1998 Studium der Informatik an der Universität Ulm,

Deutschland
Abschluß: Diplom-Informatiker (Note: 1,0)
Diplomarbeitsthema: Repräsentation flexibel wiederver-
wendbarer multimedialer Dokumente in einem DBMS

Seit 1.3.2001 Doktoratsstudium an der Technischen Universität Wien

Beschäftigungsverhältnisse

1993 Soldat auf Zeit bei der 13./ Technische Schule der
Luftwaffe 2, Erndtebrück, Deutschland

1995 Praktikum bei der Liebherr-Aero-Technik GmbH,
Lindenberg, Deutschland

1997 - 1998 Praktikum bei der bei der debis Systemhaus GEI mbH,
Ulm, Deutschland

1998 - 2000 Wissenschaftlicher Mitarbeiter in der Abteilung Daten-
banken und Informationssysteme der Fakultät für
Informatik, Universität Ulm, Deutschland

Seit 1.9.2000 Universitätsassistent in der Abteilung Multimedia
Informationssysteme des Instituts für Informatik und
Wirtschaftsinformatik, Universität Wien

