Hijacking Routes in Payment Channel Networks: A Predictability Tradeoff

Hijacking Routes in Payment Channel Networks: A Predictability Tradeoff

Abstract

Off-chain transaction networks can mitigate the scalability issues of today’s trustless electronic cash systems such as Bitcoin. However, these peer-to-peer networks also introduce a new attack surface which is not well-understood today. This paper identifies and analyzes, a novel Denial-of-Service attack which is based on route hijacking, i.e., which exploits the way transactions are routed and executed along the created channels of the network. This attack is conceptually interesting as even a limited attacker that manipulates the topology through the creation of new channels can navigate tradeoffs related to the way it attacks the network. Furthermore, the attack also highlights a fundamental design tradeoff for the defender (who determines its own routes): to become less predictable and hence secure, a rational node has to pay higher fees to nodes that forward its payments. We find that the three most common implementations for payment channels in Bitcoin (lnd, C-lightning, Eclair) approach routing differently. We begin by surveying the current state of the Lightning network and explore the routes chosen by these implementations. We find that in the current network nearly 60% of all routes pass through only five nodes, while 80% go through only 10 nodes. Thus, a relatively small number of colluding nodes can deny service to a large fraction of the network. We then turn to study an external attacker who creates links to the network and draws more routes through its nodes by asking for lower fees. We find that just five new links are enough to draw the majority (65% - 75%) of the traffic regardless of the implementation being used. The cost of creating these links is very low. We discuss the differences between implementations and eventually derive our own suggested routing policy, which is based on a novel combination of existing approaches.

Grafik Top
Authors
  • Tochner, Saar
  • Zohar, Aviv
  • Schmid, Stefan
Grafik Top
Supplemental Material
Shortfacts
Category
Paper in Conference Proceedings or in Workshop Proceedings (Paper)
Event Title
2nd ACM Conference on Advances in Financial Technologies (AFT)
Divisions
Communication Technologies
Subjects
Informatik Allgemeines
Event Location
New York City, New York, USA
Event Type
Conference
Event Dates
October 2020
Date
October 2020
Export
Grafik Top